X 2 2x y 0: Mathway | Популярные задачи

Содержание

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(30 град. )
4 Найти точное значение sin(60 град. )
5 Найти точное значение tan(30 град. )
6 Найти точное значение arcsin(-1)
7 Найти точное значение sin(pi/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение sin(45 град. )
10 Найти точное значение sin(pi/3)
11 Найти точное значение arctan(-1)
12 Найти точное значение cos(45 град. )
13 Найти точное значение cos(30 град. )
14 Найти точное значение tan(60)
15 Найти точное значение csc(45 град. )
16 Найти точное значение tan(60 град. )
17 Найти точное значение sec(30 град. )
18 Найти точное значение cos(60 град. )
19 Найти точное значение cos(150)
20 Найти точное значение sin(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение tan(45 град. )
23 Найти точное значение arctan(- квадратный корень 3)
24 Найти точное значение csc(60 град. )
25 Найти точное значение sec(45 град. )
26 Найти точное значение csc(30 град. )
27 Найти точное значение sin(0)
28 Найти точное значение sin(120)
29 Найти точное значение cos(90)
30 Преобразовать из радианов в градусы pi/3
31 Найти точное значение tan(30)
32 Преобразовать из градусов в радианы 45
33 Найти точное значение cos(45)
34 Упростить sin(theta)^2+cos(theta)^2
35 Преобразовать из радианов в градусы pi/6
36 Найти точное значение cot(30 град. )
37 Найти точное значение arccos(-1)
38 Найти точное значение arctan(0)
39 Найти точное значение cot(60 град. )
40 Преобразовать из градусов в радианы 30
41 Преобразовать из радианов в градусы (2pi)/3
42 Найти точное значение sin((5pi)/3)
43 Найти точное значение sin((3pi)/4)
44 Найти точное значение tan(pi/2)
45 Найти точное значение sin(300)
46 Найти точное значение cos(30)
47 Найти точное значение cos(60)
48 Найти точное значение cos(0)
49 Найти точное значение cos(135)
50 Найти точное значение cos((5pi)/3)
51 Найти точное значение cos(210)
52 Найти точное значение sec(60 град. )
53 Найти точное значение sin(300 град. )
54 Преобразовать из градусов в радианы 135
55 Преобразовать из градусов в радианы 150
56 Преобразовать из радианов в градусы (5pi)/6
57 Преобразовать из радианов в градусы (5pi)/3
58 Преобразовать из градусов в радианы 89 град.
59 Преобразовать из градусов в радианы 60
60 Найти точное значение sin(135 град. )
61 Найти точное значение sin(150)
62 Найти точное значение sin(240 град. )
63 Найти точное значение cot(45 град. )
64 Преобразовать из радианов в градусы (5pi)/4
65 Найти точное значение sin(225)
66 Найти точное значение sin(240)
67 Найти точное значение cos(150 град. )
68 Найти точное значение tan(45)
69 Вычислить sin(30 град. )
70 Найти точное значение sec(0)
71 Найти точное значение cos((5pi)/6)
72 Найти точное значение csc(30)
73 Найти точное значение arcsin(( квадратный корень 2)/2)
74 Найти точное значение tan((5pi)/3)
75 Найти точное значение tan(0)
76 Вычислить sin(60 град. )
77 Найти точное значение arctan(-( квадратный корень 3)/3)
78 Преобразовать из радианов в градусы (3pi)/4
79 Найти точное значение sin((7pi)/4)
80 Найти точное значение arcsin(-1/2)
81 Найти точное значение sin((4pi)/3)
82 Найти точное значение csc(45)
83 Упростить arctan( квадратный корень 3)
84 Найти точное значение sin(135)
85 Найти точное значение sin(105)
86 Найти точное значение sin(150 град. )
87 Найти точное значение sin((2pi)/3)
88 Найти точное значение tan((2pi)/3)
89 Преобразовать из радианов в градусы pi/4
90 Найти точное значение sin(pi/2)
91 Найти точное значение sec(45)
92 Найти точное значение cos((5pi)/4)
93 Найти точное значение cos((7pi)/6)
94 Найти точное значение arcsin(0)
95 Найти точное значение sin(120 град. )
96 Найти точное значение tan((7pi)/6)
97 Найти точное значение cos(270)
98 Найти точное значение sin((7pi)/6)
99 Найти точное значение arcsin(-( квадратный корень 2)/2)
100 Преобразовать из градусов в радианы 88 град.

Mathway | Популярные задачи

1 Найти точное значение sin(30)
2 Найти точное значение sin(45)
3 Найти точное значение sin(30 град. )
4 Найти точное значение sin(60 град. )
5 Найти точное значение tan(30 град. )
6 Найти точное значение arcsin(-1)
7 Найти точное значение sin(pi/6)
8 Найти точное значение cos(pi/4)
9 Найти точное значение sin(45 град. )
10 Найти точное значение sin(pi/3)
11 Найти точное значение arctan(-1)
12 Найти точное значение cos(45 град. )
13 Найти точное значение cos(30 град. )
14 Найти точное значение tan(60)
15 Найти точное значение csc(45 град. )
16 Найти точное значение tan(60 град. )
17 Найти точное значение sec(30 град. )
18 Найти точное значение cos(60 град. )
19 Найти точное значение cos(150)
20 Найти точное значение sin(60)
21 Найти точное значение cos(pi/2)
22 Найти точное значение tan(45 град. )
23 Найти точное значение arctan(- квадратный корень 3)
24 Найти точное значение csc(60 град. )
25 Найти точное значение sec(45 град. )
26 Найти точное значение csc(30 град. )
27 Найти точное значение sin(0)
28 Найти точное значение sin(120)
29 Найти точное значение cos(90)
30 Преобразовать из радианов в градусы pi/3
31 Найти точное значение tan(30)
32 Преобразовать из градусов в радианы 45
33 Найти точное значение cos(45)
34 Упростить sin(theta)^2+cos(theta)^2
35 Преобразовать из радианов в градусы pi/6
36 Найти точное значение cot(30 град. )
37 Найти точное значение arccos(-1)
38 Найти точное значение arctan(0)
39 Найти точное значение cot(60 град. )
40 Преобразовать из градусов в радианы 30
41 Преобразовать из радианов в градусы (2pi)/3
42 Найти точное значение sin((5pi)/3)
43 Найти точное значение sin((3pi)/4)
44 Найти точное значение tan(pi/2)
45 Найти точное значение sin(300)
46 Найти точное значение cos(30)
47 Найти точное значение cos(60)
48 Найти точное значение cos(0)
49 Найти точное значение cos(135)
50 Найти точное значение cos((5pi)/3)
51 Найти точное значение cos(210)
52 Найти точное значение sec(60 град. )
53 Найти точное значение sin(300 град. )
54 Преобразовать из градусов в радианы 135
55 Преобразовать из градусов в радианы 150
56 Преобразовать из радианов в градусы (5pi)/6
57 Преобразовать из радианов в градусы (5pi)/3
58 Преобразовать из градусов в радианы 89 град.
59 Преобразовать из градусов в радианы 60
60 Найти точное значение sin(135 град. )
61 Найти точное значение sin(150)
62 Найти точное значение sin(240 град. )
63 Найти точное значение cot(45 град. )
64 Преобразовать из радианов в градусы (5pi)/4
65 Найти точное значение sin(225)
66 Найти точное значение sin(240)
67 Найти точное значение cos(150 град. )
68 Найти точное значение tan(45)
69 Вычислить sin(30 град. )
70 Найти точное значение sec(0)
71 Найти точное значение cos((5pi)/6)
72 Найти точное значение csc(30)
73 Найти точное значение arcsin(( квадратный корень 2)/2)
74 Найти точное значение tan((5pi)/3)
75 Найти точное значение tan(0)
76 Вычислить sin(60 град. )
77 Найти точное значение arctan(-( квадратный корень 3)/3)
78 Преобразовать из радианов в градусы (3pi)/4
79 Найти точное значение sin((7pi)/4)
80 Найти точное значение arcsin(-1/2)
81 Найти точное значение sin((4pi)/3)
82 Найти точное значение csc(45)
83 Упростить arctan( квадратный корень 3)
84 Найти точное значение sin(135)
85 Найти точное значение sin(105)
86 Найти точное значение sin(150 град. )
87 Найти точное значение sin((2pi)/3)
88 Найти точное значение tan((2pi)/3)
89 Преобразовать из радианов в градусы pi/4
90 Найти точное значение sin(pi/2)
91 Найти точное значение sec(45)
92 Найти точное значение cos((5pi)/4)
93 Найти точное значение cos((7pi)/6)
94 Найти точное значение arcsin(0)
95 Найти точное значение sin(120 град. )
96 Найти точное значение tan((7pi)/6)
97 Найти точное значение cos(270)
98 Найти точное значение sin((7pi)/6)
99 Найти точное значение arcsin(-( квадратный корень 2)/2)
100 Преобразовать из градусов в радианы 88 град.

заказ решений на аукционе за минимальную цену с максимальным качеством

Предлагаю идею сайта-аукциона по выполнению домашних заданий. Он будет включать:

  • решение задач по математике (сейчас доступен решебник Филиппова), физике, химии, экономике
  • написание лабораторных, рефератов и курсовых
  • выполнение заданий по литературе, русскому или иностранному языку.

Основное отличие от большинства сайтов, предлагающих выполнение работ на заказ – сайт рассчитан на две категории пользователей: заказчиков и решающих задания. Причем, по желанию (чтобы заработать, увеличить свой рейтинг, получить решение сложной задачи) пользователи могут играть любую из этих ролей.

Объединение сервисов в одну систему

Основой для идеи послужили несколько работающих систем, объединение которых позволит сделать сервис для решения задач на заказ. Эти системы:

  • Форум, где посетители обмениваются идеями и помогают друг другу
  • Система bugtracking, где обнаруженные проблемы проходят путь от публикации до принятия в исполнение и решения
  • Аукцион, где цена за товар или услугу определяется в результате торгов
  • Система рейтингов, где участники могут оценивать ответы друг друга. Причем, чем больше рейтинг пользователя, тем более значимым становится его голос

Принцип работы

Для удобства и проведения аналогий с реальной жизнью назовем заказчиков студентами, а решающих задания – репетиторами.

Итак, студенту необходимо решить несколько задач. Он заходит на сайт, выбирает раздел с соответствующей дисциплиной и создает новую тему (аналогия с форумом). Но при создании темы он также указывает стартовую (максимальную) цену, которую он готов заплатить за решение задач и крайний срок исполнения задания. Можно будет назначить и нулевую цену – если студенту нужно только бесплатное решение.

Как только тема создана, все пожелавшие подписаться на раздел репетиторы получают уведомление. Причем, условие получения уведомлений можно настроить. Например, уведомлять только о заказах со стартовой ценой более 500 р. и сроком решения не менее недели.

Заинтересовавшиеся репетиторы делают ставки. Причем студент (автор темы) видит ставки и может посмотреть информацию по каждому репетитору (его решения, рейтинг, дату начала участия в проекте). Когда студент посчитает нужным, он может остановить аукцион и назначить задание одному из репетиторов, сделавшему ставку (не обязательно самую низкую, т.к. можно учитывать и другие факторы – см. выше).

Деньги блокируются на счете студента, и репетитор начинает решать задание. Он должен представить его к сроку, заданному изначально. Выполненное решение публикуется в свободном доступе и его может оценить как заказчик, так и другие репетиторы. На этих оценках и строится рейтинг. Если к решению нет претензий – деньги окончательно переводятся со счета студента на счет репетитора.

За счет чего будет развиваться сервис

Первое – положительная обратная связь. Чем больше условий задач и решений будет опубликовано на сайте, тем чаще его будут находить пользователи через поисковики, будет больше ссылок на готовые решения. Именно поэтому важно размещать решенные задачи в свободном доступе. Знаю это по опыту своего сайта exir.ru (ex irodov.nm.ru) – большая ссылочная база получена исключительно за счет благодарных пользователей.

Второе – удобный сервис для заказчиков и для желающих заработать на решениях.

Преимущества для заказчиков

Студентам и школьникам не нужно перебирать десятки сайтов для сравнения цен, а потом надеяться, что после оплаты они получат качественное решение (и, вообще, все не закончится перечислением денег). Заказчики создают аукцион на понижение цены и могут смотреть на рейтинги желающих решить задачи и ранее выполненные ими решения. Кроме того, деньги окончательно перечисляются исполнителю только после полного решения.

Преимущества для решающих задания

Не нужно создавать и продвигать свой сайт, размещать множество объявлений во всех доступных источниках информации. Заказчики сами придут к вам. Не нужно решать все присланные задания с целью поддержания репутации – можно выбирать те, которые будут интересны по уровню сложности, цене и срокам решения.

Преимущества для владельца сервиса

Если вы не понимаете, какую выгоду получит делающий вам какое-нибудь предложение – будьте осторожны! 🙂 У меня уже есть большой опыт работы с сайтом, предоставляющим бесплатные решения по физике. И вариант с получением прибыли от размещения рекламы подходит и для нового сервиса. Кроме того, мне нравится помогать людям и довольно тяжело смотреть, как множество вопросов по задачам остаются на форуме без ответа. Предложенный аукцион решений сможет значительно сократить число вопросов без ответов.

В будущем возможен вариант и с получением некоторого небольшого процента от оплаты заказов. Но процент этот должен быть минимален и на начальном этапе он взиматься точно не будет.

Что необходимо для создания сервиса

  1. Самым важное сейчас – собрать команду, готовую принять участие в выполнении заданий. Если покупатели заходят в пустой магазин – они надолго забывают в него дорогу.

    Поэтому я собираю предварительные заявки от посетителей, готовых заниматься решениями. Не нужно подписания никаких договоров о намерениях. Просто сообщите, на какие темы вы готовы решать задания, какой у вас опыт подобной работы (e-mail: [email protected]). Когда сервис заработает – я пришлю приглашение на регистрацию.

  2. Выбрать платежную систему.
  3. Сделать подходящий движок для сайта. Нужно решить – создавать его с нуля или изменить какой-нибудь существующий движок (например, форумный) с открытой лицензией.
  4. Привлечь посетителей. Учитывая посещаемость exir.ru и число публикуемых на форуме вопросов, думаю, это не будет большой проблемой.

Урок 21. показательная функция — Алгебра и начала математического анализа — 10 класс

Алгебра и начала математического анализа, 10 класс

Урок №21. Показательная функция.

Перечень вопросов, рассматриваемых в теме:

— какая функция называется показательной;

— какие свойства имеет показательная функция в зависимости от ее основания;

— какой вид имеет график показательной функции в зависимости от ее основания;

— примеры реальных процессов, описываемых показательной функцией.

Глоссарий по теме

Функция вида , a>0, а≠1 называется показательной функцией с основанием а.

Функция называется монотонно возрастающей на промежутке <a; b>, если (чем больше аргумент, тем больше значение функции).

Функция называется монотонно убывающей на промежутке <a; b>, если (чем больше аргумент, тем меньше значение функции).

Основная литература:

Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е., Шабунин М.И. под ред. Жижченко А.Б. Алгебра и начала математического анализа. 10 класс: учеб.для общеобразоват. учреждений: базовый и профил. уровни 2-е изд. – М.: Просвещение, 2010. – 336 с.: ил. – ISBN 978-5-09-025401-4, сс.310-314, сс. 210-216.

Открытые электронные ресурсы:

http://fcior.edu.ru/ — Федеральный центр информационно-образовательных ресурсов

http://school-collection.edu.ru/ — Единая коллекция цифровых образовательных ресурсов

Теоретический материал для самостоятельного изучения

1. Определение, свойства и график показательной функции

Определение:

Функция вида y=ах, a>0, а≠1 называется показательной функцией с основанием а.

Такое название она получила потому, что независимая переменная стоит в показателе. Основание а – заданное число.

Для положительного основания значение степени ах можно найти для любого значения показателя х – и целого, и рационального, и иррационального, то есть для любого действительного значения.

Сформулируем основные свойства показательной функции.

1. Область определения.

Как мы уже сказали, степень ах для a>0 определена для любого действительного значения переменной х, поэтому область определения показательной функции D(y)=R.

2. Множество значений.

Так как основание степени положительно, то очевидно, что функция может принимать только положительные значения.

Множество значений показательной функции Е(y)=R+, или Е(y)=(0; +∞).

3. Корни (нули) функции.

Так как основание a>0, то ни при каких значениях переменной х функция не обращается в 0 и корней не имеет.

4. Монотонность.

При a>1 функция монотонно возрастает.

При 0<a<1 функция монотонно убывает.

5. При любом значении а значение функции y (0) = а0 =1.

6. График функции.

При a>1

Рисунок 1 – График показательной функции при a>1

При 0<a<1

Рисунок 2 – График показательной функции при 0<a<1

Независимо от значения основания а график функции имеет горизонтальную асимптоту y=0. Для 0<a<1 при х стремящемся к плюс бесконечности, для a>1 при х стремящемся к минус бесконечности.

2. Рассмотрим пример исследования функции y=–3х+1.

Решение:

1) Область определения функции любое действительное число.

2) Найдем множество значений функции.

Так как 3х>0, то –3х<0, значит, –3х+1<1, то есть множество значений функции y=–3х+1 представляет собой промежуток (-∞; 1).

3) Так как функция y=3х монотонно возрастает, то функция y=–3х монотонно убывает. Значит, и функция y=–3х+1 также монотонно убывает.

4) Эта функция будет иметь корень: –3х+1=0, 3х=1, х=0.

5) График функции

Рисунок 3 – График функции y=–3х+1

6) Для этой функции горизонтальной асимптотой будет прямая y=1.

3. Примеры процессов, которые описываются показательной функцией.

1) Рост различных микроорганизмов, бактерий, дрожжей и ферментов описывает формула: N= N0·akt, N– число организмов в момент времени t, t – время размножения, a и k – некоторые постоянные, которые зависят от температуры размножения, видов бактерий. Вообще это закон размножения при благоприятных условиях (отсутствие врагов, наличие необходимого количества питательных веществ и т.п.). Очевидно, что в реальности такого не происходит.

2) Давление воздуха изменяется по закону: P=P0·a-kh, P– давление на высоте h, P0 – давление на уровне моря, h – высота над уровнем моря, a и k – некоторые постоянные.

3) Закон роста древесины: D=D0·akt, D– изменение количества древесины во времени, D0 – начальное количество древесины, t – время, a и k – некоторые постоянные.

4) Процесс изменения температуры чайника при кипении описывается формулой: T=T0+(100– T0)e-kt.

5) Закон поглощения света средой: I=I0·e-ks, s– толщина слоя, k – коэффициент, который характеризует степень замутнения среды.

6) Известно утверждение, что количество информации удваивается каждые 10 лет. Изобразим это наглядно.

Примем количество информации в момент времени t=0 за единицу. Тогда через 10 лет количество информации удвоится и будет равно 2. Еще через 10 лет количество информации удвоится еще раз и станет равно 4 и т.д.

Если предположить, что поток информации изменялся по тому же закону до того года, который принят за начальный, то будем двигаться по оси абсцисс влево от начала координат и над значениями аргумента -10, -20 и т.д. будем наносить на график значения функции уже в порядке убывания — уменьшая каждый раз вдвое.

Рисунок 4 – График функции y=2х – изменение количества информации

Закон изменения количества информации описывается показательной функцией y=2х.

Примеры и разбор решения заданий тренировочного модуля

Пример 1.

Выберите показательные функции, которые являются монотонно убывающими.

  1. y=3x-1
  2. y=(0,4)x+1
  3. y=(0,7)
  4. y=
  5. y=3-2х
  6. y=102x +1

Решение:

Монотонно убывающими являются показательные функции, основание которых положительно и меньше единицы. Такими функциями являются: 2) и 4) (независимо от того, что коэффициент в показателе функции 4) равен 0,5), заметим, что функцию 4) можно переписать в виде: , используя свойство степеней.

Также монотонно убывающей будет функция 5). Воспользуемся свойством степеней и представим ее в виде:

2) 4) 5)

Пример 2.

Найдите множество значений функции y=3x+1– 3.

Решение:

Рассмотрим функцию.

Так как 3x+1>0, то 3x+1– 3>–3, то есть множество значений:

(– 3; +∞).

Пример 3.

Найдите множество значений функции y=|2x– 2|

Рассмотрим функцию.

2x–2>–2, но, так как мы рассматриваем модуль этого выражения, то получаем: |2x– 2|0.

Вычисление площадей плоских фигур с помощью интеграла

На этом уроке будем учиться вычислять площади плоских фигур, которые
называются криволинейными трапециями.

Примеры таких фигур — на рисунке ниже.

С одной стороны, найти площадь плоской фигуры с помощью определённого интеграла
предельно просто. Речь идёт о площади фигуры, которую сверху ограничивает некоторая кривая, снизу — ось
абсцисс (Ox), а слева и справа — некоторые прямые. Простота в том,
что определённый интеграл функции, которой задана кривая, и есть площадь такой фигуры (криволинейной трапеции).

Но здесь нас подстерегают некоторые важные нюансы, без понимания которых не решить
большинство задач на это практическое приложение определённого интеграла. Учтём эти нюансы и будем во
всеоружии.

Для вычисления площади фигуры нам понадобятся:

  1. Определённый интеграл от функции,
    задающей кривую
    , которая ограничивает криволинейную трапецию сверху. И здесь возникает
    первый существенный нюанс: криволинейная трапеция может быть ограничена кривой не только сверху, но и снизу.
    Как действовать в этом случае? Просто, но это важно запомнить: интеграл в этом случае берётся со знаком
    минус
    .
  2. Пределы интегрирования a и b, которые находим из уравнений прямых, ограничивающих
    фигуру слева и справа: x = a, x = b, где
    a и b — числа.

Отдельно ещё о некоторых нюансах.

Кривая, которая ограничивает криволинейную трапецию сверху (или снизу)
должна быть графиком непрерывной и неотрицательной функции y = f(x).

Значения «икса» должны принадлежать отрезку [ab]. То есть
не учитываются такие, например, линии, как разрез гриба, у которого ножка вполне вписывается в этот отрезок,
а шляпка намного шире.

Боковые отрезки могут вырождаться в точки. Если вы увидели такую фигуру на чертеже,
это не должно вас смущать, так как эта точка всегда имеет своё значение на оси «иксов». А значит с пределами
интегрирования всё в порядке.

Теперь можно переходить к формулам и вычислениям. Итак, площадь s
криволинейной трапеции может быть вычислена по формуле

 (1).

Если же f(x) ≤ 0 (график функции расположен ниже оси Ox),
то площадь криволинейной трапеции может быть вычислена по формуле

. (2)

Есть ещё случаи, когда и верхняя, и нижняя границы фигуры — функции, соответственно
y = f(x) и y = φ(x), то площадь такой фигуры
вычисляется по формуле

. (3)

Начнём со случаев, когда площадь фигуры может быть вычислена по формуле (1).

Пример 1. Найти площадь фигуры, ограниченной графиком функции
, осью абсцисс (Ox)
и прямыми x = 1, x = 3.

Решение. Так как y = 1/x > 0
на отрезке [1; 3], то площадь криволинейной трапеции находим по формуле (1):

.

Пример 3. Найти площадь фигуры, ограниченной графиком функции
, осью абсцисс (Ox)
и прямой x = 4.

Решение. Фигура, соответствующая условию задачи — криволинейная трапеция, у которой левый отрезок выродился в
точку. Пределами интегрирования служат 0 и 4. Поскольку ,
по формуле (1) находим площадь криволинейной трапеции:

.

Пример 4. Найти площадь фигуры, ограниченной линиями
,
,
и
находящейся в 1-й четверти.

Решение. Чтобы воспользоваться формулой (1), представим площадь фигуры,
заданной условиями примера, в виде суммы площадей треугольника OAB и криволинейной
трапеции ABC. При вычислении площади треугольника OAB
пределами интегрирования служат абсциссы точек O и A, а для фигуры ABC
абсциссы точек A и C (A является точкой пересечения прямой OA и
параболы, а C — точкой пересечения параболы с осью Ox).
Решая совместно (как систему) уравнения прямой и параболы, получим

(абсциссу точки A) и
(абсциссу другой точки пересечения прямой и параболы, которая для решения не нужна). Аналогично
получим ,
(абсциссы точек
C и D). Теперь у нас еть всё для нахождения площади фигуры. Находим:

Пример 5. Найти площадь криволинейной трапеции ACDB,
если уравнение кривой CD
и абсциссы A и B соответственно 1 и 2.

Решение. Выразим данное уравнение кривой через игрек:
Площадь криволинейной
трапеции находим по формуле (1):

.

Переходим к случаям, когда площадь фигуры может быть вычислена по формуле (2).

Пример 7. Найти площадь, заключённую между осью абсцисс (Ox)
и двумя соседними волнами синусоиды.

Решение. Площадь данной фигуры можем найти по формуле (2):

.

Найдём отдельно каждое слагаемое:

.

.

Окончательно находим площадь:

.

Пример 8. Найти площадь фигуры, заключённой между параболой
и кривой
.

Решение. Выразим уравнения линий через игрек:

Площадь по формуле (2) получим как

,

где a и b — абсциссы точек A и B. Найдём их,
решая совместно уравнения:

Отсюда

Окончательно находим площадь:

И, наконец, случаи, когда площадь фигуры может быть вычислена по формуле (3).

Начало темы «Интеграл»

Объем тела вращения вокруг оси Ox, Oy

Объем тела V, образованного вращением вокруг оси Ox фигуры , , где y1(x) и y2(x) — непрерывные неотъемлемые функции, равняется определенному интегралу от разницы квадратов функций yi(x) по переменной x

Объем тела V, образованного вращением вокруг оси Oy фигуры , , где y(x) — однозначная непрерывная функция, равняется определенному интегралу, рассчитанному по формуле

Примеры выбраны из учебной программы для студентов механико-математического факультета Львовского национального университета имени Ивана Франко. 

Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича).
Для изучения основных моментов схема интегрирования и формулы вычисления объема тела вращения будут повторяться из примера в пример.2, y=0 
а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Запишем подинтегральные функции:
а)
б)
Из приведенных формул Вы можете видеть разницу, в каких случаях применять каждую из формул объема.
Найдем пределы интегрирования:

И заключительным шагом вычисляем объемы интегрированием.
а) Найдем объем тела вращения вокруг оси Ox:

б) Вычислим объем тела вращения вокруг оси Oy:

В этом примере интегралы легко берутся и нет потребности объяснять детали операций.

 

Пример 2.141 (2474) Вычислить объем тела, образованного вращением кривой y=sin(x)

а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Выпишем подинтегральные функции:
а)
б)
Пределы интегрирования берем из начального условия:

Осталось вычислить определенные интегралы:
а) Найдем объем тела вращения вокруг оси Ox:

б) Выполняем вычисление объема тела при вращении вокруг оси Oy:

Замена переменных помогает найти последний интеграл.

 

Пример 2.142 (2475) Найти объем тела, образованного вращением кривой
а) вокруг оси Ox; б) вокруг оси Oy.
Решение: Чтобы записать подинтегральную функцию найдем разницу квадратов заданных функций:
а)
б) для тела, образованного вращением вокруг оси Oy подинтегральная функция имеет вид

Из условия равенства функций y1(x)=y2(x) определяем пределы интегрирования

x1=0, |x|=a поэтому
Пределы интегрирования :
а)  
б)
При :
поэтому принимая во внимание симметрию имеем неравенство .

а) Вычисляем объем тела вращения вокруг оси Ox:

б) Через следующий интеграл определяем объем тела вращения вокруг оси Oy:

Здесь нет сложных моментов при вычислении интеграла.

 

Пример 2.143 (2476) Найти объем тела, образованного вращением кривой y=e— x, y=0,
а) вокруг оси Ox; б) вокруг оси Oy
.
Решение: Уравнение подинтегральных функций :
а) y2=e-2x;
б) x*y (x) =xe-x.
Запишем пределы интегрирования (известно за условием):

а) Находим объем тела вращения вокруг оси Ox:

б) Найдем объем тела вращения вокруг оси Oy:

Здесь, чтобы вычислить интегралы придется находить границу при переменной направляющейся к безграничности.
Во втором интеграле выполняем интегрирование частями.

 

Пример 2.144 (2477) Вычислить объем тела, образованного вращением кривой x2+(y-b)2=a2, , вокруг оси Ox.
Решение: Фигурой вращения является круг с центром в точке (0;b) и радиусом a.
При выражении самой функции получим две ветки корневых функций:

При поднесении к квадрату разница слагаемых сложит такое выражение подинтегральной функции:

Запишем пределы интегрирования: для круга они равны xє[-a;a] или два полукруга из на промежутке xє[0;a].
Через интеграл находим объем тела вращения вокруг оси Ox:

Внимательно разберите приведенный пример.

 

Пример 2.145 (2478) Найти объем тела, образованного вращением кривой x2-xy+y2=a2, вокруг оси Ox.
Решение: Сведем кривую к каноническому виду (методами из аналитической геометрии) устанавливаем, что заданная линия является эллипсом
— уравнение в канонической системы координат.
В приведенной системе координат уравнения эллипса имеет вид:

Прямая y=x/2 является осью симметрии этой фигуры.
Запишем подинтегральную функцию:

Найдем пределы интегрирования из условия равности функций y2(x)=y1(x):

или двукратный объем на интервале

Но тогда еще нужно отнять объем тела в пределах

(которая не принадлежит эллипсу) и ограничена первой кривой

и результат умножить на 2 (симметрия).

Последним шагом вычисляем объем тела вращения вокруг оси Ox:

Формула интеграла вышла достаточно длинным, однако его удобно читать пользователям, которые заходят на сайт из мобильных устройств.

 

Пример 2.146 (2479) Найти объем тела, образованного вращением кривой вокруг оси Ox.
Решение: Запишем подинтегральную функцию:
y2(x)=e-2x*sin (x).
Установим пределы интегрирования: при , где k=0,1,2.
Таким образом имеем бесконечный ряд промежутков интегрирования.
При нахождении объема тела вращения вокруг оси Ox получим бесконечный ряд интегралов, который совпадает:

Здесь вычислили интеграл дважды выполнив замену переменных:

тому
— это числовой ряд.
В данном случае бесконечно нисходящая геометрическая прогрессия, у которой b1=1, b2=e-4Pi, поэтому q=e— 4Pi, а сумма прогрессии равна

 

Пример 2480 Найти объем тела, образованного вращением кривой x=a (t — sin (t)), y=a (1 — cos (t)), , y=0.
а) вокруг оси Ox; б) вокруг оси Oy;
в) вокруг прямой y=2a.

Решение: Вычислим подинтегральную функцию и дифференциал по аргументу:
y2=a2(1-cos (t))2, dx=a(1-cos(t)) dt.
Пределы интегрирования известны из начального условия: tє[0;2pi].
Переходим к применению формул объемов:
а) Первым вычислим объем тела вращения вокруг оси Ox:

Здесь применили замену переменных и условие

б) Следующим найдем объем тела вращения вокруг оси Oy:

Его попробуйте расписать самостоятельно.

в) Последним вычислим объем тела вращения вокруг прямой y=2a:
Перейдем к новой системе координат по формулам y1=y-2a, x1=x.
Тогда искомый объем V=V1-V2, где V1 — объем колового цилиндра с высотой H=2pi*a и радиусом основы R=2a, поэтому объем цилиндра равен
куб. од.
Второй объем находим интегрированием

Как и в предыдущих задачах здесь использовали замену переменных под интегралом.
Напоследок находим разницу объемов
куб. од.

 

Объем тела, образованного вращением вокруг полярной оси плоской фигуры

Чтобы найти объем тела V, образованного в результате вращением вокруг полярной оси плоской фигуры r(phi)
необходимо вычислить определенный интеграл по формуле

 

Пример 2483 Найти объем тела, образованного вращением кривой r=a (1+cos (phi)), , y=0
а) вокруг полярной оси;
б) вокруг прямой

Решение: Чтобы достать подинтегральную функцию подносим к кубу заданную функцию:

Пределы интегрирования записываем из начального условия:

а) Сначала найдем объем тела вращения вокруг полярной оси:

Для упрощения вычислений переходим к новой переменной под интегралом.
б) Перейдем к новым координатам с помощью формул: x1=y, y1=-x-a/4.
Определяем пределы интегрирования:
при росте угла от 0 к Pi/2 координата x1 растет от 0 к , при росте от Pi/2 к Pi переменная x1 спадает от к 0, поэтому пределы ограничены интервалом

Запишем подинтегральную функцию:
Уравнения перехода между системами координат имеют вид

Подстановкой в уравнение получим:
,
Найдем объем тела вращения вокруг прямой :

откроем скобки, возведем подобные слагаемые и, приняв во внимание, что интеграл равен нулю получим

Здесь последние интегралы выражаются через факториалы

(смотри пример 2.59, часть І).
Парные факториалы вычисляем по правилу

 

Пример 2484.1 Найти объем тела, образованного вращением кривой r=a*phi (a>0)вокруг полярной оси.
Решение: Запишем подинтегральную функцию:

С пределами интегрирования проблем нет:

Чтобы найти объем тела вращения вокруг полярной оси выполняем ряд манипуляций с интегралами:

Внимательно проанализируйте, как находится этот «тригонометрический» интеграл.

 

Пример 2484.2 Найти объем тела, образованного вращением кривой phi=Pi*r3, phi=Pi, вокруг полярной оси.
Решение: Запишем подинтегральную функцию:

Пределы интегрирования:
 
Вычисляем объем тела вращения вокруг полярной оси:

Здесь синус вносим под дифференциал и выполняем интегрирование частями.
На данное время это все примеры, которые мы смогли подготовить для Вас по данной теме.

Угол между прямыми

Определение угла между прямыми

Две прямые называются пересекающимися, если они имеют единственную общую точку. Эта точка называется точкой пересечения прямых. Прямые разбиваются точкой пересечения на лучи, которые образуют четыре неразвернутых угла, среди которых две пары вертикальных углов и четыре пары смежных углов. Если известен размер одного из углов, образованных пересекающимися прямыми, то легко определить размер остальных углов. Если один из углов прямой, то все остальные тоже прямые, а прямые перпендикулярны.

Определение Угол между прямыми — размер наименьшего из углов, образованных этими прямыми.

Угол между прямыми на плоскости

Угол между прямыми заданными уравнениями с угловым коэффициентом

Если две прямые заданы уравнениями с угловым коэффициентом

y = k1x + b1,
y = k2x + b2,

то угол между ними можно найти, используя формулу:

tg γ = k1 — k21 + k1·k2

Если знаменатель равен нулю (1 + k1·k2 = 0), то прямые перпендикулярны.

Доказательство. Если прямые заданы уравнениями с угловыми коэффициентами, то легко найти углы между этими прямыми и осью OX

tg α = k1
tg β = k2

Соответственно легко найти угол между прямыми

γ = α — β

tg γ = tg (α — β) = tg α — tg β1 + tg α ·tg β = k1 — k21 + k1·k2

Угол между прямыми через направляющие векторы этих прямых

Если a — направляющий вектор первой прямой и b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано параметрически

x = l t + ay = m t + b

то вектор направляющей имеет вид {l; m}

Если уравнение прямой задано как

A x + B y + C = 0

то для вычисления направляющего вектора, можно взять две точки на прямой.

Например, если C ≠ 0, A ≠ 0, C ≠ 0 , при x = 0 => y = -CB значит точка на прямой имеет координаты K(0, -CB), при y = 0 => x = -CA значит точка на прямой имеет координаты M(-CA, 0). Вектор направляющей KM = {-CA; CB}.

Если дано каноническое уравнение прямой

x — x0l = y — y0m

то вектор направляющей имеет вид {l; m}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то для вычисления направляющего вектора, можно взять две точки на прямой, например, при x = 0 => y = b значит точка на прямой имеет координаты K(0, b), при x = 1 => y = k + b значит точка на прямой имеет координаты M(1, k + b). Вектор направляющей KM = {1; k}

Угол между прямыми через векторы нормалей этих прямых

Если a — вектор нормали первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если уравнение прямой задано как

A x + B y + C = 0

то вектор нормали имеет вид {A; B}

Если задано уравнение прямой с угловым коэффициентом

y = kx + b

то вектор нормали имеет вид {1; -k}

Угол между прямыми через направляющий вектор и вектор нормали этих прямых

Если a — направляющий вектор первой прямой и b — вектор нормали второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

sin φ = |a · b||a| · |b|

Примеры задач на вычисления угла между прямыми на плоскости

Пример 1. Найти угол между прямыми y = 2x — 1 и y = -3x + 1.

Решение: Воспользуемся формулой для вычисления угла между прямыми заданными уравнениями с угловым коэффициентом:

tg γ = k1 — k21 + k1·k2 = 2 — (-3)1 + 2·(-3) = 5-5 = 1

Ответ. γ = 45°

Пример 2. Найти угол между прямыми y = 2x — 1 и x = 2t + 1y = t.

Решение: Воспользуемся формулой для вычисления угла между прямыми у которых известны направляющие векторы.

Для первой прямой направляющий вектор {1; 2}, для второй прямой направляющий вектор {2; 1}

cos φ = |1 · 2 + 2 · 1|12 + 22 · 22 + 12 = 45 · 5 = 0.8

Ответ. φ ≈ 36.87°

Пример 3 Найти угол между прямыми 2x + 3y = 0 и x — 23 = y4.

Решение: Для решения этой задачи можно найти направляющие векторы и вычислить угол через направляющие векторы или преобразовать уравнения в уравнения с угловым коэффициентом и вычислить угол через угловые коэффициенты.

Преобразуем имеющиеся уравнения в уравнения с угловым коэффициентом.

2x + 3y = 0 => y = -23x   (k1 = -23)

x — 23 = y4 => y = 43x — 83   (k2 = 43)

tg γ = k1 — k21 + k1·k2 = -23 — 431 + (-23)·43 = -631 — 89 = 18

Ответ. γ ≈ 86.82°

Угол между прямыми в пространстве

Если a — направляющий вектор первой прямой, а b — направляющий вектор второй прямой, то, используя скалярное произведение векторов, легко найти угол между прямыми:

cos φ = |a · b||a| · |b|

Если дано каноническое уравнение прямой

x — x0l = y — y0m = z — z0n

то направляющий вектор имеет вид {l; m; n}

Если уравнение прямой задано параметрически

x = l t + ay = m t + bz = n t + c

то направляющий вектор имеет вид {l; m; n}

Пример 4. Найти угол между прямыми x = 2t + 1y = tz = -t — 1 и x = t + 2y = -2t + 1z = 1.

Решение: Так как прямые заданы параметрически, то {2; 1; -1} — направляющий вектор первой прямой, {1; -2; 0} направляющий вектор второй прямой.

cos φ = |2 · 1 + 1 · (-2) + (-1) · 0|22 + 12 + (-1)2 · 12 + (-2)2 + 02 = 06 · 5 = 0

Ответ. φ = 90°

Пример 5 Найти угол между прямыми x — 23 = y4 = z — 35 и -x — 22 = 1 — 3y = 3z — 52.

Решение: Для решения этой задачи найдем направляющие векторы этих прямых.

Уравнение первой прямой задано в канонической форме, поэтому направляющий вектор {3; 4; 5}.

Преобразуем второе уравнение к каноническому вид.

-x — 22 = x — 2-2

1 — 3y = 1 + y-1/3 = y — 1/3-1/3

3z — 52 = z — 5/32/3

Получено уравнение второй прямой в канонической форме

x — 2-2 = y — 1/3-1/3 = z — 5/32/3

{-2; -13; 23} — направляющий вектор второй прямой.

cos φ = 3·(-2) + 4·(-13) + 5·2332 + 42 + 52 · (-2)2 + (-13)2 + (23)2 = -6 — 43 + 1039 + 16 + 25 · 4 + 19 + 49 = -450 · 41/9 = 12582 = 682205

Ответ. φ ≈ 74.63°

3 6 Решить для? cos (x) = 1/2 7 Решить относительно x sin (x) = — 1/2 8 Преобразование из градусов в радианы 225 9 Решить для? cos (x) = (квадратный корень из 2) / 2 10 Решить относительно x cos (x) = (квадратный корень из 3) / 2 11 Решить относительно x sin (x) = (квадратный корень из 3) / 2 12 График г (x) = 3/4 * корень пятой степени x 13 Найдите центр и радиус х ^ 2 + у ^ 2 = 9 14 Преобразование из градусов в радианы 120 градусов 15 Преобразование из градусов в радианы 180 16 Найдите точное значение коричневый (195) 17 Найдите степень е (х) = 2x ^ 2 (x-1) (x + 2) ^ 3 (x ^ 2 + 1) ^ 2 18 Решить для? тангенс (x) = квадратный корень из 3 19 Решить для? sin (x) = (квадратный корень из 2) / 2 20 Найдите центр и радиус х ^ 2 + у ^ 2 = 25 21 Найдите центр и радиус х ^ 2 + у ^ 2 = 4 22 Решить относительно x 2cos (x) -1 = 0 23 Решить относительно x 6x ^ 2 + 12x + 7 = 0 24 Найдите домен х ^ 2 25 Найдите домен е (х) = х ^ 2 26 Преобразование из градусов в радианы 330 градусов 27 Разверните логарифмическое выражение натуральный логарифм (x ^ 4 (x-4) ^ 2) / (квадратный корень из x ^ 2 + 1) 28 Упростить ((3x ^ 2) ^ 2y ^ 4) / (3y ^ 2) 29 Упростить (csc (x) детская кроватка (x)) / (sec (x)) 30 Решить для? тангенс (х) = 0 31 Решить относительно x х ^ 4-3x ^ 3-х ^ 2 + 3x = 0 32 Решить относительно x cos (x) = sin (x) 33 Найдите точки пересечения по осям x и y х ^ 2 + у ^ 2 + 6х-6у-46 = 0 34 Решить относительно x квадратный корень из x + 30 = x 35 Упростить детская кроватка (x) коричневый (x) 36 Найдите домен у = х ^ 2 37 Найдите домен квадратный корень из x ^ 2-4 38 Найдите точное значение грех (255) 39 Оценить , основание журнала 27 из 36 40 преобразовать из радианов в градусы 2п 41 Упростить (F (x + h) -Fx) / час 42 Решить для? 2sin (x) ^ 2-3sin (x) + 1 = 0 43 Решить относительно x tan (x) + квадратный корень из 3 = 0 44 Решить относительно x грех (2х) + соз (х) = 0 45 Упростить (1-соз (х)) (1 + соз (х)) 46 Найдите домен х ^ 4 47 Решить для? 2sin (x) + 1 = 0 48 Решить относительно x х ^ 4-4x ^ 3-х ^ 2 + 4x = 0 49 Упростить 9 / (х ^ 2) + 9 / (х ^ 3) 50 Упростить (детская кроватка (x)) / (csc (x)) 51 Упростить 1 / (с ^ (3/5)) 52 Упростить квадратный корень из 9a ^ 3 + квадратный корень из 53 Найдите точное значение желто-коричневый (285) 54 Найдите точное значение cos (255) 55 Преобразовать в логарифмическую форму 12 ^ (x / 6) = 18 56 Разверните логарифмическое выражение (основание 27 из 36) (основание 36 из 49) (основание 49 из 81) 57 Недвижимость х ^ 2 = 12 лет 58 Недвижимость х ^ 2 + у ^ 2 = 25 59 График f (x) = — натуральный логарифм x-1 + 3 60 Найдите значение, используя единичную окружность арксин (-1/2) 61 Найдите домен корень квадратный из 36-4x ^ 2 62 Упростить (корень квадратный из x-5) ^ 2 + 3 63 Решить относительно x х ^ 4-2x ^ 3-х ^ 2 + 2x = 0 64 Решить относительно x у = (5-х) / (7х + 11) 65 Решить относительно x х ^ 5-5x ^ 2 = 0 66 Решить относительно x cos (2x) = (квадратный корень из 2) / 2 67 График г = 3 68 График f (x) = — логарифм по основанию 3 из x-1 + 3 69 Найдите корни (нули) f (x) = 3x ^ 3-12x ^ 2-15x 70 Найдите степень 2x ^ 2 (x-1) (x + 2) ^ 3 (x ^ 2 + 1) ^ 2 71 Решить относительно x квадратный корень из x + 4 + квадратный корень из x-1 = 5 72 Решить для? cos (2x) = — 1/2 73 Решить относительно x логарифм по основанию x 16 = 4 74 Упростить е ^ х 75 Упростить (соз (х)) / (1-грех (х)) + (1-грех (х)) / (соз (х)) 76 Упростить сек (x) sin (x) 77 Упростить кубический корень из 24 кубический корень из 18 78 Найдите домен квадратный корень из 16-x ^ 2 79 Найдите домен квадратный корень из 1-x 80 Найдите домен у = грех (х) 81 Упростить квадратный корень из 25x ^ 2 + 25 82 Определить, нечетно ли, четно или нет е (х) = х ^ 3 83 Найдите домен и диапазон f (x) = квадратный корень из x + 3 84 Недвижимость х ^ 2 = 4г 85 Недвижимость (x ^ 2) / 25 + (y ^ 2) / 9 = 1 86 Найдите точное значение cos (-210) 87 Упростить кубический корень из 54x ^ 17 88 Упростить квадратный корень из квадратного корня 256x ^ 4 89 Найдите домен е (х) = 3 / (х ^ 2-2x-15) 90 Найдите домен квадратный корень из 4-x ^ 2 91 Найдите домен квадратный корень из x ^ 2-9 92 Найдите домен е (х) = х ^ 3 93 Решить относительно x е ^ х-6е ^ (- х) -1 = 0 94 Решить относительно x 6 ^ (5x) = 3000 95 Решить относительно x 4cos (x-1) ^ 2 = 0 96 Решить относительно x 3x + 2 = (5x-11) / (8лет) 97 Решить для? грех (2x) = — 1/2 98 Решить относительно x (2x-1) / (x + 2) = 4/5 99 Решить относительно x сек (4x) = 2 100 Решите для n (4n + 8) / (n ^ 2 + n-72) + 8 / (n ^ 2 + n-72) = 1 / (n + 9)

Решить Свойства прямой x ^ 2-2xy = 0 Tiger Algebra Solver

Шаг 1:

Шаг 2:

Вытягивание одинаковых терминов:

2.1 Факторы вытягивания:

x 2 — 2xy = x • (x — 2y)

Уравнение в конце шага 2:
 x • (x - 2y) = 0
 

Шаг 3:

Теория — Корни продукта:

3.1 Произведение нескольких членов равно нулю.

Если произведение двух или более членов равно нулю, то хотя бы один из членов должен быть равен нулю.

Теперь мы решим каждый член = 0 отдельно

Другими словами, мы собираемся решить столько уравнений, сколько членов есть в произведении

Любое решение для term = 0 также решает product = 0.

 
Решение уравнения с одной переменной:

3.2 Решение: x = 0

Решение: x = 0

 
Уравнение прямой линии

3.3 Решите x-2y = 0

Тигр понимает, что здесь имеется уравнение прямой. Такое уравнение обычно записывается y = mx + b («y = mx + c» в Великобритании).

«y = mx + b» — это формула прямой линии, проведенной в декартовой системе координат, в которой «y» — вертикальная ось, а «x» — горизонтальная ось.

В этой формуле:

y говорит нам, как далеко идет линия.
x говорит нам, как далеко вдоль
м находится наклон или градиент, т.е. насколько крута линия.
b — точка пересечения оси Y, т.е. Ось Y

Пересечения по осям X и Y и наклон называются свойствами линии. Теперь мы построим график линии x-2y = 0 и вычислим ее свойства

График прямой линии:
 
Вычислите точку пересечения оси Y:

Обратите внимание, что при x = 0 значение y равно 0 / -2 поэтому эта линия «разрезает» ось y при y = -0.00000

 Y-точка пересечения = 0 / -2 = -0.00000 
Вычислите X-точку пересечения:

Когда y = 0, значение x равно 0/1 Наша линия поэтому «разрезает» ось x на x = 0,00000

 пересечение по оси x = 0/1 = 0,00000 
Расчет наклона:

Наклон определяется как изменение y, деленное на изменение x. Отметим, что для x = 0 значение y равно 0,000, а для x = 2,000 значение y равно 1.000. Итак, при изменении x на 2.000 (изменение x иногда называют «RUN») мы получаем изменение на 1.000 — 0,000 = 1,000 в y. (Изменение y иногда называют «ПОДЪЕМ», а наклон равен m = ПОДЪЕМ / ПЕРЕДАЧА)

 Наклон = 1.000 / 2.000 = 0.500 

Геометрическая фигура: прямая линия

  1. Наклон = 1.000 / 2.000 = 0.500
  2. пересечение по оси x = 0/1 = 0,00000
  3. пересечение по оси y = 0 / -2 = -0,00000
  4. x = 0

проблема 5

проблема 5

5. Ничья
график y = f ( x ) = x 2 + 2 x — 8.

  • a) Что такое перехват y ?
  • б) Каковы корни?
  • в) Каковы координаты вершины?
  • г) Запишите уравнение в стандарте или вершине
    форма.

  • e) Решите относительно x

x 2 + 2 x — 8 > 0

Прежде чем рисовать график, нужно ответить на вопросы а), б),
и в).

а) Что такое перехват и ?

Пересечение y — это точка на графике, координата которой x равна 0.
Итак, пусть x = 0 в уравнении, и мы получим

y = (0) 2 + 2 (0) — 8
= 0 + 0-8
= -8.

Это показывает, что пересечение y всегда является постоянным членом
в полиноме.

верх

б) Какие корни?

Корни — это еще одно название перехватов x .Они
точек на графике, координаты которых y равны 0. Итак, пусть y = 0 в
уравнение и получаем

0 = x 2 + 2 x — 8

Это дает нам квадратное уравнение в x . & mbsp; Нам повезло
чтобы на одной стороне уже был 0, так что мы готовы к факторизации.

0 = ( x — 2) ( x + 4)

Установите коэффициенты = 0.

x — 2 = 0 или x + 4 = 0

Решить относительно x

x = 2 или x = -4

верх

в) Каковы координаты вершины?

Если мы воспользуемся формулой для координаты x вершины, то

получаем

или

х = -1

Теперь, когда у нас есть координата x- вершины, мы запускаем это
число через функцию, чтобы найти координату y-

y = f (-1) = (-1) 2 + 2 (-1) — 8

= 1-2-8
= -9

Итак, вершина находится в (-1, -9)

верх

Рекомендуется получить всю эту информацию перед построением графика.
точки, чтобы нарисовать график.Когда мы наносим точки, поскольку теперь мы знаем, что
координата x вершины равна -1, мы хотим, чтобы -1 находился в
середина x , которые мы рисуем. Нам также понадобятся корни, x = -4
и 2, чтобы быть в интервале, содержащем x , которые мы строим, и в
хотя бы одна точка по другую сторону корней от вершины.

Когда мы строим эти точки, мы получаем

верх

г) Запишите уравнение в виде вершины.

Уравнение задается как

y = x 2 + 2 x — 8

Половина линейного коэффициента равна 1, а квадрат 1 равен 1, поэтому
складываем и вычитаем 1

y = x 2 + 2 x + 1 — 1 — 8

Это упрощается до

y = ( x + 1) 2 — 9

, и мы видим координаты вершины в уравнении.

верх

e) Решите относительно x

x 2 + 2 x — 8 ≥ 0

В процессе рисования графика мы обнаружили
что корни были в -4 и 2. Когда мы делим вещественное число на прямую
в промежутки между корнями, и проверьте x в каждом
интервал.

Поскольку равенство разрешено, конечные точки интервалов,
корни, являющиеся x , которые дадут ответы, равные 0
при подстановке в формулу будут решения.Итак, рисуем
квадратные скобки вокруг конечных точек.

Набор решений — это набор x , которые удовлетворяют

x ≤ -4 или x ≥ 2

В интервальной записи получается

(-∞, -4] ∪ [2, ∞)

верх

Вернуться к тесту

Системы линейных уравнений

Системы линейных уравнений


Часто приходится смотреть на несколько функций одного и того же независимого
Переменная.Рассмотрим предыдущий пример, где x — количество произведенных товаров.
и продано, была независимой переменной в трех функциях: функции затрат,
функция дохода и функция прибыли.

В целом
там может быть:

n уравнений

v переменные

Решение систем уравнений

Есть
четыре метода решения систем линейных уравнений:

а.графическое решение

б. алгебраическое решение

c. метод исключения

d. метод замещения

Графическое решение

Пример 1

даны являются
два следующих линейных уравнения:

f (x) = y = 1 + 0,5x

f (x) = y = 11 — 2x

Постройте график первого уравнения , найдя две точки данных.Установив
сначала x, а затем y равны нулю, можно найти точку пересечения y на
вертикальная ось и точка пересечения x на горизонтальной оси.

Если x = 0,
тогда f (0) = 1 + .5 (0) = 1

Если y = 0,
тогда f (x) = 0 = 1 + 0,5x

-,5x = 1

х = -2

Результирующий
точки данных: (0,1) и (-2,0)

Постройте график второго уравнения , найдя две точки данных.От
установив сначала x, а затем y равными нулю, можно найти точку пересечения y
по вертикальной оси и точка пересечения x по горизонтальной оси.

Если x = 0,
тогда f (0) = 11-2 (0) = 11

Если y = 0,
тогда f (x) = 0 = 11 — 2x

2х = 11

х = 5,5

Результирующий
точки данных: (0,11) и (5.5,0)

В точке пересечения двух уравнений x и y имеют одинаковые значения.
На графике эти значения можно прочитать как x = 4 и y = 3.

Пример 2

даны являются
два следующих линейных уравнения:

f (x) = y = 15 — 5x

f (x) = y = 25 — 5x

Постройте график первого уравнения , найдя две точки данных.Установив
сначала x, а затем y равны нулю, можно найти точку пересечения y на
вертикальная ось и точка пересечения x на горизонтальной оси.

Если x = 0,
тогда f (0) = 15-5 (0) = 15

Если y = 0,
тогда f (x) = 0 = 15 — 5x

5x = 15

х = 3

Результирующий
точки данных: (0,15) и (3,0)

Постройте график второго уравнения , найдя две точки данных.От
установив сначала x, а затем y равными нулю, можно найти точку пересечения y
по вертикальной оси и точка пересечения x по горизонтальной оси.

Если x = 0,
тогда f (0) = 25-5 (0) = 25

Если y = 0,
тогда f (x) = 0 = 25 — 5x

5x = 25

х = 5

Результирующий
точки данных: (0,25) и (5,0)

Из графика видно, что эти линии не пересекаются.Они
параллельны. У них одинаковый наклон. Нет однозначного решения.

Пример 3

даны являются
два следующих линейных уравнения:

21x — 7y = 14

-15x + 5y = -10

Переписать
уравнения, поместив их в форму пересечения наклона.

Первый
уравнение становится

7y = -14 + 21x

у = -2 + 3х

Второй
уравнение становится

5y = -10 + 15x

у = -2 + 3х

Изобразите любое уравнение, найдя две точки данных.Установив сначала
x, а затем y равный нулю, можно найти точку пересечения y по вертикали
ось и точку пересечения x на горизонтальной оси.

Если x = 0,
тогда f (0) = -2 +3 (0) = -2

Если y = 0,
тогда f (x) = 0 = -2 + 3x

3х = 2

х = 2/3

Результирующий
точки данных: (0, -2) и (2 / 3,0)

Из графика видно, что эти уравнения эквивалентны.Там
— бесконечное количество решений.

Алгебраическое решение

Этот метод будет проиллюстрирован с помощью анализа спроса и предложения. Этот
Тип анализа заимствован из работ великого английского экономиста Альфреда
Маршалл.

Q = количество и P = цена

P (s) = функция предложения и P (d) = функция спроса

При построении графика цена располагается на вертикальной оси. Таким образом, цена — это
зависимая переменная.Было бы логичнее рассматривать количество как
зависимая переменная, и этот подход использовал великий французский экономист,
Леон Вальрас. Однако по соглашению экономисты продолжают строить графики, используя
Анализ Маршалла, который называют крестом Маршалла.

Цель состоит в том, чтобы найти равновесную цену и количество, т. Е. Решение
где цена и количество будут иметь одинаковые значения в функции предложения
и функция цены.

Q E
= равновесная величина
P E = равновесная цена

Для равновесия
предложение = спрос
или P (s) = P (d)

Для следующих функций

P (т) =
3Q + 10 и
P (d) = -1 / 2Q + 80

Приравняйте уравнения друг к другу и решите относительно Q.

P (т)
= 3Q + 10 = -1 / 2Q + 80 = P (d)

3.5Q = 70

Q = 20
Равновесное количество 20.

Подставьте это значение вместо Q в любое уравнение и решите для P.

P (т)
= 3 (20) + 10

P (т) =
70

П (г)
= -1/2 (20) + 80

П (г)
= 70
Цена равновесия — 70.

Метод исключения

Этот метод включает удаление переменных из уравнений. Переменные
удаляются последовательно, пока не останется только одна последняя переменная, т.е.
пока не будет одно уравнение с одним неизвестным. Затем это уравнение решается
для одного неизвестного. Затем решение используется для нахождения второго
последняя переменная. Процедура повторяется, добавляя обратно переменные в качестве их решений.
найдены.

Пример 1

2х + 3у = 5

-5x — 2y = 4

Порядок действий: удалить y.Коэффициенты при y не совпадают в
два уравнения, но если бы они были, можно было бы сложить два
уравнения и члены y будут сокращаться. Однако это возможно через
умножение каждого уравнения, чтобы заставить члены y иметь
одинаковые коэффициенты в каждом уравнении.

Шаг 1:
Умножьте первое уравнение на 2, а второе уравнение умножьте на 3.
Это дает

4х + 6у = 10

-15x — 6y = 12

Шаг 2:
Сложите два уравнения.Это дает

-11x = 22

х =
-2

Шаг 3:
Решить относительно y в любом из исходных уравнений

2 (-2) + 3y = 5

3 года = 9

у = 3
или

-5 (-2) — 2y = 4

10 — 2y = 4

2y = 6

г = 3

Альтернативная процедура: удалить x.Коэффициенты при x не совпадают
в двух уравнениях, но если бы они были, можно было бы добавить
два уравнения и члены y будут сокращаться. Однако возможно
путем умножения каждого уравнения, чтобы заставить члены x равняться
имеют одинаковые коэффициенты в каждом уравнении.

Шаг 1:
Умножьте первое уравнение на 5, а второе уравнение умножьте на 2.
Это дает

10x + 15y = 25

-10x — 4y = 8

Шаг 2:
Сложите два уравнения.Это дает

11лет = 33

y =
3

Шаг 3:
Решить относительно x в любом из исходных уравнений

2x + 3 (3) = 5

2x = -4

х = -2
или

-5x — 2 (3) = 4

— 5x =
10

х = -2

Пример 2

2x 1 + 5x 2 + 7x 3 =
2

4x 1 — 4x 2 — 3x 3 =
7

3x 1 — 3x 2 — 2x 3 =
5

В этом примере есть три переменные: x 1 , x 2 и
х 3 .Одна из возможных процедур — удалить первый x 1 ,
, чтобы исключить следующие x 2 , а затем найти x 3 .
Значение, полученное для x 3 , используется для решения x 2 и
наконец, значения, полученные для x 3 и x 2 , используются для
решить относительно x 1 .

Процедура Часть A Сначала удалите x 1 .

Шаг 1 Умножение
первое уравнение на 2 и вычтите второе уравнение из первого
уравнение.Это дает

4x 1 + 10x 2 + 14x 3 =
4
первое уравнение

4x 1 — 4x 2 — 3x 3
= 7
второе уравнение

14x 2 + 17x 3
= -3
второе уравнение вычитается из первого

Шаг 2 Умножение
первое уравнение на 3, третье уравнение умножьте на 2 и вычтите
третье уравнение из первого уравнения.Это дает

6x 1 + 15x 2 + 21x 3 =
6
первое уравнение

6x 1 — 6x 2 — 4x 3 =
10
третье уравнение

21x 2 + 25x 3
= -4
третье уравнение вычитается из первого

Процедура Часть B Второе удаление x 2 .
Из Части А осталось два уравнения. Из этих двух уравнений исключить
х 2 .

14x 2 + 17x 3 = -3
первое уравнение

21x 2 + 25x 3 = -4
второе уравнение

Шаг 1 Умножение
первое уравнение на 21, второе уравнение умножьте на 14. и вычтите
второе уравнение из первого уравнения.Это дает

294x 2 + 357x 3 = -63
первое уравнение

294x 2 + 350x 3 = -56
второе уравнение

7x 3 = -7
второе уравнение вычитается из первого

x 3
= -1

Часть C
Решите относительно x 2 , вставив значение, полученное для x 3 в
любое уравнение из Части B.

14x 2 + 17 (-1) = -3

1 4x 2 = 14

х 2 = 1
или

21x 2 + 25 (-1) = -4

21x 2
= 21

х 2
= 1

Часть D
Решите относительно x 1 , вставив полученные значения x 2
andx 3 в любом из трех исходных уравнений.

2x 1 + 5x 2
+ 7x 3 = 2
первое исходное уравнение

2x 1 + 5 (1) + 7 (-1)
= 2

2x 1 = 4

x 1 = 2 или

4x 1
— 4x 2 — 3x 3 = 7 секунд
исходное уравнение

4x 1 — 4 (1) — 3 (-1)
= 7

4x 1 = 8

х 1 = 2
или же

3x 1
— 3x 2 — 2x 3 = 5
третье исходное уравнение

3x 1 — 3 (1)
-2 (-1) = 5

3x 1
= 6

х 1 = 2

Метод замещения

Это включает выражение одной переменной через другую, пока не будет
одно уравнение с одним неизвестным.Затем это уравнение решается для этого
один неизвестный. Затем результат используется для определения переменной, которая была
выражается через переменную, решение которой было только что найдено.

Пример

12x
— 7лет = 106
первое уравнение

8x
+ У = 82
второе уравнение

Решите
второе уравнение для y, а затем подставьте полученное значение y в первое
уравнение.

г
= 82 — 8x
второе уравнение, решенное относительно y

12x
— 7 (82 — 8х) = 106
первое уравнение переписано в x

12x
— 574 + 56x = 106

68x
= 680

х
= 10

Подставьте полученное значение x в любое из исходных эквивалентов.

12x
— 7лет = 106
первое уравнение

12 (10)
— 7лет = 106

7 лет
= 14

г
= 2

8 (10)
+ У = 82
второе уравнение

г
= 2

[индекс]


исчисление — Решите $ x (1-x) y » + 2 (1-2x) y’-2y = 0 $ по методу Фробениуса

Что касается вашей попытки, вы не сделали ничего плохого.Обратите внимание, что
$$ \ frac {1} {x} = (- 1) \ left (\ frac {1} {1-x} \ right) + (- 1) \ left (- \ frac {1} {x (1- x)} \ right) \,. $$
То есть вы можете принять два линейно независимых решения вашего дифференциального уравнения как
$$ y (x) = \ frac1 {1-x} \ text {и} y (x) = \ frac {1} {x} \ ,, $$
но вы можете принять их за
$$ y (x) = \ frac1 {1-x} \ text {и} y (x) = — \ frac {1} {x (1-x)} $$
также.


Вот полное решение по запросу, хотя это кажется ненужным, потому что вы действительно решили проблему. Предположим, что $ y: U \ to \ mathbb {R} $ — дважды дифференцируемая функция на открытом множестве $ U \ substeq \ mathbb {R} $, удовлетворяющая
$$ x (1-x) \, y » (x) +2 (1-2x) \, y ‘(x) -2 \, y (x) = 0 $$
для всех $ x \ in U $.{n + 0} = \ frac {a_0} {1-x} \,. $$
Решение степенного ряда действительно только для $ U = (- 1, + 1) $, но $ y_1 (x) = \ dfrac {1} {1-x} $ работает, даже если $ U = \ mathbb {R} \ setminus \ {1 \} $.

Если $ r = -1 $, то $ n (n + 1) \, \ big (a_ {n + 1} -a_n \ big) = 0 $ для всех $ n = 0,1,2, \ ldots $ . Таким образом, $ a_n = a_1 $ для каждого $ n = 1,2,3, \ ldots $. Мы можем предположить, что $ a_1 = 0 $ (в противном случае мы можем вычесть соответствующее кратное $ y_1 (x) $ из $ y (x) $). Это означает
$$ y (x) = a_0 \, y_2 (x) \ ,, \ text {где} y_2 (x): = \ frac {1} {x} \,. $$
Обратите внимание, что в этом случае мы можем принять $ U $ за $ \ mathbb {R} \ setminus \ {0 \} $.

Общие решения:
$$ y (x) = \ frac {A} {1-x} + \ frac {B} {x} $$
которые определены на $ U = \ mathbb {R} \ setminus \ {0,1 \} $, хотя $ A $ и $ B $ должны рассматриваться как локальные константы (т. е. они постоянны на трех разных интервалах: $ ( — \ infty, 0) $, $ (0,1) $ и $ (1, \ infty) $).

Wolfram | Alpha Примеры: Пошаговые дифференциальные уравнения


Разделимые уравнения

Посмотрите, как решаются разделяемые уравнения:

Другие примеры


Линейные уравнения первого порядка

Решите линейные уравнения первого порядка:

См. Шаги, которые используют преобразования Лапласа для решения ОДУ:

Другие примеры


Точные уравнения первого порядка

Превратите в точное уравнение:

Другие примеры


Уравнения Бернулли

Научитесь решать уравнения Бернулли:

Другие примеры


Замены первого порядка

Примените линейную замену:

Решите однородное уравнение первого порядка с помощью замены:

Сделайте общие замены:

Другие примеры


Уравнения типа Чини

Решите уравнение Риккати:

Решите уравнение Абеля первого рода с постоянным инвариантом:

Решите уравнение Чини с постоянным инвариантом:

Другие примеры


Общие уравнения первого порядка

См. Шаги для решения уравнения Клеро:

Решите уравнение Даламбера:

Посмотрите, как решаются обыкновенные дифференциальные уравнения первого порядка:

Другие примеры


Линейные уравнения второго порядка с постоянными коэффициентами

Решите линейное однородное уравнение с постоянными коэффициентами:

Решите линейное уравнение с постоянными коэффициентами несколькими методами:

См. Шаги, которые используют преобразования Лапласа для решения ОДУ:

Другие примеры


Снижение порядка

Сведите к уравнению первого порядка:

Выведите уравнение цепной линии:

Другие примеры


Уравнения Эйлера – Коши.

Решите уравнения Эйлера – Коши:

Другие примеры


Общие уравнения второго порядка

Посмотрите, как решаются обыкновенные дифференциальные уравнения второго порядка:

Другие примеры


Уравнения высшего порядка

См. Шаги для уравнений высшего порядка:

Другие примеры

Как найти решение системы уравнений

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

.

Добавить комментарий

Ваш адрес email не будет опубликован.