Исследовать функцию с помощью производной и построить ее график: Математическое Бюро. Страница 404

2*arctgh(x)*arcctgh(x)

Содержание

Что исследует?

Для периодических функций идет исследование графика функции только на промежутке периода

Наш калькулятор позволяет исследовать график функции. Но пока что нет возможности находить область определения функции

Что умеет находить этот калькулятор:

  • Область определения функции: Да. Умеет определять только точки, в которых знаменатель функции обращается в нуль, но в остальных случаях:
  • Умеет определять точки пересечения графика функции с осями координат: Да
  • Экстремумы функции: интервалы (отрезки) возрастания и убывания функции: Да
  • Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости): Да
  • Вертикальные асимптоты : Да (это завязано с областью определения функции, на точки, где знаменатель функции обращается в нуль)
  • Горизонтальные асимптоты графика функции: Да
  • Наклонные асимптоты графика функции: Да
  • Четность и нечетность функции: Да
Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция — арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция — арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
exp(x)
Функция — экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
sin(x)
Функция — Синус от x
cos(x)
Функция — Косинус от x
sinh(x)
Функция — Синус гиперболический от x
cosh(x)
Функция — Косинус гиперболический от x
sqrt(x)
Функция — квадратный корень из x
sqr(x) или x^2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7.3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3.4−0+4 = 4Результат:
f(0)=4
Точка:
(0, 4)

5. Найти асимптоты графика — их нет.

6. Вычислить производную функции f'(x)
и определить критические точки.

f'(x) = 4х³ — 12х = 4х(х² — 3).

Приравниваем производную нулю: 4х(х² — 3) = 0.

Получаем 3 корня (это критические точки):

х = 0, х = √3 и х = -√3.

7. Найти промежутки монотонности
функции.

Исследуем знаки производной:

х =               
-2 
-1.732  -1.5  
-0.5   
0    0.5     
1.5  1.732   2

y’=4х³ — 12х   -8      0       4.5   
5.5    0   
-5.5   
-4.5     0     
8.
Где производная положительна — там функция возрастает, где отрицательна — там функция убывает.
Возрастает на промежутках [-sqrt(3), 0] U [sqrt(3), oo).
Убывает на промежутках (-oo, -sqrt(3)] U [0, sqrt(3)]

8. Определить экстремумы функции f(x).

Где производная меняет знак с — на + там минимум функции, где меняет знак с + на — там максимум.

 экстремумы в точках:

(0, 4) максимум,

 (-√ 3, -5) и  (√ 3, -5) минимумы.

9. Вычислить вторую производную f»(x).

Приравниваем нулю вторую производную:

f»(x) = 12х²-12 =12(х² — 1) = 0.

Имеем 2 точки перегиба функции: х = 1 и х = -1.

10. Определить направление
выпуклости графика и точки перегиба.

Вогнутая на промежутках (-oo, -1] U [1, oo).
Выпуклая на промежутках [-1, 1]

11. Построить график, используя
полученные результаты исследования — в приложении. 

На заданном интервале графика от -1 до 1 будет только выпуклая его часть.

Урок 20. построение графиков функций — Алгебра и начала математического анализа — 11 класс

Алгебра и начала математического анализа, 11 класс

Урок №20. Построение графиков функций.

Перечень вопросов, рассматриваемых в теме

  1. Исследование функций;
  2. Построение графиков функций;
  3. Применение производной для решения графических задач.

Глоссарий по теме

Асимптота графика функции y = f(x) – прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Возрастание функции. Функция y=f(x) возрастает на интервале X, если для любых х1и х2, из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Выпуклость вверх. Функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит выше проведенного отрезка.

Выпуклость вниз. Функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка.

Максимум функции. Значение функции в точке максимума называют максимумом функции.

Минимум функции. Значение функции в точке минимума называют минимумом функции.

Производная (функции в точке) — основное понятие дифференциального исчисления, которое характеризует скорость изменения функции (в конкретной точке).

Производная второго порядка (вторая производная). Производная второго порядка есть первая производная от производной первого порядка.

Производную определяют, как предел отношения приращения функции к приращению ее аргумента при стремлении приращения аргумента к 0, если такой предел существует.

Точка максимума функции. Точку х0называют точкой максимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точка минимума функции. Точку  х0 называют точкой минимума функции y = f(x), если для всех x из ее окрестности справедливо неравенство  .

Точка перегиба. Точки, в которых выпуклость вверх меняется на выпуклость вниз или наоборот, называются точками перегиба.

Точки экстремума функции. Точки минимума и максимума называют точками экстремума.

Убывание функции. Функция y=f(x) убывает на интервале X, если для любых х1 и х2 , из этого промежутка выполняется неравенство . Другими словами – большему значению аргумента соответствует большее значение функции.

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

Функция выпукла вниз, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит ниже проведенного отрезка.

Функция выпукла вверх, если, соединив любые две точки ее графика отрезком прямой, обнаруживают, что соответствующая часть графика лежит вышепроведенного отрезка.

Полная схема построения графика функции:

  1. Найти область определения функции D(f).
  2. Исследовать функцию на четность (найти f(-x)).
  3. Найти асимптоты.
  4. Найти стационарные и критические точки.
  5. Найти промежутки монотонности.
  6. Найти интервалы выпуклости вверх и выпуклости вниз.
  7. Найти точки перегиба
  8. Составить таблицу значений функции для некоторых точек.
  9. По полученным данным построить график функции.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Постройте график функции у = х3 – 3х + 3, используя краткую схему построения. схему построения.

Решение:

1) D(y) = (-∞; +∞)

2) Функция не является ни четной, ни нечетной, т. к.

3) Асимптот нет

4) f’(x) = 3x2 – 3, f’(x) = 0 при х = 1, х = -1.

х = 1, х = -1 – стационарные точки.

5) f’(x)>0 при . Так как в точках х = 1, х = -1 функция непрерывна, то эти точки также включаются в промежутки возрастания.

f’(x)<0 при . Так как в точках х = 1, х = -1 функция непрерывна, то эти точки также включаются в промежутки убывания.

6) Так как в точке х = -1 производная меняет знак с «+» на «-», то х = -1 – точка максимума.

Так как в точке х = 1 производная меняет знак с «-» на «+», то х = 1 – точка минимума.

7) Результаты исследования представим в виде таблицы.

x

(-∞; -1)

-1

(-1; 1)

1

(1; +∞)

f’(x)

+

0

0

+

f(x)

5

1

max

min

8) Координаты некоторых точек:

9) По полученным данным строим график (рис. 1)

Рисунок 1 – график функции у = х3 – 3х + 3

Пример 2. Постройте график функции, используя подробную схему построения. схему построения.

Решение:

1)

2) Функция не является ни четной, ни нечетной, т. к.

3) х = 1 – вертикальная асимптота

4) , f’(x) = 0 при х = 2, х = 0.

х = 2, х = 0 – стационарные точки.

5) f’(x)>0 при . Так как в точках х = 0, х = 2 функция непрерывна, то эти точки также включаются в промежутки возрастания.

f’(x)<0 при . Так как в точках х = 0, х = 2 функция непрерывна, то эти точки также включаются в промежутки убывания.

Так как в точке х = 0 производная меняет знак с «+» на «-», то х = 0 – точка максимума.

Так как в точке х = 2 производная меняет знак с «-» на «+», то х = 2 – точка минимума.

х = 1 – не является точкой экстремума

6) Найдем интервалы выпуклости функции.

; при функция выпукла вверх.

; при функция выпукла вниз.

7) Результаты исследования представим в виде таблицы.

x

(-∞; 0)

0

(0; 1)

1

(1; 2)

2

(2; +∞)

f’(x)

+

0

Не сущ.

0

+

f’’(x)

Не сущ.

+

+

f(x)

-4

Не сущ.

0

max

min

8) Координаты некоторых точек:

x

-1

0,5

1,5

3

f(x)

-4,5

-4,5

0,5

0,5

9) По полученным данным строим график (рис. 2)

Рисунок 2 – график функции

Исследование функции с помощью производной /qualihelpy

Рассмотрим функции  и , которые непрерывны на отрезке  и дифференцируемы на интервале .
Теорема Ферма
: если функция  в точке  имеет локальный экстремум, то  .
Геометрический смысл теоремы: касательная к графику функции в точке  параллельна оси абсцисс. 

Теорема Лагранжа:  , где .

Геометрический смысл теоремы: касательная к графику функции в точке   параллельна секущей, соединяющей концы графика этой функции.

Теорема Ролля: если  и  , то .

Геометрический смысл теоремы: у графика функции существует точка, в которой касательная параллельна оси абсцисс.

Теорема Коши: если  , то .

Исследование функции с помощью первой производной

С помощью производной функции можно определить характер монотонности функции, точки экстремума, а также ее наибольшее и наименьшее значение на заданном промежутке.

Достаточное условие возрастания (убывания) функции:

а) если на заданном промежутке   , то функция возрастает на этом промежутке;

б) если   , то функция убывает на этом промежутке.

Экстремум
функции

Максимумом (минимумом)
функции   называют такое ее значение, которое больше (меньше) всех ее других значений в окрестности рассматриваемой точки.

Максимум и минимум функции имеют локальный характер, поскольку отдельные минимумы некоторой функции могут оказаться больше максимумов той же функции (рис. 6.4).

Максимум и минимум функции называются 
экстремумом функции
. Значение аргумента, при котором достигается экстремум, называется
точкой экстремума
. На рисунке 6.4 значения , , ,  и  являются точками экстремума рассматриваемой функции.

 

Критическими точками
функции называют те значения аргумента, при которых производная функции равна нулю или не существует. Критические точки функции находят, решая уравнение: .

Алгоритм нахождения точек экстремума функции:

1) находим область определения функции  ;
2) находим ;

3) находим критические точки функции, решая уравнение ;

4) наносим критические точки на область определения функции;

5) определяем знак производной функции на полученных промежутках;

6) определяем точки экстремума функции по правилу: 
если при переходе через критическую точку производная меняет знак c «+» на «–», то имеем точку максимума, а если с «–» на «+», то имеем точку минимума.

Рассмотрим функцию   на отрезке . Свое наибольшее и наименьшее значение она может принимать либо на концах отрезка, либо в точках экстремума.

Алгоритм нахождения наибольшего и наименьшего
значений

функции на заданном отрезке:  

1) находим ;

2) находим критические точки функции, решая уравнение ;

3) находим значение функции на концах отрезка и в критических точках, принадлежащих данному отрезку;

4) определяем наибольшее и наименьшее значение из полученных.

Исследование
функции с помощью второй производной

Критическими точками второго рода
функции  называют те значения аргумента, при которых вторая производная этой функции равна нулю или не существует.

Критические точки второго рода функции находят, решая уравнение .

Если при переходе через критическую точку второго рода вторая производная функции меняет знак, то имеем точку перегиба
 графика функции.

Если на некотором промежутке выполняется неравенство , то функция  вогнута
на этом промежутке, а если , то функция
выпукла
на этом промежутке.

y x 1 x 2 1 исследовать функцию и построить

Вы искали y x 1 x 2 1 исследовать функцию и построить? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и y x 1 x 2 1 исследовать функцию и построить график, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз.
И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение.
Например, «y x 1 x 2 1 исследовать функцию и построить».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как y x 1 x 2 1 исследовать функцию и построить,y x 1 x 2 1 исследовать функцию и построить график,анализ функции,анализ функции онлайн,график функции для исследования,графики для исследования функций,графики функций для исследования,исследование графика функции,исследование графика функции онлайн,исследование и построение графика функции,исследование и построение графика функции онлайн,исследование и построение графика функции с помощью производной,исследование и построение графика функции с помощью производной онлайн,исследование и построение графиков функции,исследование на непрерывность функции онлайн,исследование на непрерывность функции онлайн калькулятор,исследование функции,исследование функции y 2 x,исследование функции y x 1 x 2,исследование функции y x 2,исследование функции y x 2 x 1,исследование функции и построение графика,исследование функции и построение графика калькулятор онлайн,исследование функции и построение графика онлайн,исследование функции и построение графика онлайн калькулятор,исследование функции и построение графика онлайн с подробным решением,исследование функции и построение графика примеры решения задач,исследование функции и построение графика с помощью производной,исследование функции и построение графика с помощью производной онлайн,исследование функции и построение графика функции с помощью производной,исследование функции и построение графиков,исследование функции и построение графиков функции,исследование функции калькулятор,исследование функции на непрерывность онлайн,исследование функции на непрерывность онлайн калькулятор,исследование функции на непрерывность онлайн с подробным решением,исследование функции онлайн,исследование функции онлайн калькулятор,исследование функции онлайн калькулятор с подробным решением,исследование функции онлайн с подробным решением,исследование функции онлайн с подробным решением онлайн,исследование функции с помощью производной и построение графика,исследование функции с помощью производной и построение графика онлайн,исследование функции с помощью производной онлайн с решением,исследование функции с помощью производной построение графика функции,исследование функции с помощью производной примеры решения,исследование функций,исследование функций и построение графиков,исследование функций онлайн,исследования функции онлайн,исследовать график на непрерывность и построить график онлайн,исследовать график функции,исследовать график функции и построить график,исследовать данные функции на непрерывность и построить их графики онлайн,исследовать и построить график функции,исследовать и построить график функции онлайн с подробным решением,исследовать и построить график функции онлайн с решением,исследовать методами дифференциального исчисления и построить график,исследовать методами дифференциального исчисления и построить график онлайн,исследовать методами дифференциального исчисления функцию,исследовать методом дифференциального исчисления функцию и построить график,исследовать на монотонность функцию онлайн,исследовать на непрерывность и построить график функции онлайн,исследовать на непрерывность функции онлайн,исследовать на непрерывность функцию и построить график онлайн,исследовать на непрерывность функцию онлайн,исследовать на непрерывность функцию онлайн калькулятор,исследовать на непрерывность функцию онлайн с подробным решением,исследовать на ограниченность функцию онлайн,исследовать с помощью производной функцию и построить график,исследовать средствами дифференциального исчисления функцию онлайн,исследовать функции и построить график,исследовать функции и построить график онлайн,исследовать функции на непрерывность онлайн,исследовать функцию,исследовать функцию x y x,исследовать функцию y 2 x 2,исследовать функцию y x 1 x,исследовать функцию y x 2 1 x,исследовать функцию y x 2 1 x 2,исследовать функцию y x 2 x,исследовать функцию y x 3 x 2,исследовать функцию и построить график,исследовать функцию и построить график y x 1 x 2,исследовать функцию и построить график онлайн,исследовать функцию и построить график онлайн решение,исследовать функцию и построить график онлайн с подробным решением,исследовать функцию и построить график онлайн с подробным решением онлайн,исследовать функцию и построить график примеры решения,исследовать функцию и построить график решение онлайн калькулятор,исследовать функцию и построить график с помощью производной,исследовать функцию и построить ее график,исследовать функцию и построить ее график калькулятор онлайн,исследовать функцию и построить ее график онлайн калькулятор,исследовать функцию и построить ее график онлайн с решением,исследовать функцию методами дифференциального исчисления,исследовать функцию методом дифференциального исчисления и построить график,исследовать функцию на монотонность и экстремумы онлайн,исследовать функцию на монотонность онлайн,исследовать функцию на непрерывность и построить график онлайн,исследовать функцию на непрерывность калькулятор онлайн,исследовать функцию на непрерывность онлайн,исследовать функцию на непрерывность онлайн калькулятор,исследовать функцию на непрерывность онлайн с подробным решением,исследовать функцию на ограниченность онлайн,исследовать функцию онлайн,исследовать функцию онлайн с подробным решением,исследовать функцию по графику,исследовать функцию с помощью производной и построить график,исследовать функцию с помощью производной и построить график онлайн,исследовать функцию средствами дифференциального исчисления онлайн,исследовать функцию что значит,исследуйте и постройте график функции,исследуйте и постройте график функции у 3 2х,исследуйте на непрерывность функцию онлайн,исследуйте функции и постройте график,исследуйте функцию,исследуйте функцию y,исследуйте функцию и постройте график,исследуйте функцию и постройте ее график,исследуйте функцию и постройте ее график онлайн,исследуйте функцию на непрерывность онлайн,исследуйте функцию у f x и постройте ее график,как исследовать график функции,как исследовать функцию и построить график,как исследовать функцию и построить ее график,как построить график и исследовать функцию,калькулятор исследование функции,калькулятор исследования функции,калькулятор исследования функции и построения графика,калькулятор онлайн исследование функции на непрерывность,методами дифференциального исчисления исследовать функцию,непрерывность функции онлайн,онлайн анализ функции,онлайн исследование на непрерывность функции онлайн,онлайн исследование функции и построение графика,онлайн исследование функции и построение графика с подробным решением,онлайн исследование функции с помощью производной,онлайн исследования функции,онлайн исследовать функцию на непрерывность и построить график,онлайн калькулятор исследование функции,онлайн калькулятор исследование функции и построение графика,онлайн калькулятор исследование функции на непрерывность,онлайн полное исследование функции и построение графика,периодичность функции онлайн,полное исследование и построение графика функции,полное исследование и построение графика функции онлайн,полное исследование функции,полное исследование функции и построение графика,полное исследование функции и построение графика онлайн,полное исследование функции и построение графика онлайн решение,полное исследование функции и построение графика функции,полное исследование функции онлайн,полное исследование функции онлайн и построение графика,построение графиков и исследование функции,построение графиков функций и исследование,построение и исследование графиков функции,построить график функции используя общую схему исследования функции,построить и исследовать график функции онлайн с подробным решением,примеры исследование функции и построение графика функции,провести исследование и построить график функции,провести исследование и построить график функции онлайн,провести исследование функции и построить график,провести исследование функции и построить график онлайн,провести полное исследование и построить график функции,провести полное исследование и построить график функции онлайн калькулятор,провести полное исследование функции и построить график,провести полное исследование функции и построить график калькулятор онлайн,провести полное исследование функции и построить график онлайн калькулятор,провести полное исследование функции и построить график онлайн решение,провести полное исследование функции и построить график функции,точки пересечения графика функции с осями координат онлайн,функции исследования,что значит исследовать функцию. На этой странице вы найдёте калькулятор,
который поможет решить любой вопрос, в том числе и y x 1 x 2 1 исследовать функцию и построить. Просто введите задачу в окошко и нажмите
«решить» здесь (например, анализ функции).

Где можно решить любую задачу по математике, а так же y x 1 x 2 1 исследовать функцию и построить Онлайн?

Решить задачу y x 1 x 2 1 исследовать функцию и построить вы можете на нашем сайте https://pocketteacher.ru. Бесплатный
онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо
сделать — это просто
ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести
вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице
калькулятора.

Исследование функции и построение графика с помощью производной

Пример 1.





Решение


1) Область определения функции



2) Чётность, нечётность функции:



Функция не является ни чётной, ни нечётной.


3) Точки разрыва функции :



 


 — вертикальная
асимптота


Найдём наклонные асимптоты функции :



 -
горизонтальная асимптота


4) Промежутки монотонности функции и точки экстремума:




               — критическая
точка первого рода



Функция возрастает при и при .


Точек экстремума нет.


5) Промежутки выпуклости и вогнутости и точки перегиба:




              — критические
точки второго рода



 


Функция выпукла при  и вогнута при .


 — точка
перегиба



6) Точки пересечения с осями координат:


с :  — точек
пересечения с нет


с: 


7) Построим график функции:



 


 


 


Пример 2.


Исследовать функцию  и построить
ее график:



 


Решение


 


1) Область определения функции



2) Чётность, нечётность функции:



Функция не является ни чётной, ни нечётной.


3) Точки разрыва функции :



 


 — вертикальная
асимптота


Найдём наклонные асимптоты функции :



 -
горизонтальная асимптота


4) Промежутки монотонности функции и точки экстремума:



 


 



               — критические
точки первого рода



Функция возрастает при и убывает при  и при.


 — точка
максимума



5) Промежутки выпуклости и вогнутости и точки перегиба:




              — критические
точки второго рода



Функция выпукла при и и вогнута при .


 — точка
перегиба



6) Точки пересечения с осями координат:


с :


с: 


7) Построим график функции:



 


 


 

3.2 Производная как функция — Объем исчисления 1

Цели обучения

  • Определите производную функцию заданной функции.
  • Постройте производную функцию от графика заданной функции.
  • Укажите связь между производными и непрерывностью.
  • Опишите три условия, когда функция не имеет производной.
  • Объясните значение производной высшего порядка.

Как мы видели, производная функции в данной точке дает нам скорость изменения или наклон касательной к функции в этой точке.Если мы дифференцируем функцию положения в данный момент времени, мы получаем скорость в этот момент. Кажется разумным заключить, что знание производной функции в каждой точке может дать ценную информацию о поведении функции. Однако процесс нахождения производной даже для нескольких значений с использованием методов предыдущего раздела быстро стал бы довольно утомительным. В этом разделе мы определяем производную функцию и изучаем процесс ее нахождения.

Функция производной дает производную функции в каждой точке области определения исходной функции, для которой определена производная.Мы можем формально определить производную функцию следующим образом.

Определение

Позвольте быть функцией. Производная функция , обозначенная как, — это функция, область определения которой состоит из таких значений, что существует следующий предел:

.

Говорят, что функция дифференцируема на , если
существует. В более общем смысле, функция называется дифференцируемой на , если она дифференцируема в каждой точке открытого набора, а дифференцируемая функция — это функция, в которой существует в своей области.

В следующих нескольких примерах мы используем (рисунок), чтобы найти производную функции.

Нахождение производной функции квадратного корня

Найдите производную от.

Решение

Начните непосредственно с определения производной функции. Используйте (рисунок).

Нахождение производной квадратичной функции

Найдите производную функции.

Решение

Выполните ту же процедуру, но без умножения на конъюгат.

Найдите производную от.

Решение

Мы используем множество различных обозначений для выражения производной функции. На (Рисунок) мы показали, что если, то. Если бы мы выразили эту функцию в форме, мы могли бы выразить производную как или. Мы могли бы передать ту же информацию письменно. Таким образом, для функции каждое из следующих обозначений представляет собой производную от:

.

Вместо мы также можем использовать. Использование обозначений (так называемых обозначений Лейбница) довольно распространено в инженерии и физике.Чтобы лучше понять это обозначение, напомним, что производная функции в точке — это предел наклона секущих линий, когда секущие линии приближаются к касательной. Наклоны этих секущих линий часто выражаются в виде где — разница значений, соответствующая разнице значений, которые выражаются как ((Рисунок)). Таким образом, производная, которую можно представить как мгновенную скорость изменения относительно, выражается как

.

Фигура 1.Производная выражается как.

Мы уже обсуждали, как построить график функции, поэтому, имея уравнение функции или уравнение производной функции, мы можем построить график. Учитывая и то, и другое, мы ожидаем увидеть соответствие между графиками этих двух функций, поскольку дает скорость изменения функции (или наклон касательной к).

В (Рисунок) мы обнаружили, что для. Если мы построим график этих функций на тех же осях, что и на (Рисунок), мы сможем использовать графики, чтобы понять взаимосвязь между этими двумя функциями.Во-первых, мы замечаем, что он увеличивается по всей своей области, что означает, что наклон его касательных во всех точках положительный. Следовательно, мы ожидаем для всех значений в его области. Кроме того, по мере увеличения наклон касательных к уменьшается, и мы ожидаем увидеть соответствующее уменьшение. Мы также замечаем, что это не определено и соответствует вертикальной касательной к точке 0.

Рис. 2. Производная везде положительна, потому что функция возрастает.

В (Рисунок) мы обнаружили, что для. Графики этих функций показаны на (Рисунок). Обратите внимание, что для. Для этих же значений. Для значений увеличивается и. Кроме того, имеет горизонтальную касательную в точках и.

Построение производной с помощью функции

Используйте следующий график, чтобы нарисовать график.

Нарисуйте график. На каком интервале находится график выше оси?

Решение

Теперь, когда мы можем построить график производной, давайте рассмотрим поведение графиков.Во-первых, мы рассматриваем взаимосвязь между дифференцируемостью и непрерывностью. Мы увидим, что если функция дифференцируема в точке, она должна быть непрерывной там; однако функция, непрерывная в какой-то точке, не обязательно должна быть дифференцируемой в этой точке. Фактически, функция может быть непрерывной в точке и не дифференцируемой в этой точке по одной из нескольких причин.

Проба

Если дифференцируем в, то существует и

.

Мы хотим показать, что это непрерывно, показав это.Таким образом,

Следовательно, поскольку определено и, мы заключаем, что непрерывно в точке.

Мы только что доказали, что дифференцируемость предполагает непрерывность, но теперь мы рассмотрим, подразумевает ли непрерывность дифференцируемость. Чтобы определить ответ на этот вопрос, исследуем функцию. Эта функция всюду непрерывна; однако не определено. Это наблюдение приводит нас к мысли, что непрерывность не предполагает дифференцируемости. Давайте изучим дальше. Для,

.

Этот предел не существует, потому что

.

См. (Рисунок).

Рисунок 4. Функция непрерывна в 0, но не дифференцируема в 0.

Рассмотрим некоторые дополнительные ситуации, в которых непрерывная функция не дифференцируема. Рассмотрим функцию:

.

Значит, не существует. Беглый взгляд на график проясняет ситуацию. Функция имеет вертикальную касательную в точке 0 ((рисунок)).

Рисунок 5. Функция имеет вертикальную касательную в точке. Он непрерывен в 0, но не дифференцируем в 0.

У функции также есть производная, которая демонстрирует интересное поведение при 0. Мы видим, что

.

Этот предел не существует, в основном потому, что наклон секущих линий непрерывно меняет направление по мере приближения к нулю ((Рисунок)).

Рисунок 6. Функция не дифференцируема в 0.

Итого:

  1. Заметим, что если функция не является непрерывной, она не может быть дифференцируемой, поскольку каждая дифференцируемая функция должна быть непрерывной. Однако, если функция непрерывна, она все равно не может быть дифференцируемой.
  2. Мы видели, что это невозможно дифференцировать в 0, потому что предел наклона касательных линий слева и справа не был одинаковым. Визуально это привело к появлению острого угла на графике функции в 0. Отсюда мы заключаем, что для того, чтобы быть дифференцируемой в точке, функция должна быть «гладкой» в этой точке.
  3. Как мы видели в примере, функция не может быть дифференцируемой в точке, где есть вертикальная касательная.
  4. Как мы видели, функция может быть не дифференцируемой в точке и более сложными способами.

Непрерывная и дифференцируемая кусочная функция

Производная функции сама по себе является функцией, поэтому мы можем найти производную от производной. Например, производная функции положения — это скорость изменения положения или скорости. Производная скорости — это скорость изменения скорости, которая является ускорением. Новая функция, полученная дифференцированием производной, называется второй производной. Кроме того, мы можем продолжать использовать производные для получения третьей производной, четвертой производной и так далее.В совокупности они называются производными более высокого порядка . Обозначения для производных высшего порядка от могут быть выражены в любой из следующих форм:

.

Интересно отметить, что обозначение для можно рассматривать как попытку выразить более компактно. Аналогично.

Поиск второй производной

Для, найдите.

В поисках ускорения

Положение частицы вдоль оси координат в момент времени (в секундах) определяется выражением (в метрах).Найдите функцию, описывающую его ускорение во времени.

  • Производная функция

В следующих упражнениях используйте определение производной для поиска.

1.

2.

3.

4.

Решение

5.

6.

Решение

7.

8.

Решение

9.

10.

Решение

Для следующих упражнений используйте график, чтобы нарисовать график его производной.

11.

12.

Решение

13.

14.

Решение

Для следующих упражнений данный предел представляет собой производную функции в.Найти и .

15.

16.

Решение

17.

18.

Решение

19.

20.

Решение

Для следующих функций:

  1. зарисовать график и
  2. используйте определение производной, чтобы показать, что функция не дифференцируема в.

21.

23

Для следующих графиков

  1. определяет, для каких значений существует, но не является непрерывным, и
  2. определить, для каких значений функция является непрерывной, но не дифференцируемой при.

25.

Для следующих функций используйте, чтобы найти.

28.

29.

30.

Решение

Для следующих упражнений используйте калькулятор для построения графиков. Определите функцию, затем используйте калькулятор для построения графика.

31. [Т]

33. [Т]

35. [Т]

Для следующих упражнений опишите, что представляют собой эти два выражения в терминах каждой из данных ситуаций. Обязательно укажите единицы измерения.

37. обозначает население города во время в годах.

38. обозначает общую сумму денег (в тысячах долларов), потраченную клиентами на концессии в парке развлечений.

Решение

а. Средняя ставка, с которой клиенты потратили на уступки, в тысячах на одного покупателя.
г. Скорость (в тысячах на одного покупателя), по которой клиенты тратили деньги на уступки, в тысячах на одного покупателя.

39. обозначает общую стоимость (в тысячах долларов) производства радиочасов.

40. обозначает оценку (в процентных пунктах), полученную по тесту за количество часов обучения.

Решение

а. Средняя оценка, полученная за тест, при среднем времени обучения между двумя суммами.
г. Скорость (в процентных пунктах в час), с которой оценка по тесту повышалась или понижалась за данное среднее время обучения в часах.

41. обозначает стоимость (в долларах) учебника социологии в университетских книжных магазинах США с 1990 года.

42. обозначает атмосферное давление на высоте футов.

Решение

а. Среднее изменение атмосферного давления между двумя разными высотами.
г. Скорость (торр на фут), с которой атмосферное давление увеличивается или уменьшается на высоте.

Решение

а. Скорость (в градусах на фут), с которой температура повышается или понижается для данной высоты.
г. Скорость изменения температуры при изменении высоты на высоте 1000 футов составляет -0.1 градус на фут.

Решение

а. Скорость, с которой число людей, заболевших гриппом, меняется через несколько недель после первоначальной вспышки.
г. Скорость резко увеличивается до третьей недели, после чего она замедляется, а затем становится постоянной.

Для следующих упражнений используйте следующую таблицу, которая показывает высоту ракеты Saturn V для миссии Apollo 11 через несколько секунд после запуска.

Время (секунды) Высота (метры)
0 0
1 2
2 4
3 13
4 25
5 32

47. В чем физический смысл? Какие единицы?

48. [T] Создайте таблицу значений и нанесите график на одном и том же графике. ( Подсказка: для внутренних точек, оцените и левый предел, и правый предел и усредните их.)

Решение
Время (секунды) (м / с)
0 2
1 2
2 5.5
3 10,5
4 9,5
5 7

3.2: Производная как функция

Цели обучения

  • Определите производную функцию заданной функции.
  • Постройте производную функцию от графика заданной функции.
  • Укажите связь между производными и непрерывностью.
  • Опишите три условия, когда функция не имеет производной.
  • Объясните значение производной высшего порядка.

Как мы видели, производная функции в данной точке дает нам скорость изменения или наклон касательной к функции в этой точке. Если мы дифференцируем функцию положения в данный момент времени, мы получаем скорость в этот момент. Кажется разумным заключить, что знание производной функции в каждой точке может дать ценную информацию о поведении функции. Однако процесс нахождения производной даже для нескольких значений с использованием методов предыдущего раздела быстро стал бы довольно утомительным.В этом разделе мы определяем производную функцию и изучаем процесс ее нахождения.

Производные функции

Функция производной дает производную функции в каждой точке области определения исходной функции, для которой определена производная. Мы можем формально определить производную функцию следующим образом.

Определение: производная функция

Пусть \ (f \) будет функцией. Производная функция , обозначаемая \ (f ‘\), является функцией, область определения которой состоит из таких значений \ (x \), что существует следующий предел:

\ [f ‘(x) = \ lim_ {h → 0} \ frac {f (x + h) −f (x)} {h}.\ label {derdef} \]

Функция \ (f (x) \) называется дифференцируемой в точке \ (a \), если существует \ (f ‘(a) \). В более общем смысле, функция называется дифференцируемой на на \ (S \), если она дифференцируема в каждой точке открытого множества \ (S \), а дифференцируемая функция — это функция, в которой \ (f ‘( x) \) существует в своем домене.

В следующих нескольких примерах мы используем уравнение \ ref {derdef}, чтобы найти производную функции.

Пример \ (\ PageIndex {1} \): поиск производной функции извлечения квадратного корня

Найдите производную от \ (f (x) = \ sqrt {x} \).

Решение

Начните непосредственно с определения производной функции.

Заменить \ (f (x + h) = \ sqrt {x + h} \) и \ (f (x) = \ sqrt {x} \) в \ (f ‘(x) = \ displaystyle \ lim_ {h → 0} \ frac {f (x + h) −f (x)} {h} \).

\ (f ‘(x) = \ displaystyle \ lim_ {h → 0} \ frac {\ sqrt {x + h} — \ sqrt {x}} {h} \)
\ (= \ displaystyle \ lim_ {h → 0} \ frac {\ sqrt {x + h} — \ sqrt {x}} {h} ⋅ \ frac {\ sqrt {x + h} + \ sqrt { x}} {\ sqrt {x + h} + \ sqrt {x}} \) Умножьте числитель и знаменатель на \ (\ sqrt {x + h} + \ sqrt {x} \) без распределения в знаменателе.
\ (= \ displaystyle \ lim_ {h → 0} \ frac {h} {h} left (\ sqrt {x + h} + \ sqrt {x} \ right)} \) Умножьте числители и упростите.
\ (= \ displaystyle \ lim_ {h → 0} \ frac {1} {\ left (\ sqrt {x + h} + \ sqrt {x} \ right)} \) Отмените \ (h \). 2 \).2−2x \ справа) = 2x − 2 \). Таким образом, для функции \ (y = f (x) \) каждое из следующих обозначений представляет производную от \ (f (x) \):

\ (f ‘(x), \ quad \ dfrac {dy} {dx}, \ quad y’, \ quad \ dfrac {d} {dx} \ big (f (x) \ big) \).

Вместо \ (f ‘(a) \) мы также можем использовать \ (\ dfrac {dy} {dx} \ Big | _ {x = a} \). Нотация \ (\ dfrac {dy} {dx} \) (называемая нотацией Лейбница) довольно распространена в технике и физике. Чтобы лучше понять это обозначение, напомним, что производная функции в точке — это предел наклона секущих линий, когда секущие линии приближаются к касательной.Наклоны этих секущих часто выражаются в виде \ (\ dfrac {Δy} {Δx} \), где \ (Δy \) — разность значений \ (y \), соответствующая разнице в \ (x \) значения, которые выражаются как \ (Δx \) (Рисунок \ (\ PageIndex {1} \)). Таким образом, производная, которую можно представить как мгновенную скорость изменения \ (y \) по отношению к \ (x \), выражается как

\ (\ Displaystyle \ frac {dy} {dx} = \ lim_ {Δx → 0} \ frac {Δy} {Δx} \).

Рисунок \ (\ PageIndex {1} \): производная выражается как \ (\ dfrac {dy} {dx} = \ displaystyle \ lim_ {Δx → 0} \ frac {Δy} {Δx} \).

Построение графика производной

Мы уже обсуждали, как построить график функции, поэтому, имея уравнение функции или уравнение производной функции, мы можем построить график. Учитывая и то, и другое, мы ожидаем увидеть соответствие между графиками этих двух функций, поскольку \ (f ‘(x) \) дает скорость изменения функции \ (f (x) \) (или наклон касательной линия к \ (f (x) \)).

В примере \ (\ PageIndex {1} \) мы обнаружили, что для \ (f (x) = \ sqrt {x} \), \ (f ‘(x) = \ frac {1} {2 \ sqrt { Икс}}\).Если мы построим график этих функций на тех же осях, как на рисунке \ (\ PageIndex {2} \), мы сможем использовать графики, чтобы понять взаимосвязь между этими двумя функциями. Во-первых, мы замечаем, что \ (f (x) \) увеличивается по всей своей области, а это означает, что наклон его касательных во всех точках положительный. Следовательно, мы ожидаем \ (f ‘(x)> 0 \) для всех значений x в его области определения. Кроме того, по мере увеличения \ (x \) наклон касательных к \ (f (x) \) уменьшается, и мы ожидаем увидеть соответствующее уменьшение \ (f ‘(x) \).2−2x, \; f ‘(x) = 2x − 2 \). Графики этих функций показаны на рисунке \ (\ PageIndex {3} \). Обратите внимание, что \ (f (x) \) убывает при \ (x <1 \). Для тех же значений \ (x \), \ (f '(x) <0 \). Для значений \ (x> 1 \), \ (f (x) \) увеличивается и \ (f ‘(x)> 0 \). Кроме того, \ (f (x) \) имеет горизонтальную касательную в \ (x = 1 \) и \ (f ‘(1) = 0 \).

Рисунок \ (\ PageIndex {3} \): производная \ (f ‘(x) <0 \), где функция \ (f (x) \) убывает, и \ (f' (x)> 0 \), где \ (f (x) \) возрастает. Производная равна нулю, если функция имеет горизонтальную касательную.

Пример \ (\ PageIndex {3} \): эскиз производной с использованием функции

Используйте следующий график \ (f (x) \), чтобы нарисовать график \ (f ‘(x) \).2−4 \). На каком интервале находится график \ (f ‘(x) \) над осью \ (x \)?

Подсказка

График \ (f ‘(x) \) положительный, где \ (f (x) \) возрастает.

Ответ

\ ((0, + ∞) \)

Деривативы и непрерывность

Теперь, когда мы можем построить график производной, давайте рассмотрим поведение графиков. Во-первых, мы рассматриваем взаимосвязь между дифференцируемостью и непрерывностью.Мы увидим, что если функция дифференцируема в точке, она должна быть непрерывной там; однако функция, непрерывная в какой-то точке, не обязательно должна быть дифференцируемой в этой точке. Фактически, функция может быть непрерывной в точке и не дифференцируемой в этой точке по одной из нескольких причин.

Дифференцируемость подразумевает непрерывность

Пусть \ (f (x) \) — функция и \ (a \) находится в ее области определения. Если \ (f (x) \) дифференцируема в \ (a \), то \ (f \) непрерывна в \ (a \).

Проба

Если \ (f (x) \) дифференцируемо в \ (a \), то \ (f ‘(a) \) существует и, если мы положим \ (h = x — a \), имеем \ (x = a + h \), и поскольку \ (h = xa \ to 0 \), мы можем видеть, что \ (x \ to a \).

Затем

\ [f ‘(a) = \ lim_ {h \ to 0} \ frac {f (a + h) -f (a)} {h} \ nonumber \]

можно переписать как

\ (F ‘(a) = \ displaystyle \ lim_ {x → a} \ frac {f (x) −f (a)} {x − a} \).

Мы хотим показать, что \ (f (x) \) непрерывно в \ (a \), показав, что \ (\ displaystyle \ lim_ {x → a} f (x) = f (a). \) Таким образом,

\ (\ begin {align *} \ displaystyle \ lim_ {x → a} f (x) & = \ lim_ {x → a} \; \ big (f (x) −f (a) + f (a)) \ big) \\ [4pt]
& = \ lim_ {x → a} \ left (\ frac {f (x) −f (a)} {x − a} ⋅ (x − a) + f (a) \ right) & & \ text {Умножить и разделить} (f (x) −f (a)) \ text {by} x − a.\\ [4pt]
& = \ left (\ lim_ {x → a} \ frac {f (x) −f (a)} {x − a} \ right) ⋅ \ left (\ lim_ {x → a} \; (x − a) \ right) + \ lim_ {x → a} f (a) \\ [4pt]
& = f ‘(a) ⋅0 + f (a) \\ [4pt]
& = f (а). \ end {align *} \)

Следовательно, поскольку \ (f (a) \) определено и \ (\ displaystyle \ lim_ {x → a} f (x) = f (a) \), мы заключаем, что \ (f \) непрерывно в \ (а \).

Мы только что доказали, что дифференцируемость предполагает непрерывность, но теперь мы рассмотрим, подразумевает ли непрерывность дифференцируемость. Чтобы определить ответ на этот вопрос, исследуем функцию \ (f (x) = | x | \).2}} = + ∞ \).

Таким образом, \ (f ‘(0) \) не существует. Быстрый взгляд на график \ (f (x) = \ sqrt [3] {x} \) проясняет ситуацию. Функция имеет вертикальную касательную в точке \ (0 \) (рисунок \ (\ PageIndex {5} \)).

Рисунок \ (\ PageIndex {5} \): функция \ (f (x) = \ sqrt [3] {x} \) имеет вертикальную касательную в точке \ (x = 0 \). Он непрерывен в \ (0 \), но не дифференцируем в \ (0 \).

Функция \ (f (x) = \ begin {cases} x \ sin \ left (\ frac {1} {x} \ right), & & \ text {if} x ≠ 0 \\ 0, & & \ text {if} x = 0 \ end {ases} \) также имеет производную, которая демонстрирует интересное поведение в \ (0 \).

Мы видим, что

\ (е ‘(0) = \ displaystyle \ lim_ {x → 0} \ frac {x \ sin \ left (1 / x \ right) −0} {x − 0} = \ lim_ {x → 0} \ sin \ left (\ frac {1} {x} \ right) \).

Этот предел не существует, в основном потому, что наклон секущих линий непрерывно меняет направление по мере приближения к нулю (рисунок \ (\ PageIndex {6} \)).

Рисунок \ (\ PageIndex {6} \): функция \ (f (x) = \ begin {cases} x \ sin \ left (\ frac {1} {x} \ right), & & \ text {if} x ≠ 0 \\ 0, & & \ text {if} x = 0 \ end {ases} \) не дифференцируемо в \ (0 \).

Итого:

  1. Заметим, что если функция не является непрерывной, она не может быть дифференцируемой, поскольку каждая дифференцируемая функция должна быть непрерывной. Однако, если функция непрерывна, она все равно не может быть дифференцируемой.
  2. Мы видели, что \ (f (x) = | x | \) не может быть дифференцируемым в \ (0 \), потому что предел наклона касательных линий слева и справа не был одинаковым. Визуально это привело к появлению острого угла на графике функции в точке \ (0.\) Отсюда заключаем, что для того, чтобы быть дифференцируемой в точке, функция должна быть «гладкой» в этой точке.
  3. Как мы видели в примере с \ (f (x) = \ sqrt [3] {x} \), функция не может быть дифференцируемой в точке, где есть вертикальная касательная.
  4. Как мы видели с \ (f (x) = \ begin {cases} x \ sin \ left (\ frac {1} {x} \ right), & & \ text {if} x ≠ 0 \\ 0, & & \ text {if} x = 0 \ end {cases} \) функция может быть не дифференцируемой в точке и более сложными способами.2 + bx + c, & & \ text {if} x <−10 \\ - \ frac {1} {4} x + \ frac {5} {2}, & & \ text {if} x≥ − 10 \ end {case} \), где \ (x \) и \ (f (x) \) указаны в дюймах. Чтобы автомобиль плавно двигался по рельсам, функция \ (f (x) \) должна быть как непрерывной, так и дифференцируемой в точке \ (- 10 \). Найдите значения \ (b \) и \ (c \), которые делают \ (f (x) \) одновременно непрерывным и дифференцируемым.

    Рисунок \ (\ PageIndex {7} \): Чтобы автомобиль плавно двигался по рельсам, функция должна быть как непрерывной, так и дифференцируемой.

    Решение

    Чтобы функция была непрерывной в точке \ (x = −10 \), \ (\ displaystyle \ lim_ {x → 10 ^ -} f (x) = f (−10) \). 2 + bx + (10b − 5) −5} {x + 10} & & \ text {Substitute} c = 10b − 5.2, & & \ text {if} x≥3 \ end {cases} \) как непрерывные, так и дифференцируемые в \ (3 \).

    Подсказка

    Используйте Пример \ (\ PageIndex {4} \) в качестве руководства.

    Ответ

    \ (a = 6 \) и \ (b = −9 \)

    Производные инструменты высшего порядка

    Производная функции сама по себе является функцией, поэтому мы можем найти производную от производной. Например, производная функции положения — это скорость изменения положения или скорости.Производная скорости — это скорость изменения скорости, которая является ускорением. Новая функция, полученная дифференцированием производной, называется второй производной. Кроме того, мы можем продолжать использовать производные для получения третьей производной, четвертой производной и так далее. В совокупности они называются производными более высокого порядка . n}.2−3h} {h} \)

Упростим числитель.
\ (= \ displaystyle \ lim_ {h → 0} (4x + h − 3) \) Выносим за скобки \ (h \) в числителе и сокращаем, добавляя \ (h \) в знаменатель.
\ (= 4x − 3 \) Возьми предел.

Затем найдите \ (f » (x) \), взяв производную от \ (f ‘(x) = 4x − 3. \)

\ (f » (x) = \ displaystyle \ lim_ {h → 0} \ frac {f ‘(x + h) −f’ (x)} {h} \) Используйте \ (f ‘(x) = \ displaystyle \ lim_ {h → 0} \ frac {f (x + h) −f (x)} {h} \) с \ (f’ (x) \) в место \ (f (x).3 \), найти \ (a (t). \)

Подсказка

Используйте Пример \ (\ PageIndex {6} \) в качестве руководства.

Ответ

\ (a (t) = 6t \)

Ключевые понятия

  • Производная функции \ (f (x) \) — это функция, значение которой в \ (x \) равно \ (f ‘(x) \). {\ text {th}} \).

Ключевые уравнения

\ (е ‘(x) = \ displaystyle \ lim_ {h → 0} \ frac {f (x + h) −f (x)} {h} \)

Глоссарий

производная функция
дает производную функции в каждой точке области определения исходной функции, для которой определена производная
с дифференциацией \ (a \)
функция, для которой существует \ (f ‘(a) \), дифференцируема в \ (a \)
дифференцируемый на \ (S \)
функция, для которой \ (f ‘(x) \) существует для каждого \ (x \) в открытом множестве \ (S \), дифференцируема на \ (S \)
дифференцируемая функция
функция, для которой существует \ (f ‘(x) \), является дифференцируемой функцией
производная высшего порядка
производная от производной от второй производной до производной \ (n ^ {\ text {th}} \) называется производной более высокого порядка

Авторы и авторство

  • Гилберт Стрэнг (Массачусетский технологический институт) и Эдвин «Джед» Херман (Харви Мадд) со многими авторами.Этот контент OpenStax находится под лицензией CC-BY-SA-NC 4.0. Загрузите бесплатно с http://cnx.org.

  • Пол Сибургер (Колледж Монро) добавил объяснение альтернативного определения производной, используемого в доказательстве того, что дифференцируемость подразумевает непрерывность.

Как сравнить график функции и ее производной — блог Magoosh

Чтение производного графика — важная часть учебной программы AP Calculus.Типичные задачи исчисления включают получение функции или графика функции и поиск информации о точках перегиба, наклоне, вогнутости или существовании производной.

Существует ли производная?

Во-первых, глядя на график, мы должны знать, существует ли вообще производная функции. В нашем производном посте в блоге есть немного больше информации об этом.

Три ситуации, когда дериватив не существует

Нет производной, если на кривой есть разрыв.

Это любой момент, когда есть разрыв кривой, когда две части кривой не соединяются.

Виды несплошностей:

Обнаружен устранимый разрыв. Представьте себе линейную функцию, такую ​​как y = x + 3. Если бы мы добавили ограничение, в котором x не определено при x = 0, у нас был бы такой разрыв.

Бесконечный разрыв. Это происходит, когда у нас есть какое-либо уравнение, в котором есть разрыв между двумя непрерывными участками кривой из-за того, что асимптоты достигают бесконечности.Например, пусть y = 3 / (x-2). Обратите внимание, у нас есть две вертикальные асимптоты, которые не соединяются.

И, наконец, разрыв скачка. Это происходит с кусочными функциями, где две секции просто не соединяются.

Производная не существует там, где есть острый угол.

Это часто происходит с проблемами абсолютного значения. Посмотрим на график y = √x 2

При x = 0 производной нет, потому что у нас есть резкий изгиб кривой.

Наконец, нет производной везде, где есть вертикальный разрез графика.

Если есть вертикальный участок графика, наклон не определен; следовательно, производной не существует.

Чтение производного графика.

Глядя на график, мы должны иметь возможность быстро оценить уклон на любом участке и получить приблизительное представление о том, каким должен быть уклон. Это позволяет легко сопоставить график с его производной.

Глядя на первый график, можете ли вы выяснить, какой из трех приведенных ниже графиков является графиком производной?

f ‘(x):

a

б

c

Несколько ключей к правильному ответу.Сразу должно быть видно, что это какая-то тригонометрическая функция. Мы знаем, что наклон функции равен 0 в нескольких точках; поэтому график производной в какой-то момент должен проходить через ось абсцисс. Также, глядя на график, мы должны увидеть, что это происходит где-то между -2,5 и 0, а также между 0 и 2,5. Одного этого достаточно, чтобы увидеть, что последний график является правильным ответом.

Построение графика функции на основе производной и двойной производной.

Производная и двойная производная говорят нам несколько ключевых вещей о графике:

(Надлежащая практика AP: как определить, минимальное оно или максимальное?)

Ниже приведен график производной функции f (x).

Вот график функции. Можем ли мы увидеть, как они соотносятся?

Умение читать графики производной и знать, какой должна быть общая форма исходной функции, является важной частью учебной программы AP Calculus. Убедитесь, что вы знаете, как определять точки перегиба, локальные минимумы и максимумы, а также где функция увеличивается или уменьшается.

Гарантированно повысьте свой результат по SAT или ACT. Начните 1-недельную бесплатную пробную версию Magoosh SAT Prep или 1-недельную бесплатную пробную версию Magoosh ACT Prep уже сегодня!

Между прочим, Magoosh может помочь вам подготовиться к экзаменам SAT и ACT.Нажмите сюда, чтобы узнать больше!

О Закари

Закари — бывший инженер-механик, а в настоящее время учитель физики, математики и информатики в средней школе. Он окончил университет Макгилла в 2011 году и работал в автомобильной промышленности в Детройте, прежде чем перейти к образованию. Он преподает и занимается репетиторством в течение последних пяти лет, но вы также можете найти его за приключениями, чтением, скалолазанием и путешествиями, когда появляется такая возможность.

Как вычислить и построить производную функции с помощью Python — Matplotlib?

В этой статье мы построим производную функции с помощью matplotlib и python.Для этого мы используем следующие модули в Python:

  • Matplotlib: Matplotlib — один из самых популярных пакетов Python, используемых для визуализации данных. Это кроссплатформенная библиотека для создания 2D-графиков из данных в массивах.
  • NumPy: Это библиотека Python, которая используется для работы с массивами, она также поддерживает большие многомерные массивы и матрицы, а также имеет несколько математических функций.
  • SciPy: Python имеет библиотеку SciPy, которая используется для математических, научных и инженерных расчетов.Эта библиотека зависит от NumPy и предоставляет различные числовые операции.

Чтобы сначала построить производную функции, мы должны ее вычислить. Библиотека scipy.misc имеет функцию производная () , которая принимает один аргумент как функцию, а другой — переменную w.r.t, от которой мы будем дифференцировать функцию. Итак, мы создадим метод с именем function (), который будет возвращать исходную функцию, и второй метод с именем производное (), который будет возвращать производную этой функции.

После этого вычисления производной входной функции мы будем использовать функцию NumPy linspace () , которая устанавливает диапазон оси x. Функция plot () будет использоваться для построения графика функции, а также производной этой функции.

Обращение:

  • Импортируйте необходимые модули.
  • Определите методы для функции и ее производной
  • Используйте функцию NumPy linspace, чтобы задать интервал по оси x.
  • Постройте функцию и ее производную
  • Измените пределы оси с помощью функции gca ()
  • Постройте текст с помощью функции text ()

Пример 1: (Производная от кубической)

В этом примере, мы дадим функцию f (x) = 2x 3 + x + 3 в качестве входных данных, затем вычислим производную и построим график функции и ее производной.

Python3

импорт matplotlib.pyplot as plt

из scipy.misc import производный

numpy

numpy numpy импорт

def функция (x):

возврат 2 * x * x * x + +

def производная (x):

возврат производная (функция, x)

y np. np.linspace ( - 6 , 6 )

plt.plot (y, функция (y), цвет = 'фиолетовый' , этикетка = «Функция» )

plt.plot (y, производная (y), цвет = «зеленый» , метка = «Производная» )

плат.легенда (loc = 'верхний левый' )

plt.grid ( True )

Выход:

Пример 2: (Производная полинома степени Poly)

В этом примере мы дадим функцию f (x) = x 4 + x 2 +5 в качестве входных данных, затем вычислим производную и построим график функции и ее производной.

Python3

импорт matplotlib.pyplot as plt

из scipy.misc import производная

import numpy as np

def 916 912 функция (функция возврат x * x * x * x + x * x + 900 производная (x):

возврат производная (функция, x)

y = np.linspace ( - 15 , 15 )

plt.plot (y, функция (y), цвет = 'красный' , этикетка = «Функция» )

plt.plot (y, производная (y), цвет = «зеленый» , метка = «Производная» )

плат.легенда (loc = 'верхний левый' )

plt.grid ( True )

Вывод:

Пример 3: Производная квадратичной с форматированием по тексту)

В этом примере мы построим производную от f (x) = 4x 2 + x + 1. Кроме того, мы будем использовать некоторое форматирование с помощью функции gca () , которая изменит пределы оси так, чтобы обе оси x, y пересекались в начале координат.Функция text () , которая входит в библиотеку matplotlib, отображает текст на графике и принимает аргумент в виде координат (x, y). Мы также сделаем некоторое форматирование.

Python3

импорт matplotlib.pyplot as plt

из scipy.misc import производная

numpy

numpy numpy импорт

по умолчанию функция (x):

возврат 4 * x * * 2 + x 900 + 1

def производная (x):

возврат производная (функция, x)

y = np.linspace ( - 6 , 6 )

plt.plot (y, функция (y), цвет = 'коричневый' , этикетка = «Функция» )

plt.plot (y, производная (y), цвет = «синий» , метка = «Производная» )

плат.gca (). spines [ 'left' ] .set_position ( 'zero' ,)

plt.gca (). spines [ 'bottom' ] .set_position ( 'ноль' ,)

plt.legend (loc = 'верхний левый' )

plt.text ( 5,0 , 1.0 , r "$ f '(x) = 8x + 1 $" , горизонтальное выравнивание = ' по центру ',

размер шрифта = , цвет = «синий» )

plt.2 + x + 1 $ ' , горизонтальное выравнивание = ' по центру ' ,

размер шрифта = 18 , цвет = '12 коричневый)

plt.grid ( True )

Вывод:

Внимание компьютерщик! Укрепите свои основы с помощью курса Python Programming Foundation и изучите основы.

Для начала подготовьтесь к собеседованию. Расширьте свои концепции структур данных с помощью курса Python DS . И чтобы начать свое путешествие по машинному обучению, присоединитесь к курсу Машинное обучение - базовый уровень

4.5 Производные и форма графика - Исчисление Том 1

Цели обучения

  • 4.5.1 Объясните, как знак первая производная влияет на форму графика функции.
  • 4.5.2 Задайте первую производную проверку для критических точек.
  • 4.5.3 Используйте точки вогнутости и перегиба, чтобы объяснить, как знак второй производной влияет на форму графика функции.
  • 4.5.4 Объясните тест на вогнутость функции на открытом интервале.
  • 4.5.5 Объясните связь между функцией и ее первой и второй производными.
  • 4.5.6 Сформулируйте тест второй производной для локальных экстремумов.

Ранее в этой главе мы заявляли, что если функция ff имеет локальный экстремум в точках c, c, то cc должна быть критической точкой f.f. Однако не гарантируется, что функция имеет локальный экстремум в критической точке. Например, f (x) = x3f (x) = x3 имеет критическую точку при x = 0x = 0, поскольку f ′ (x) = 3x2f ′ (x) = 3x2 равно нулю при x = 0, x = 0, но ff не имеет локального экстремума при x = 0.x = 0. Используя результаты из предыдущего раздела, теперь мы можем определить, действительно ли критическая точка функции соответствует локальному экстремальному значению. В этом разделе мы также увидим, как вторая производная предоставляет информацию о форме графика, описывая, изгибается ли график функции вверх или вниз.

Первый производный тест

Следствие 33 теоремы о среднем значении показало, что если производная функции положительна на интервале II, то функция возрастает на интервале I.I. С другой стороны, если производная функции отрицательна на интервале I, I, тогда функция убывает на интервале II, как показано на следующем рисунке.

Рис. 4.30. Обе функции растут в интервале (a, b). (A, b). В каждой точке x, x производная f ′ (x)> 0.f ′ (x)> 0. Обе функции убывают на интервале (a, b). (A, b). В каждой точке x, x производная f ′ (x) <0. f ′ (x) <0.

Непрерывная функция ff имеет локальный максимум в точке cc тогда и только тогда, когда ff переключается с увеличения на уменьшение в точке c.c. Точно так же ff имеет локальный минимум в точке cc тогда и только тогда, когда ff переключается с уменьшения на увеличение в точке c.c. Если ff - непрерывная функция на интервале II, содержащем cc и дифференцируемая по I, I, за исключением, возможно, точек c, c, единственный способ ff может переключиться с увеличения на уменьшение (или наоборот) в точке cc - это если f′f ′ меняет знак, когда xx увеличивается до c.c. Если ff дифференцируема в c, c, это единственный способ, которым f′.f ′. может менять знак при увеличении xx на cc, если f ′ (c) = 0. f ′ (c) = 0. Следовательно, для функции ff, которая непрерывна на интервале II, содержащем cc и дифференцируема по I, I, за исключением, возможно, точек c, c, единственный способ ff может переключиться с увеличения на уменьшение (или наоборот) - это если f ′ (c ) = 0f ′ (c) = 0 или f ′ (c) f ′ (c) не определено. Следовательно, чтобы найти локальные экстремумы для функции f, f, мы ищем точки cc в области определения ff такие, что f ′ (c) = 0f ′ (c) = 0 или f ′ (c) f ′ (c) равно неопределенный.Напомним, что такие точки называются критическими точками ф.ф.

Обратите внимание, что ff не обязательно должен иметь локальные экстремумы в критической точке. Критические точки являются кандидатами только в локальные экстремумы. На рис. 4.31 мы показываем, что если непрерывная функция ff имеет локальный экстремум, он должен возникать в критической точке, но функция может не иметь локального экстремума в критической точке. Мы показываем, что если ff имеет локальный экстремум в критической точке, то знак f′f ′ меняется по мере увеличения xx через эту точку.

Рис. 4.31. Функция ff имеет четыре критических точки: a, b, c, andd.a, b, c иd. Функция ff имеет локальные максимумы в точках aa и d, d и локальный минимум в точках b.b. Функция ff не имеет локального экстремума в c.c. Знак f′f ′ меняется на всех локальных экстремумах.

Используя рисунок 4.31, мы суммируем основные результаты, касающиеся локальных экстремумов.

  • Если непрерывная функция ff имеет локальный экстремум, он должен возникать в критической точке c.c.
  • Функция имеет локальный экстремум в критической точке cc тогда и только тогда, когда производная f′f ′ меняет знак при увеличении xx на c.c.
  • Следовательно, чтобы проверить, имеет ли функция локальный экстремум в критической точке c, c, мы должны определить знак f ′ (x) f ′ (x) слева и справа от c.c.

Этот результат известен как тест первой производной.

Теорема 4.9

Проверка первой производной

Предположим, что ff - непрерывная функция на интервале II, содержащем критическую точку c.c. Если ff дифференцируема над I, I, за исключением, возможно, точки c, c, то f (c) f (c) удовлетворяет одному из следующих описаний:

  1. Если f′f ′ меняет знак с положительного, когда x c, x> c, то f (c) f (c) является локальным максимумом f.f.
  2. Если f′f ′ меняет знак с отрицательного, когда x c, x> c, то f (c) f (c) является локальным минимумом f.f.
  3. Если f′f ′ имеет один и тот же знак для x c, x> c, то f (c) f (c) не является ни локальным максимумом, ни локальным минимумом f.f.

Мы можем резюмировать тест первой производной как стратегию поиска локальных экстремумов.

Стратегия решения проблем

Стратегия решения проблем: использование первой производной проверки

Рассмотрим функцию ff, непрерывную на интервале I.I.

  1. Найдите все критические точки ff и разделите интервал II на меньшие интервалы, используя критические точки в качестве конечных точек.
  2. Проанализируйте знак f′f ′ в каждом из подынтервалов. Если f′f ′ непрерывен на данном подынтервале (что обычно бывает), то знак f′f ′ на этом подынтервале не меняется и, следовательно, может быть определен путем выбора произвольной контрольной точки xx в этом подынтервале. и оценивая знак f′f ′ в этой контрольной точке. Используйте знаковый анализ, чтобы определить, увеличивается или уменьшается ff в течение этого интервала.
  3. Используйте тест первой производной и результаты шага 22, чтобы определить, имеет ли ff локальный максимум, локальный минимум или ни один из них в каждой из критических точек.

Теперь давайте посмотрим, как использовать эту стратегию для поиска всех локальных экстремумов для определенных функций.

Пример 4.17

Использование теста первой производной для поиска локальных экстремумов

Используйте тест первой производной, чтобы найти расположение всех локальных экстремумов для f (x) = x3−3x2−9x − 1.f (x) = x3−3x2−9x − 1.Используйте графическую утилиту, чтобы подтвердить свои результаты.

Решение

Шаг 1. Производная равна f ′ (x) = 3x2−6x − 9. f ′ (x) = 3x2−6x − 9. Чтобы найти критические точки, нам нужно найти, где f ′ (x) = 0. f ′ (x) = 0. Разлагая многочлен на множители, мы заключаем, что критические точки должны удовлетворять

3 (x2−2x − 3) = 3 (x − 3) (x + 1) = 0,3 (x2−2x − 3) = 3 (x − 3) ( х + 1) = 0.

Следовательно, критическими точками являются x = 3, −1.x = 3, −1. Теперь разделите интервал (−∞, ∞) (- ∞, ∞) на меньшие интервалы (−∞, −1), (- 1,3) и (3, ∞).(−∞, −1), (- 1,3) и (3, ∞).

Шаг 2. Поскольку f′f ′ - непрерывная функция, для определения знака f ′ (x) f ′ (x) на каждом подынтервале достаточно выбрать точку на каждом из интервалов (−∞, −1 ), (- 1,3) и (3, ∞) (- ∞, −1), (- 1,3) и (3, ∞) и определяют знак f′f ′ в каждой из этих точек. Например, давайте выберем x = −2, x = 0 и x = 4x = −2, x = 0 и x = 4 в качестве контрольных точек.

Интервал Контрольная точка Знак f ′ (x) = 3 (x − 3) (x + 1) f ′ (x) = 3 (x − 3) (x + 1) в контрольной точке Заключение
(−∞, −1) (- ∞, −1) х = −2x = −2 (+) (-) (-) = + (+) (-) (-) = + ff увеличивается.
(−1,3) (- 1,3) х = 0х = 0 (+) (-) (+) = - (+) (-) (+) = - ff уменьшается.
(3, ∞) (3, ∞) х = 4х = 4 (+) (+) (+) = + (+) (+) (+) = + ff увеличивается.

Шаг 3. Поскольку f′f ′ меняет знак с положительного на отрицательный, когда xx увеличивается до –1, f – 1, f имеет локальный максимум при x = −1.x = −1. Поскольку f′f ′ меняет знак с отрицательного на положительный при увеличении xx до 3, f3, f имеет локальный минимум при x = 3.х = 3. Эти аналитические результаты согласуются со следующим графиком.

Рисунок 4.32. Функция ff имеет максимум при x = −1x = −1 и минимум при x = 3x = 3.

КПП 4.16

Используйте тест первой производной, чтобы найти все локальные экстремумы для f (x) = - x3 + 32x2 + 18x.f (x) = - x3 + 32x2 + 18x.

Пример 4.18

Использование первого производного теста

Используйте тест первой производной, чтобы найти расположение всех локальных экстремумов для f (x) = 5x1 / 3 − x5 / 3.f (x) = 5x1 / 3 − x5 / 3. Используйте графическую утилиту, чтобы подтвердить свои результаты.

Решение

Шаг 1. Производная:

f ′ (x) = 53x − 2 / 3−53x2 / 3 = 53x2 / 3−5x2 / 33 = 5−5x4 / 33x2 / 3 = 5 (1 − x4 / 3) 3x2 / 3. f ′ (x) = 53x − 2 / 3−53x2 / 3 = 53x2 / 3−5x2 / 33 = 5−5x4 / 33x2 / 3 = 5 (1 − x4 / 3) 3x2 / 3.

Производная f ′ (x) = 0f ′ (x) = 0, когда 1 − x4 / 3 = 0,1 − x4 / 3 = 0. Следовательно, f ′ (x) = 0f ′ (x) = 0 при x = ± 1.x = ± 1. Производная f ′ (x) f ′ (x) не определена при x = 0.x = 0. Следовательно, у нас есть три критических точки: x = 0, x = 0, x = 1, x = 1 и x = −1.x = −1. Следовательно, разделим интервал (−∞, ∞) (- ∞, ∞) на меньшие интервалы (−∞, −1), (- 1,0), (0,1), (- ∞, −1), (−1,0), (0,1) и (1, ∞).(1, ∞).

Шаг 2: Поскольку f′f ′ непрерывен на каждом подынтервале, достаточно выбрать контрольную точку xx в каждом из интервалов шага 11 и определить знак f′f ′ в каждой из этих точек. Точки x = −2, x = −12, x = 12 и x = 2x = −2, x = −12, x = 12 и x = 2 являются контрольными точками для этих интервалов.

Интервал Контрольная точка Знак f ′ (x) = 5 (1 − x4 / 3) 3x2 / 3f ′ (x) = 5 (1 − x4 / 3) 3x2 / 3 в контрольной точке Заключение
(−∞, −1) (- ∞, −1) х = −2x = −2 (+) (-) + = - (+) (-) + = - ff уменьшается.
(−1,0) (- 1,0) х = -12x = -12 (+) (+) + = + (+) (+) + = + ff увеличивается.
(0,1) (0,1) х = 12х = 12 (+) (+) + = + (+) (+) + = + ff увеличивается.
(1, ∞) (1, ∞) х = 2х = 2 (+) (-) + = - (+) (-) + = - ff уменьшается.

Шаг 3: Поскольку ff убывает на интервале (−∞, −1) (- ∞, −1) и увеличивается на интервале (−1,0), (- 1,0), ff имеет локальный минимум при x = −1.х = -1. Поскольку ff возрастает на интервале (−1,0) (- 1,0) и интервале (0,1), (0,1), ff не имеет локального экстремума при x = 0.x = 0. Поскольку ff возрастает на интервале (0,1) (0,1) и убывает на интервале (1, ∞), f (1, ∞), f имеет локальный максимум при x = 1.x = 1. Аналитические результаты согласуются со следующим графиком.

Рисунок 4.33. Функция f имеет локальный минимум при x = −1x = −1 и локальный максимум при x = 1.x = 1.

КПП 4.17

Используйте тест первой производной, чтобы найти все локальные экстремумы для f (x) = x − 13.е (х) = х-13.

Вогнутость и точки перегиба

Теперь мы знаем, как определить, где функция увеличивается или уменьшается. Однако есть еще одна проблема, которую следует учитывать в отношении формы графика функции. Если график изгибается, изгибается ли он вверх или вниз? Это понятие называется вогнутостью функции.

На рис. 4.34 (a) показана функция ff с графиком, изгибающимся вверх. По мере увеличения xx наклон касательной увеличивается. Таким образом, поскольку производная увеличивается с увеличением xx, f′f ′ является возрастающей функцией.Мы говорим, что эта функция ff вогнута вверх. На рис. 4.34 (b) показана функция ff, которая изгибается вниз. По мере увеличения xx наклон касательной уменьшается. Поскольку производная убывает с увеличением xx, f′f ′ - убывающая функция. Мы говорим, что эта функция ff вогнута вниз.

Определение

Пусть ff - функция, дифференцируемая на открытом интервале I.I. Если f′f ′ возрастает над I, I, мы говорим, что ff вогнута вверх над I.I. Если f′f ′ убывает над I, I, мы говорим, что ff вогнута вниз над I.I.

Рис. 4.34 (a), (c) Поскольку f′f ′ возрастает на интервале (a, b), (a, b), мы говорим, что ff вогнутая вверх над (a, b). (A, b). (b), (d) Поскольку f′f ′ убывает на интервале (a, b), (a, b), мы говорим, что ff вогнутая вниз на (a, b). (a, b).

В общем, не имея графика функции f, f, как мы можем определить ее вогнутость? По определению функция ff вогнута вверх, если f′f ′ возрастает. Из следствия 3,3 мы знаем, что если f′f ′ - дифференцируемая функция, то f′f ′ возрастает, если ее производная f ″ (x)> 0.f ″ (x)> 0. Следовательно, дважды дифференцируемая функция ff будет вогнутой, когда f ″ (x)> 0. f ″ (x)> 0. Точно так же функция ff вогнута вниз, если f′f ′ убывает. Мы знаем, что дифференцируемая функция f′f ′ убывает, если ее производная f ″ (x) <0. f ″ (x) <0. Следовательно, дважды дифференцируемая функция ff вогнута вниз, когда f ″ (x) <0. f ″ (x) <0. Применение этой логики известно как тест на вогнутость.

Теорема 4.10

Тест на вогнутость

Пусть ff - функция, дважды дифференцируемая на интервале I.I.

  1. Если f ″ (x)> 0f ″ (x)> 0 для всех x∈I, x∈I, то ff вогнута вверх над I.I.
  2. Если f ″ (x) <0f ″ (x) <0 для всех x∈I, x∈I, то ff вогнута вниз над I.I.

Мы заключаем, что мы можем определить вогнутость функции ff, глядя на вторую производную f.f. Кроме того, мы видим, что функция ff может переключать вогнутость (рисунок 4.35). Однако непрерывная функция может переключать вогнутость только в точке xx, если f ″ (x) = 0f ″ (x) = 0 или f ″ (x) f ″ (x) не определено.Следовательно, чтобы определить интервалы, в которых функция ff вогнута вверх и вогнута вниз, мы ищем те значения xx, где f ″ (x) = 0f ″ (x) = 0 или f ″ (x) f ″ (x) равно неопределенный. Когда мы определили эти точки, мы разделим область определения ff на меньшие интервалы и определим знак f ″ f ″ для каждого из этих меньших интервалов. Если f ″ f ″ меняет знак при прохождении через точку x, x, то ff меняет вогнутость. Важно помнить, что функция ff не может изменять вогнутость в точке xx, даже если f ″ (x) = 0f ″ (x) = 0 или f ″ (x) f ″ (x) не определено.Если, однако, ff действительно изменяет вогнутость в точке aa и ff непрерывен в a, a, мы говорим, что точка (a, f (a)) (a, f (a)) является точкой перегиба f.f.

Определение

Если ff непрерывен в aa, а ff изменяет вогнутость в a, a, точка (a, f (a)) (a, f (a)) является точкой перегиба f.f.

Рис. 4.35. Поскольку f ″ (x)> 0f ″ (x)> 0 для x a, x> a, функция ff вогнута вниз на интервале (a, ∞).(а, ∞). Точка (a, f (a)) (a, f (a)) является точкой перегиба f.f.

Пример 4.19

Испытания на вогнутость

Для функции f (x) = x3−6x2 + 9x + 30, f (x) = x3−6x2 + 9x + 30, определите все интервалы, где ff вогнута вверх, и все интервалы, где ff вогнута вниз. Перечислите все точки перегиба для f.f. Используйте графическую утилиту, чтобы подтвердить свои результаты.

Решение

Чтобы определить вогнутость, нам нужно найти вторую производную f ″ (x) .f ″ (x). Первая производная равна f ′ (x) = 3x2−12x + 9, f ′ (x) = 3x2−12x + 9, поэтому вторая производная равна f ″ (x) = 6x − 12.f ″ (x) = 6x − 12. Если функция изменяет вогнутость, это происходит либо когда f ″ (x) = 0f ″ (x) = 0, либо f ″ (x) f ″ (x) не определено. Поскольку f ″ f ″ определено для всех действительных чисел x, x, нам нужно только найти, где f ″ (x) = 0. f ″ (x) = 0. Решая уравнение 6x − 12 = 0,6x − 12 = 0, мы видим, что x = 2x = 2 - единственное место, где ff может изменить вогнутость. Теперь мы проверяем точки на интервалах (−∞, 2) (- ∞, 2) и (2, ∞) (2, ∞), чтобы определить вогнутость f.f. Точки x = 0x = 0 и x = 3x = 3 являются контрольными точками для этих интервалов.

Интервал Контрольная точка Знак f ″ (x) = 6x − 12f ″ (x) = 6x − 12 в контрольной точке Заключение
(−∞, 2) (- ∞, 2) х = 0х = 0 −− ff вогнутая вниз
(2, ∞) (2, ∞) х = 3х = 3 ++ ff вогнутая вверх.

Мы заключаем, что ff вогнута вниз на интервале (−∞, 2) (- ∞, 2) и вогнута вверх на интервале (2, ∞). (2, ∞). Поскольку ff изменяет вогнутость при x = 2, x = 2, точка (2, f (2)) = (2,32) (2, f (2)) = (2,32) является точкой перегиба. Рисунок 4.36 подтверждает аналитические результаты.

Рисунок 4.36 Данная функция имеет точку перегиба в (2,32) (2,32), где график меняет вогнутость.

КПП 4.18

Для f (x) = - x3 + 32x2 + 18x, f (x) = - x3 + 32x2 + 18x, найти все интервалы, где ff вогнута вверх, и все интервалы, где ff вогнута вниз.

Теперь мы суммируем в таблице 4.1 информацию, которую первая и вторая производные функции ff предоставляют о графике f, f, и проиллюстрируем эту информацию на рисунке 4.37.

Знак f′f ′ Знак f ″ f ″ Ff увеличивается или уменьшается? Вогнутость
Положительный Положительно Увеличение Вогнутый вверх
Положительно отрицательный Увеличение Вогнутая вниз
Отрицательный Положительно Уменьшение Вогнутый вверх
Отрицательный отрицательный Уменьшение Вогнутая вниз

Таблица 4.1 Что производные говорят нам о графиках

Рис. 4.37. Рассмотрим дважды дифференцируемую функцию ff на открытом интервале I.I. Если f ′ (x)> 0f ′ (x)> 0 для всех x∈I, x∈I, функция возрастает по I.I. Если f ′ (x) <0f ′ (x) <0 для всех x∈I, x∈I, функция убывает по I.I. Если f ″ (x)> 0f ″ (x)> 0 для всех x∈I, x∈I, функция вогнута вверх. Если f ″ (x) <0f ″ (x) <0 для всех x∈I, x∈I, функция вогнута вниз на I.I.

Тест второй производной

Тест первой производной предоставляет аналитический инструмент для поиска локальных экстремумов, но вторая производная также может использоваться для определения экстремальных значений.Иногда использование второй производной может быть более простым методом, чем использование первой производной.

Мы знаем, что если у непрерывной функции есть локальные экстремумы, это должно происходить в критической точке. Однако функция не обязательно должна иметь локальные экстремумы в критической точке. Здесь мы исследуем, как можно использовать тест второй производной, чтобы определить, имеет ли функция локальный экстремум в критической точке. Пусть ff - дважды дифференцируемая функция такая, что f ′ (a) = 0f ′ (a) = 0 и f ″ f ″ непрерывна на открытом интервале II, содержащем a.а. Предположим, что f ″ (a) <0. f ″ (a) <0. Поскольку f ″ f ″ непрерывна над I, I, f ″ (x) <0f ″ (x) <0 для всех x∈Ix∈I (рис. 4.38). Тогда по следствию 3,3 f′f ′ - убывающая функция над I.I. Поскольку f ′ (a) = 0, f ′ (a) = 0, заключаем, что для всех x∈I, f ′ (x)> 0x∈I, f ′ (x)> 0, если x ax> a. Следовательно, по тесту первой производной ff имеет локальный максимум при x = a.x = a. С другой стороны, предположим, что существует точка bb такая, что f ′ (b) = 0f ′ (b) = 0, но f ″ (b)> 0. f ″ (b)> 0. Поскольку f ″ f ″ непрерывна на открытом интервале II, содержащем b, b, то f ″ (x)> 0f ″ (x)> 0 для всех x∈Ix∈I (рисунок 4.38). Тогда по следствию 3 f′3, f ′ - возрастающая функция над I.I. Поскольку f ′ (b) = 0, f ′ (b) = 0, мы заключаем, что для всех x∈I, x∈I, f ′ (x) <0f ′ (x) <0, если x 0f ′ (x)> 0, если x> bx> b. Следовательно, по тесту первой производной ff имеет локальный минимум при x = b.x = b.

Рис. 4.38. Рассмотрим дважды дифференцируемую функцию ff такую, что f ″ f ″ непрерывна. Поскольку f ′ (a) = 0f ′ (a) = 0 и f ″ (a) <0, f ″ (a) <0, существует интервал II, содержащий aa, такой, что для всех xx в I, I, ff равно увеличивается, если x a.х> а. В результате ff имеет локальный максимум при x = a.x = a. Поскольку f ′ (b) = 0f ′ (b) = 0 и f ″ (b)> 0, f ″ (b)> 0, существует интервал II, содержащий bb, такой, что для всех xx в I, I, ff равно уменьшается, если x bx> b. В результате ff имеет локальный минимум при x = b.x = b.

Теорема 4.11

Тест второй производной

Предположим, что f ′ (c) = 0, f ″ f ′ (c) = 0, f ″ непрерывно на интервале, содержащем c.c.

  1. Если f ″ (c)> 0, f ″ (c)> 0, то ff имеет локальный минимум в c.c.
  2. Если f ″ (c) <0, f ″ (c) <0, то ff имеет локальный максимум в c.c.
  3. Если f ″ (c) = 0, f ″ (c) = 0, то проверка не дает результатов.

Обратите внимание, что для случая iii. когда f ″ (c) = 0, f ″ (c) = 0, тогда ff может иметь локальный максимум, локальный минимум или ни одного в c.c. Например, функции f (x) = x3, f (x) = x3, f (x) = x4, f (x) = x4 и f (x) = - x4f (x) = - x4 все имеют критические указывает на x = 0.x = 0. В каждом случае вторая производная равна нулю при x = 0.x = 0. Однако функция f (x) = x4f (x) = x4 имеет локальный минимум при x = 0x = 0, тогда как функция f (x) = - x4f (x) = - x4 имеет локальный максимум при x, x, а функция f (x) = x3f (x) = x3 не имеет локального экстремума при x = 0.х = 0.

Давайте теперь посмотрим, как использовать тест второй производной, чтобы определить, имеет ли ff локальный максимум или локальный минимум в критической точке cc, где f ′ (c) = 0. f ′ (c) = 0.

Пример 4.20

Использование теста второй производной

Используйте вторую производную, чтобы найти расположение всех локальных экстремумов для f (x) = x5−5x3.f (x) = x5−5x3.

Решение

Чтобы применить тест второй производной, нам сначала нужно найти критические точки cc, где f ′ (c) = 0.f ′ (c) = 0. Производная равна f ′ (x) = 5x4−15x2.f ′ (x) = 5x4−15x2. Следовательно, f ′ (x) = 5x4−15x2 = 5x2 (x2−3) = 0f ′ (x) = 5x4−15x2 = 5x2 (x2−3) = 0, когда x = 0, ± 3.x = 0, ± 3.

Чтобы определить, есть ли у ff локальные экстремумы в любой из этих точек, нам нужно оценить знак f ″ f ″ в этих точках. Вторая производная -

f ″ (x) = 20x3−30x = 10x (2x2−3). f ″ (x) = 20x3−30x = 10x (2x2−3).

В следующей таблице мы оцениваем вторую производную в каждой из критических точек и используем тест второй производной, чтобы определить, имеет ли ff локальный максимум или локальный минимум в любой из этих точек.

хх f ″ (x) f ″ (x) Заключение
−3−3 −303−303 Местный максимум
00 00 Тест второй производной безрезультатно
33 303303 Местный минимум

Используя проверку второй производной, мы заключаем, что ff имеет локальный максимум при x = −3x = −3, а ff имеет локальный минимум при x = 3.х = 3. Тест второй производной не дает результатов при x = 0.x = 0. Чтобы определить, есть ли у ff локальные экстремумы при x = 0, x = 0, мы применяем тест первой производной. Чтобы оценить знак f ′ (x) = 5x2 (x2−3) f ′ (x) = 5x2 (x2−3) для x∈ (−3,0) x∈ (−3,0) и x∈ ( 0,3), x∈ (0,3), пусть x = −1x = −1 и x = 1x = 1 - две контрольные точки. Поскольку f ′ (- 1) <0f ′ (- 1) <0 и f ′ (1) <0, f ′ (1) <0, мы заключаем, что ff убывает на обоих интервалах и, следовательно, ff не имеет локальные экстремумы при x = 0x = 0, как показано на следующем графике.

Рисунок 4.39 Функция ff имеет локальный максимум при x = −3x = −3 и локальный минимум при x = 3x = 3.

КПП 4.19

Рассмотрим функцию f (x) = x3− (32) x2−18x.f (x) = x3− (32) x2−18x. Точки c = 3, −2c = 3, −2 удовлетворяют условию f ′ (c) = 0. f ′ (c) = 0. Используйте тест второй производной, чтобы определить, имеет ли ff локальный максимум или локальный минимум в этих точках.

Теперь мы разработали инструменты, необходимые для определения того, где функция увеличивается и уменьшается, а также получили понимание основной формы графика.В следующем разделе мы обсудим, что происходит с функцией при x → ± ∞.x → ± ∞. На данный момент у нас есть достаточно инструментов для создания точных графиков большого количества функций.

Раздел 4.5 Упражнения

194.

Если cc является критической точкой для f (x), f (x), когда нет локального максимума или минимума в c? C? Объяснять.

195.

Для функции y = x3, y = x3, является ли x = 0x = 0 точкой перегиба и локальным максимумом / минимумом?

196.

Для функции y = x3, y = x3, является ли x = 0x = 0 точкой перегиба?

197.

Может ли точка cc быть одновременно точкой перегиба и локальным экстремумом дважды дифференцируемой функции?

198.

Зачем нужна непрерывность для первого производного теста? Придумайте пример.

199.

Объясните, должна ли функция вогнутого вниз пересекать y = 0y = 0 для некоторого значения x.x.

200.

Объясните, может ли многочлен степени 22 иметь точку перегиба.

Для следующих упражнений проанализируйте графики f ', f', затем перечислите все интервалы, в которых ff увеличивается или уменьшается.

202.

204.

Для следующих упражнений проанализируйте графики f ′, f ′, затем перечислите все интервалы, где

  1. ff увеличивается и уменьшается и
  2. расположены минимумы и максимумы.

206.

208.

210.

Для следующих упражнений проанализируйте графики f ', f', затем перечислите все точки перегиба и интервалы ff, которые вогнуты вверх и вогнуты вниз.

212.

214.

Для следующих упражнений нарисуйте граф, который удовлетворяет заданным спецификациям для области x = [- 3,3].х = [- 3,3]. Функция не обязательно должна быть непрерывной или дифференцируемой.

216.

f (x)> 0, f ′ (x)> 0f (x)> 0, f ′ (x)> 0 над x> 1, −3 1, −3

217.

f ′ (x)> 0f ′ (x)> 0 над x> 2, −3 2, −3

218.

f ″ (x) <0f ″ (x) <0 сверх −1 0, −3 0, −3

219.

Имеется локальный максимум при x = 2, x = 2, локальный минимум при x = 1, x = 1, и график не является ни вогнутым вверх, ни вогнутым вниз.

220.

Имеются локальные максимумы при x = ± 1, x = ± 1, функция вогнута вверх для всех x, x, и функция остается положительной для всех x.x.

Для следующих упражнений определите

  1. интервалов увеличения или уменьшения ff и
  2. локальных минимумов и максимумов f.f.

221.

f (x) = sinx + sin3xf (x) = sinx + sin3x над −π

Для следующих упражнений определите a.интервалы, где ff вогнута вверх или вогнута вниз, и b. точки перегиба ф.ф.

223.

f (x) = x3−4x2 + x + 2f (x) = x3−4x2 + x + 2

Для следующих упражнений определите

  1. интервалов увеличения или уменьшения ff,
  2. локальных минимумов и максимумов f, f,
  3. интервалов, где ff является вогнутым вверх и вогнутым вниз, и
  4. точки перегиба ф.ф.

225.

f (x) = x3−6x2f (x) = x3−6x2

226.

f (x) = x4−6x3f (x) = x4−6x3

227.

f (x) = x11−6x10f (x) = x11−6x10

228.

f (x) = x + x2 − x3f (x) = x + x2 − x3

Для следующих упражнений определите

  1. интервалов увеличения или уменьшения ff,
  2. локальных минимумов и максимумов f, f,
  3. интервалов, где ff является вогнутым вверх и вогнутым вниз, и
  4. точки перегиба ф.ф. Нарисуйте кривую, а затем с помощью калькулятора сравните свой ответ. Если вы не можете определить точный ответ аналитически, воспользуйтесь калькулятором.

231.

[T] f (x) = sin (πx) −cos (πx) f (x) = sin (πx) −cos (πx) над x = [- 1,1] x = [- 1,1 ]

232.

[T] f (x) = x + sin (2x) f (x) = x + sin (2x) над x = [- π2, π2] x = [- π2, π2]

233.

[T] f (x) = sinx + tanxf (x) = sinx + tanx над (−π2, π2) (- π2, π2)

234.

[T] f (x) = (x − 2) 2 (x − 4) 2f (x) = (x − 2) 2 (x − 4) 2

235.

[T] f (x) = 11 − x, x ≠ 1f (x) = 11 − x, x ≠ 1

236.

[T] f (x) = sinxxf (x) = sinxx над x = x = [2π, 0) ∪ (0,2π] [2π, 0) ∪ (0,2π]

237.

f (x) = sin (x) exf (x) = sin (x) ex над x = [- π, π] x = [- π, π]

238.

f (x) = lnxx, x> 0 f (x) = lnxx, x> 0

239.

f (x) = 14x + 1x, x> 0f (x) = 14x + 1x, x> 0

240.

f (x) = exx, x ≠ 0f (x) = exx, x ≠ 0

Для следующих упражнений интерпретируйте предложения в терминах f, f ′ и f ″ .f, f ′ и f ″.

241.

Население растет медленнее. Здесь ff - население.

242.

Велосипед ускоряется быстрее, но машина едет быстрее. Здесь f = f = положение велосипеда минус положение автомобиля.

243.

Самолет плавно приземляется. Здесь ff - высота самолета.

244.

Цены на акции на пике. Здесь ff - цена акции.

245.

Экономика набирает обороты. Здесь ff - это показатель экономики, например ВВП.

Для следующих упражнений рассмотрим многочлен третьей степени f (x), f (x), который обладает свойствами f ′ (1) = 0, f ′ (3) = 0. f ′ (1) = 0, f ′ (3) = 0. Определите, являются ли следующие утверждения истинными или ложными . Обосновать ответ.

246.

f (x) = 0f (x) = 0 для некоторых 1≤x≤31≤x≤3

247.

f ″ (x) = 0f ″ (x) = 0 для некоторого 1≤x≤31≤x≤3

248.

Абсолютного максимума не существует при x = 3x = 3

249.

Если f (x) f (x) имеет три корня, то у нее 11 точек перегиба.

250.

Если f (x) f (x) имеет одну точку перегиба, то она имеет три действительных корня.

AC Производная функция

Подраздел 1.4.1. Как производная сама по себе является функцией

В вашей работе в предварительном задании 1.2 \ text {,} \) вы могли найти несколько шаблонов. Один из них исходит из наблюдения, что \ (f '(0) = 4 \ text {,} \) \ (f' (1) = 2 \ text {,} \) \ (f '(2) = 0 \ text {, } \) и \ (f '(3) = -2 \ text {.} \) Эта последовательность значений естественным образом приводит нас к предположению, что \ (f' (4) = -4 \) и \ (f '(5 ) = -6 \ text {.} \) Мы также замечаем, что конкретное значение \ (a \) очень мало влияет на процесс вычисления значения производной через определение предела. Чтобы увидеть это более ясно, мы вычисляем \ (f '(a) \ text {,} \), где \ (a \) представляет собой число, которое будет названо позже.2} {h} \\
= \ mathstrut \ amp \ lim_ {h \ to 0} \ frac {h (4 - 2a - h)} {h} = \ lim_ {h \ to 0} (4 - 2a - h) \ text {.}
\ end {выровнять *}

Здесь мы видим, что ни \ (4 \), ни \ (2a \) не зависят от значения \ (h \ text {,} \), так как \ (h \ to 0 \ text {,} \) \ (( 4 - 2a - h) \ to (4 - 2a) \ text {.} \) Таким образом, \ (f '(a) = 4 - 2a \ text {.} \)

Этот результат согласуется с конкретными значениями, которые мы нашли выше: например, \ (f '(3) = 4 - 2 (3) = -2 \ text {.} \) И действительно, наша работа подтверждает, что значение \ (а \) почти не влияет на процесс вычисления производной.2 \) вместе с набором касательных в рассмотренных выше точках. Справа мы показываем график \ (f '(x) = 4 - 2x \) с акцентом на высотах производного графика при том же выборе точек. Обратите внимание на связь между цветами на левом и правом графиках: зеленая касательная линия на исходном графике привязана к зеленой точке на правом графике следующим образом: наклон касательной линии в точке на левом графике совпадает с высотой в соответствующей точке на правом графике.То есть при каждом соответствующем значении \ (x \ text {,} \) наклон касательной к исходной функции такой же, как высота производной функции. Однако обратите внимание, что единицы измерения на вертикальных осях различаются: на левом графике вертикальные единицы - это просто единицы вывода \ (f \ text {.} \) На правом графике \ (y = f ' (x) \ text {,} \) единицы на вертикальной оси - это единицы \ (f \) на единицу \ (x \ text {.} \)

Отличный способ изучить, как график \ (f (x) \) генерирует график \ (f '(x) \), - это использовать java-апплет.См., Например, апплеты на http://gvsu.edu/s/5C или http://gvsu.edu/s/5D на сайтах Austin и Renault 1 .

В разделе 1.3, когда мы впервые определили производную, мы написали определение в терминах значения \ (a \), чтобы найти \ (f '(a) \ text {.} \) Как мы видели выше, буква \ (a \) - это просто заполнитель, и часто имеет смысл использовать вместо него \ (x \). Для записи здесь мы повторяем определение производной.

Определение 1.4.2.

Пусть \ (f \) будет функцией, а \ (x \) значением в области определения функции.Мы определяем производную от \ (f \) , новой функции под названием \ (f '\ text {,} \) по формуле \ (f' (x) = \ lim_ {h \ to 0} \ frac { f (x + h) -f (x)} {h} \ text {,} \) при условии, что этот предел существует.

Теперь у нас есть два разных способа думать о производной функции:

  1. с учетом графика \ (y = f (x) \ text {,} \), как этот график ведет к графику производной функции \ (y = f '(x) \ text {?} \) И
  2. с учетом формулы для \ (y = f (x) \ text {,} \), как определение предела производной генерирует формулу для \ (y = f '(x) \ text {?} \)

Обе эти проблемы исследуются в следующих мероприятиях.

Мероприятие 1.4.2.

Для каждого заданного графика \ (y = f (x) \ text {,} \) нарисуйте приблизительный график его производной функции \ (y = f '(x) \ text {,} \) сразу на осях ниже. Масштаб сетки для графика \ (f \) равен \ (1 \ times 1 \ text {;} \). Предположим, что горизонтальный масштаб сетки для графика \ (f '\) идентичен масштабу для \ (f \ text {.} \) При необходимости отрегулируйте и отметьте вертикальный масштаб по осям для \ (f '\ text {.} \)

Когда вы закончите со всеми 8 графиками, напишите несколько предложений, описывающих ваш общий процесс построения эскиза графика производной функции, учитывая, что график является исходной функцией.Какие значения производной функции вы склонны определять в первую очередь? Что ты делаешь после этого? Как ключевые характеристики графика производной функции иллюстрируют свойства графика исходной функции?

Для динамического исследования, которое позволяет вам экспериментировать с построением графика \ (f '\) при заданном графике \ (f \ text {,} \), см. 2 \) и использовали предельное определение производной, чтобы показать, что \ (f '(a) = 4 - 2a \ text {,} \) или, что то же самое, \ (f '(x) = 4 - 2x \ text {.} \) Затем мы построили графики функций \ (f \) и \ (f '\), как показано на рисунке 1.4.1. Следуя упражнению 1.4.2, мы теперь понимаем, что могли бы построить довольно точный график \ (f '(x) \) без , зная формулу для \ (f \) или \ (f' \ text {. } \) В то же время полезно знать формулу для производной функции всякий раз, когда ее можно найти.

В следующем упражнении мы дополнительно исследуем более алгебраический подход к поиску \ (f '(x) \ text {:} \) по формуле для \ (y = f (x) \ text {,} \) предела определение производной будет использовано для разработки формулы для \ (f '(x) \ text {.} \)

Мероприятие 1.4.3.

Для каждой из перечисленных функций определите формулу производной функции. Для первых двух определите формулу для производной, подумав о природе данной функции и ее наклоне в различных точках; не используйте определение предела. Для последних четырех используйте определение предела. Обратите особое внимание на имена функций и независимые переменные. Важно научиться использовать буквы, отличные от \ (f \) и \ (x \ text {.3 \)

  • \ (\ Displaystyle F (t) = \ frac {1} {t} \)

  • \ (\ Displaystyle G (y) = \ sqrt {y} \)

  • Заметки по исчислению I, раздел 2-10

    Заметки по исчислению I, разделы 2-10
    Заметки,
    Урок 2.10

    Что значит f '
    Про f Сказать?

    Первая производная
    функции - это выражение, которое сообщает нам наклон касательной
    линия к кривой в любой момент.Из-за этого определения первый
    производная функции многое говорит нам о функции. Если положительный, то должен увеличиваться. Если отрицательный, то должен уменьшаться. Если равно нулю, то должно быть
    при относительном максимуме или относительном минимуме. говорит нам похожие вещи о. также
    дает нам ценную информацию о. В
    в частности, он сообщает нам, когда функция вогнута вверх, вогнута вниз,
    или есть точка перегиба. Такой же тип информации
    указал о
    по и так далее.

    увеличение

    +
    уменьшение -
    относительный мин. или макс. 0
    вогнуться увеличение +
    вогнуться уменьшение -
    точка перегиба относительный мин. или макс. 0
    вогнуться увеличение +
    вогнуться уменьшение -
    точка перегиба относительный мин.или макс. 0
    вогнуться увеличение
    вогнуться уменьшение
    точка перегиба относительный мин. или макс.
    вогнуться
    вогнуться
    точка перегиба

    Использование инструментов для обогащения
    Calculus
    CD (пришедший
    вместе с книгой), загрузите и запустите модуль
    2.10
    .
    Этот модуль позволит вам попрактиковаться в использовании графической информации.
    о
    f
    'определить наклон графика f ..

    Определение:

    Первоначальное Первоначальная производная f является
    функция F такая, что F '
    = f .

    Здесь мы видим процесс, обратный тому, что мы
    изучение.Мы начинаем с производной, и мы хотим найти функцию. Этот
    тип
    процесса открытия является общим для научных экспериментов и данных
    встреча.

    Во-первых, нам нужно знать, что разные функции могут
    результат в
    точно такая же производная. Посмотрите на пример ниже:

    Здесь мы видим семейство кривых, построенных с их
    общая производная.

    Семейство параболических функций:, где c принимает
    значения: -1, 0, 1, 2, 3 и 4.

    Прямая линия на графике выше. Это
    производная функция для всех шести параболических функций.
    Поскольку дериватив - это прежде всего инструмент для
    определение формы
    функции положение графика не влияет на форму.
    Следовательно
    совпадающие кривые, которые ориентированы одинаково, но имеют разные
    должность
    имеют такую ​​же производную.

    Проверить концепции
    # 1: положительная производная
    что насчет функции?

    Выберите одну функцию
    положительная функция отрицательная функция
    возрастающая функция убывающая

    # 2: отрицательная секунда
    производная говорит, что насчет
    функция?

    Выберите одну функцию
    уменьшается Функция вогнута вниз Функция
    отрицательный

    # 3: Верно или неверно.В
    производная функции также
    функция.

    Выберите одну истину ложь

    # 4: Вторая производная
    нуля говорит, что насчет
    оригинальная функция?

    Выберите там
    точка перегиба Есть относительный минимум или максимум It
    должна быть постоянной функцией

    # 5: Верно или неверно.А
    вторая производная функции
    дает ценную информацию о функции.

    Выберите одну истину ложь

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.