Высоты в трапеции равны: Все формулы высоты трапеции

Содержание

Все формулы высоты трапеции

Трапеция это фигура, которая имеет четыре стороны, две из которых параллельны, а две другие, нет. Параллельные стороны называются — верхнее основание и нижнее основание. Две другие, называются боковыми сторонами.
Высота трапеции это отрезок, длина которого, равна кратчайшему расстоянию между основаниями и следовательно расположенному перпендикулярно к этим основаниям.


1. Формула высоты трапеции через стороны и углы при основании

 

a — нижнее основание

b — верхнее основание

c , d — боковые стороны

α, β — углы трапеции

h — высота трапеции

 

Формулы длины высоты, (h ):

 

 

2. Формула высоты трапеции через диагонали и углы между ними

 

d1 , d2 — диагонали трапеции

α , β — углы между диагоналями

a , b — основания

h — высота трапеции

m — средняя линия

 

Формулы длины высоты, (h ):


 

3. Формула высоты трапеции через площадь

 

S — площадь трапеции

a , b — основания

h — высота трапеции

m — средняя линия

 

Формулы длины высоты, (h ):



 

Формулы площади произвольной трапеции

Формулы площади равнобедренной трапеции

Формула периметра трапеции

Все формулы по геометрии

формулы через стороны, диагонали, площадь

В данной публикации мы рассмотрим формулы, с помощью которых можно найти высоту трапеции, а также разберем примеры решения задач для закрепления материала.

Напомним, высотой трапеции называется отрезок, соединяющий оба ее основания и перпендикулярный им.

Нахождение высоты трапеции

Через длины сторон

Если известны длины всех четырех сторон трапеции, ее высота рассчитывается по формуле ниже:

Через боковую сторону и прилежащий угол

Высоту трапеции можно вычислить, если знать длину любой из ее боковых сторон и значение прилежащего к ней и основанию угла.

Через диагонали и угол между ними

Зная длину оснований трапеции, а также диагоналей и угол между ними, вычислить высоту удастся по формуле:

Если сумму оснований заменить длиной средней линии (m), то формула будет выглядеть следующим образом:

Средняя линия трапеции (m) равняется полусумме ее оснований, т.е m = (a+b)/2.

Через площадь

Высоту трапеции можно вычислить, если известны ее площадь и длины оснований (или средней линии).

Примечание: формулы для нахождения высоты равнобедренной и прямоугольной трапеций представлены на нашем сайте в отдельных публикациях.

Примеры задач

Задание 1
Найдите высоту трапеции, если ее основания равны 9 и 6 см, а боковые стороны – 4 и 5 см.

Решение
Т.к. у нас есть длины всех сторон, мы можем воспользоваться первой формулой для вычисления требуемого значения:

Кстати, т.к. высота равна одной из боковой сторон трапеции, значит она является прямоугольной.

Задание 2
Площадь трапеции равна 26 см2. Найдите ее высоту, если основания равны 10 и 3 см.

Решение
В данном случае можно применить последнюю из рассмотренных формул:

Трапеция

\[{\Large{\text{Произвольная трапеция}}}\]

Определения

Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны. \circ\).

 

2) Т.к. \(AD\parallel BC\) и \(BD\) – секущая, то \(\angle DBC=\angle
BDA\) как накрест лежащие.
Также \(\angle BOC=\angle AOD\) как вертикальные.
Следовательно, по двум углам \(\triangle BOC \sim \triangle AOD\).

Докажем, что \(S_{\triangle AOB}=S_{\triangle COD}\). Пусть \(h\) – высота трапеции. Тогда \(S_{\triangle ABD}=\frac12\cdot h\cdot
AD=S_{\triangle ACD}\). Тогда: \[S_{\triangle AOB}=S_{\triangle ABD}-S_{\triangle AOD}=S_{\triangle ACD}-S_{\triangle AOD}=S_{\triangle
COD}\]

 

Определение

Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.

 

Теорема

Средняя линия трапеции параллельна основаниям и равна их полусумме.

 

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

 

1) Докажем параллельность.

 

Проведем через точку \(M\) прямую \(MN’\parallel AD\) (\(N’\in CD\)). Тогда по теореме Фалеса (т.к. \(MN’\parallel AD\parallel BC, AM=MB\)) точка \(N’\) — середина отрезка \(CD\). Значит, точки \(N\) и \(N’\) совпадут.

 

2) Докажем формулу.

 

Проведем \(BB’\perp AD, CC’\perp AD\). Пусть \(BB’\cap MN=M’, CC’\cap
MN=N’\).

 

Тогда по теореме Фалеса \(M’\) и \(N’\) — середины отрезков \(BB’\) и \(CC’\) соответственно. Значит, \(MM’\) – средняя линия \(\triangle
ABB’\), \(NN’\) — средняя линия \(\triangle DCC’\). Поэтому: \[MM’=\dfrac12 AB’, \quad NN’=\dfrac12 DC’\]

Т.к. \(MN\parallel AD\parallel BC\) и \(BB’, CC’\perp AD\), то \(B’M’N’C’\) и \(BM’N’C\) – прямоугольники. По теореме Фалеса из \(MN\parallel AD\) и \(AM=MB\) следует, что \(B’M’=M’B\). Значит, \(B’M’N’C’\) и \(BM’N’C\) – равные прямоугольники, следовательно, \(M’N’=B’C’=BC\).

 

Таким образом:

\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]

Теорема: свойство произвольной трапеции

Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.

 

Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.

 

1) Докажем, что точки \(P\), \(N\) и \(M\) лежат на одной прямой.

 

Проведем прямую \(PN\) (\(P\) – точка пересечения продолжений боковых сторон, \(N\) – середина \(BC\)). Пусть она пересечет сторону \(AD\) в точке \(M\). Докажем, что \(M\) – середина \(AD\).

 

Рассмотрим \(\triangle BPN\) и \(\triangle APM\). Они подобны по двум углам (\(\angle APM\) – общий, \(\angle PAM=\angle PBN\) как соответственные при \(AD\parallel BC\) и \(AB\) секущей). Значит: \[\dfrac{BN}{AM}=\dfrac{PN}{PM}\]

Рассмотрим \(\triangle CPN\) и \(\triangle DPM\). Они подобны по двум углам (\(\angle DPM\) – общий, \(\angle PDM=\angle PCN\) как соответственные при \(AD\parallel BC\) и \(CD\) секущей). Значит: \[\dfrac{CN}{DM}=\dfrac{PN}{PM}\]

Отсюда \(\dfrac{BN}{AM}=\dfrac{CN}{DM}\). Но \(BN=NC\), следовательно, \(AM=DM\).

 

2) Докажем, что точки \(N, O, M\) лежат на одной прямой.

 

Пусть \(N\) – середина \(BC\), \(O\) – точка пересечения диагоналей. Проведем прямую \(NO\), она пересечет сторону \(AD\) в точке \(M\). Докажем, что \(M\) – середина \(AD\).

 

\(\triangle BNO\sim \triangle DMO\) по двум углам (\(\angle OBN=\angle
ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac{BN}{MD}=\dfrac{ON}{OM}\]

Аналогично \(\triangle CON\sim \triangle AOM\). Значит: \[\dfrac{CN}{MA}=\dfrac{ON}{OM}\]

Отсюда \(\dfrac{BN}{MD}=\dfrac{CN}{MA}\). Но \(BN=CN\), следовательно, \(AM=MD\).

\[{\Large{\text{Равнобедренная трапеция}}}\]

Определения

Трапеция называется прямоугольной, если один из ее углов – прямой.

 

Трапеция называется равнобедренной, если ее боковые стороны равны.

 

Теоремы: свойства равнобедренной трапеции

1) У равнобедренной трапеции углы при основании равны.

 

2) Диагонали равнобедренной трапеции равны.

 

3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.

 

Доказательство

1) Рассмотрим равнобедренную трапецию \(ABCD\).

Из вершин \(B\) и \(C\) опустим на сторону \(AD\) перпендикуляры \(BM\) и \(CN\) соответственно. Так как \(BM\perp AD\) и \(CN\perp AD\), то \(BM\parallel CN\); \(AD\parallel BC\), тогда \(MBCN\) – параллелограмм, следовательно, \(BM = CN\).

 

Рассмотрим прямоугольные треугольники \(ABM\) и \(CDN\). Так как у них равны гипотенузы и катет \(BM\) равен катету \(CN\), то эти треугольники равны, следовательно, \(\angle DAB = \angle CDA\).

 

2)

 

Т.к. \(AB=CD, \angle A=\angle D, AD\) – общая, то по первому признаку \(\triangle ABD=\triangle ACD\). Следовательно, \(AC=BD\).

 

3) Т.к. \(\triangle ABD=\triangle ACD\), то \(\angle BDA=\angle CAD\). Следовательно, треугольник \(\triangle AOD\) – равнобедренный. Аналогично доказывается, что и \(\triangle BOC\) – равнобедренный.

 

Теоремы: признаки равнобедренной трапеции

1) Если у трапеции углы при основании равны, то она равнобедренная.

 

2) Если у трапеции диагонали равны, то она равнобедренная.

 

Доказательство

Рассмотрим трапецию \(ABCD\), такую что \(\angle A = \angle D\).

 

Достроим трапецию до треугольника \(AED\) как показано на рисунке. Так как \(\angle 1 = \angle 2\), то треугольник \(AED\) равнобедренный и \(AE
= ED\). Углы \(1\) и \(3\) равны как соответственные при параллельных прямых \(AD\) и \(BC\) и секущей \(AB\). Аналогично равны углы \(2\) и \(4\), но \(\angle 1 = \angle 2\), тогда \(\angle 3 = \angle 1 = \angle 2 =
\angle 4\), следовательно, треугольник \(BEC\) тоже равнобедренный и \(BE = EC\).

 

В итоге \(AB = AE — BE = DE — CE = CD\), то есть \(AB = CD\), что и требовалось доказать.

 

2) Пусть \(AC=BD\). Т.к. \(\triangle AOD\sim \triangle BOC\), то обозначим их коэффициент подобия за \(k\). Тогда если \(BO=x\), то \(OD=kx\). Аналогично \(CO=y \Rightarrow AO=ky\).

 

Т.к. \(AC=BD\), то \(x+kx=y+ky \Rightarrow x=y\). Значит \(\triangle AOD\) – равнобедренный и \(\angle OAD=\angle ODA\).

 

Таким образом, по первому признаку \(\triangle ABD=\triangle ACD\) (\(AC=BD, \angle OAD=\angle ODA, AD\) – общая). Значит, \(AB=CD\), чтд.

 

Трапеция. Свойства, признаки трапеции | Подготовка к ЕГЭ по математике

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.
Если боковые стороны равны, трапеция называется равнобедренной.

Трапеция,  у которой есть  прямые углы при боковой стороне, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

 

Свойства трапеции

 

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

 

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

 

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

 

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная  окружность

 

Если в трапецию вписана окружность с радиусом   и она делит боковую сторону точкой касания на два отрезка —  и ,  то

 

Площадь

 

или где   – средняя линия

Смотрите хорошую подборку  задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Смотрите также площадь трапеции.

В равнобедренной трапеции диагонали перпендикулярны

Если в равнобедренной трапеции диагонали перпендикулярны, при решении задачи будет полезен следующий теоретический материал.

1. Если в равнобедренной трапеции диагонали перпендикулярны, высота трапеции равна полусумме оснований.           

 

Проведем  через точку C прямую CF, параллельную BD, и продлим прямую AD до пересечения с CF.

 

 

 

 

 

    

 

 

 

 

 

 

 

 

Четырехугольник  BCFD — параллелограмм ( BC∥DF как основания трапеции, BD∥CF по построению). Значит, CF=BD, DF=BC и AF=AD+BC.  

Треугольник ACF прямоугольный (если прямая перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и другой прямой). Поскольку в равнобедренной трапеции диагонали равны, а CF=BD, то CF=AC, то есть треугольник ACF — равнобедренный с основанием AF. Значит, его высота CN является также медианой. А так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине, то

   

что в общем виде можно записать как

   

где h — высота трапеции, a и b — ее основания.

2. Если в равнобедренной трапеции диагонали перпендикулярны, то ее высота равна средней линии.

Так как средняя линия трапеции m равна полусумме оснований, то

   

3. Если в равнобедренной трапеции диагонали перпендикулярны, то площадь трапеции равна квадрату высоты трапеции (или квадрату полусуммы оснований, или квадрату средней линии).

Так как площадь трапеции находится по формуле

   

а высота, полусумма оснований и средняя линия равнобокой трапеции с перпендикулярными диагоналями равны между собой:

   

то

   

   

   

4. Если в равнобедренной трапеции диагонали перпендикулярны, то квадрат ее диагонали равен половине квадрата суммы оснований, а также  удвоенному квадрату высоты и удвоенному квадрату средней линии.

Так как площадь выпуклого четырехугольника можно найти через его диагонали и угол между ними по формуле

   

sin 90º =1, и диагонали равнобедренной трапеции равны, то площадь равнобедренной трапеции, диагонали которой взаимно перпендикулярны, равна

   

откуда

   

   

Как найти высоту трапеции. Запоминаем и применяем свойства трапеции

Трапецией называется такой четырехугольник, две стороны у которого параллельны (это основания трапеции, обозначенные на рисунке a и b), а другие две — нет (на рисунке АД и CB). Высота трапеции — это отрезок h, проведенный перпендикулярно к основаниям.

Как найти высоту трапеции при известных величинах площади трапеции и длин оснований?

Для вычисления площади S трапеции ABCD, воспользуемся формулой:

S = ((a+b) × h)/2.

Здесь отрезки a и b — это основания трапеции, h — это высота трапеции.

Преобразуя эту формулу, можем записать:

Используя эту формулу, получим значение h, если известны величина площади S и величины длин оснований a и b.

Пример

Если известно, что площадь трапеции S равна 50 см², длина основания a составляет 4 см, длина основания b составляет 6 см, то, чтобы найти высоту h, используем формулу:

Подставляем в формулу известные величины.

h = (2 × 50)/(4+6) = 100/10 = 10 см

Ответ: высота трапеции составляет 10 см.

Как находить высоту трапеции, если даны величины площади трапеции и длина средней линии?

Воспользуемся формулой вычисления площади трапеции:

Здесь m — средняя линия, h — высота трапеции.

Если возникает вопрос, как найти высоту трапеции, формула:

h = S/m, будет ответом.

Таким образом, можем найти величину высоты трапеции h, имея известные величины площади S и отрезка средней линии m.

Пример

Известна длина средней линии трапеции m, которая составляет 20 см, и площадь S, которая равна 200 см². Найдем значение величины высоты трапеции h.

Подставив значения S и m, получим:

h = 200/20 = 10 см

Ответ: высота трапеции составляет 10 см

Как найти высоту прямоугольной трапеции?

Если трапеция — это четырехугольник, с двумя параллельными сторонами (основаниями) трапеции. То диагональ — это отрезок, который соединяющий две противоположные вершины углов трапеции (отрезок АС на рисунке). Если трапеция прямоугольная, с помощью диагонали, найдем величину высоты трапеции h.

Прямоугольной трапецией называется такая трапеция, где одна из боковых сторон перпендикулярна основаниям. В этом случае ее длина (АД) совпадает с высотой h.

Итак, рассмотрим прямоугольную трапецию ABCD, где AD — это высота, DC — это основание, AC — это диагональ. Воспользуемся теоремой Пифагора. Квадрат гипотенузы AC прямоугольного треугольника ADC равен сумме квадратов его катетов AB и BC.

Тогда можно записать:

AC² = AD² + DC².

AD — это катет треугольника, боковая сторона трапеции и, в то же время, ее высота. Ведь отрезок АД перпендикулярен основаниям. Его длина составит:

AD = √(AC² — DC²)

Итак, имеем формулу для вычисления высоты трапеции h = AD

Пример

Если длина основания прямоугольной трапеции(DC) равна 14 см, а диагональ (AC) составляет 15 см, для получения значения высоты(AD -боковой стороны) воспользуемся теоремой Пифагора.

Пусть х — это неизвестный катет прямоугольного треугольника(AD), тогда

AC² = AD² + DC² можно записать

15² = 14² + х²,

х = √(15²-14²) = √(225-196) = √29 см

Ответ: высота прямоугольной трапеции (АВ) составит √29 см, что приблизительно составит, 5.385 см

Как найти высоту равнобедренной трапеции?

Равнобедренной трапецией, называют трапецию, у которой длины боковых сторон равны между собой. Прямая, проведенная через середины оснований такой трапеции будет осью симметрии. Частным случаем является трапеция, диагонали которой перпендикулярны друг другу, тогда высота h, будет равна полусумме оснований.

Рассмотрим случай, если диагонали не перпендикулярны друг другу. В равнобочной (равнобедренной) трапеции равны углы при основаниях и длины диагоналей равны. Также известно, что все вершины равнобокой трапеции касаются линии окружности, проведенной вокруг этой трапеции.

Рассмотрим рисунок. ABCD- равнобедренная трапеция. Известно, что основания трапеции параллельны, значит, BC = b параллельно AD = a, сторона AB = CD = c, значит, углы при основаниях соответственно равны, можно записать угол BAQ = CDS = α, и угол ABC = BCD = β. Таким образом, делаем вывод о равенстве треугольника ABQ треугольнику SCD, значит, отрезок

AQ = SD = (AD — BC)/2 = (a — b)/2.

Имея по условию задачи величины оснований a и b, и длину боковой стороны с, найдем высоту трапеции h, равную отрезку BQ.

Рассмотрим прямоугольный треугольник ABQ. ВО — высота трапеции, перпендикулярна основанию AD, значит и отрезку AQ. Сторону AQ треугольника ABQ, найдем, воспользовавшись выведенной нами ранее формулой:

Имея значения двух катетов прямоугольного треугольника, найдем гипотенузу BQ= h. Используем теорему Пифагора.

AB²= AQ² + BQ²

Подставим данные задачи:

c² = AQ² + h².

Получим формулу для нахождения высоты равнобедренной трапеции:

h = √(c²-AQ²).

Пример

Дана равнобедренная трапеция ABCD, где основание AD = a = 10см, основание BC = b = 4см, а боковая сторона AB = c = 12см. При таких условиях, рассмотрим на примере, как найти трапеции высоту, равнобедренной трапеции АВСД.

Найдем сторону AQ треугольника ABQ, подставив известные данные:

AQ = (a — b)/2 = (10-4)/2=3см.

Теперь подставим значения сторон треугольника в формулу теоремы Пифагора.

h = √(c²- AQ²) = √(12²- 3²) = √135 = 11.6см.

Ответ. Высота h равнобедренной трапеции ABCD составляет 11.6 см.

Геометрия – одна из наук, с применением которой на практике человек сталкивается практически ежедневно. Среди многообразия геометрических фигур отдельного внимания заслуживает и трапеция. Она представляет собой выпуклую фигуру с четырьмя сторонами, из которых две параллельны между собой. Последние называются основаниями, а оставшиеся две – боковыми сторонами. Отрезок, перпендикулярный основаниям и определяющий величину промежутка между ними, и будет высотой трапеции. Каким же образом можно вычислить его длину?

Найти высоту произвольной трапеции

Базируясь на исходных данных, определение высоты фигуры возможно несколькими способами.

Известна площадь

Если длина параллельных сторон известна, а также указана площадь фигуры, то для определения искомого перпендикуляра можно воспользоваться следующим соотношением:

S=h*(a+b)/2,
h – искомая величина (высота),
S – площадь фигуры,
a и b – стороны, параллельные друг другу.
Из приведенной формулы следует, что h=2S/(a+b).

Известна величина средней линии

Если среди исходных данных помимо площади трапеции (S) известна, и длина ее линии средины (l), то для вычислений пригодится другая формула. Прежде стоит уточнить, что такое средняя линия для данного вида четырехугольника. Термин определяет часть прямой, соединяющей средины боковых сторон фигуры.

Исходя из свойства трапеции l=(a+b)/2,
l – линия средины,
a, b – стороны-основания четырехугольника.
Поэтому h=2S/(a+b)=S/l.

Известны 4 стороны фигуры

В данном случае поможет теорема Пифагора. Опустив перпендикуляры на большую сторону-основание, воспользуйтесь ею для двух получившихся прямоугольных треугольников. Итоговое выражение будет иметь вид:

h=√c 2 -(((a-b) 2 +c 2 -d 2)/2(a-b)) 2 ,

c и d – 2 другие стороны.

Углы в основании

При наличии данных об углах при основании, воспользуйтесь тригонометрическими функциями.

h = c* sinα = d*sinβ,

α и β – углы в основании четырехугольника,
c и d – его боковые стороны.

Диагонали фигуры и углы, которые пересекаясь они образуют

Длина диагонали – длина отрезка, соединяющего противоположные вершины фигуры. Обозначим данные величины символами d1 и d2, а углы между ними γ и φ. Тогда:

h = (d1*d2)/(a+b) sin γ = (d1*d2)/(a+b) sinφ,

h = (d1*d2)/2l sin γ = (d1*d2)/2l sinφ,

a и b – стороны-основания фигуры,
d1 и d2 – диагонали трапеции,
γ и φ – углы между диагоналями.

Высота фигуры и радиус окружности, которая в нее вписана

Как следует из определения такого рода окружности, она касается каждого основания в 1 точке, которые являются частью одной прямой. Поэтому расстояние между ними – диаметр – искомая высота фигуры. А так как диаметр – удвоенный радиус, то:

h = 2 * r,
r – радиус окружности, которую вписали в данную трапецию.

Найти высоту равнобедренной трапеции

  • Как и следует из формулировки, отличительной характеристикой равнобедренной трапеции является равенство ее боковых сторон. Поэтому для нахождения высоты фигуры воспользуйтесь формулой для определения данной величины в случае, когда известны стороны трапеции.

Итак, если с = d, то h=√c 2 -(((a-b) 2 +c 2 -d 2)/2(a-b)) 2 = √c 2 -(a-b) 2 /4,
a, b – стороны-основания четырехугольника,
c = d – его боковые стороны.

  • При наличии величины углов, образованных двумя сторонами (основанием и боковой), высоту трапеции определяет следующее соотношение:

h = c* sinα,
h = с * tgα *cosα = с * tgα * (b – a)/2c = tgα * (b-a)/2,

α – угол в основании фигуры,
a, b (a
c = d – его боковые стороны.

  • Если даны величины диагоналей фигуры, то выражение для нахождения высоты фигуры видоизменится, т.к. d1 = d2:

h = d1 2 /(a+b)*sinγ = d1 2 /(a+b)*sinφ,

h = d1 2 /2*l*sinγ = d1 2 /2*l*sinφ.

В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.

Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.

Трапеция и все-все-все

Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.

Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.

В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.

Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.

Свойства диагоналей трапеции

Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.

  1. Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2
    .
  2. Перед нами все та же трапеция АКМЕ. Диагонали пересекаются в точке О. Давайте рассмотрим треугольники АОЕ и МОК, образованные отрезками диагоналей вместе с основаниями трапеции. Эти треугольники – подобные. Коэффициент подобия k треугольников выражается через отношение оснований трапеции: k = АЕ/КМ.

    Отношение площадей треугольников АОЕ и МОК описывается коэффициентом k 2 .
  3. Все та же трапеция, те же диагонали, пересекающиеся в точке О. Только в этот раз мы будем рассматривать треугольники, которые отрезки диагоналей образовали совместно с боковыми сторонами трапеции. Площади треугольников АКО и ЕМО являются равновеликими – их площади одинаковые.
  4. Еще одно свойство трапеции включает в себя построение диагоналей. Так, если продолжить боковые стороны АК и МЕ в направлении меньшего основания, то рано или поздно они пересекутся к некоторой точке. Дальше, через середины оснований трапеции проведем прямую. Она пересекает основания в точках Х и Т.
    Если мы теперь продлим прямую ХТ, то она соединит вместе точку пересечения диагоналей трапеции О, точку, в которой пересекаются продолжения боковых сторон и середины оснований Х и Т.
  5. Через точку пересечения диагоналей проведем отрезок, который соединит основания трапеции (Т лежит на меньшем основании КМ, Х – на большем АЕ). Точка пересечения диагоналей делит этот отрезок в следующем соотношении: ТО/ОХ = КМ/АЕ
    .
  6. А теперь через точку пересечения диагоналей проведем параллельный основаниям трапеции (a и b) отрезок. Точка пересечения разделит его на две равных части. Найти длину отрезка можно по формуле 2ab/(a + b)
    .

Свойства средней линии трапеции

Среднюю линию проведите в трапеции параллельно ее основаниям.

  1. Длину средней линии трапеции можно вычислить, если сложить длины оснований и разделить их пополам: m = (a + b)/2
    .
  2. Если провести через оба основания трапецию любой отрезок (высоту, к примеру), средняя линия разделит его на две равных части.

Свойство биссектрисы трапеции

Выберите любой угол трапеции и проведите биссектрису. Возьмем, например, угол КАЕ нашей трапеции АКМЕ. Выполнив построение самостоятельно, вы легко убедитесь – биссектрисой отсекается от основания (или его продолжения на прямой за пределами самой фигуры) отрезок такой же длины, что и боковая сторона.

Свойства углов трапеции

  1. Какую бы из двух пар прилежащих к боковой стороне углов вы не выбрали, сумма углов в паре всегда составляет 180 0: α + β = 180 0 и γ + δ = 180 0 .
  2. Соединим середины оснований трапеции отрезком ТХ. Теперь посмотрим на углы при основаниях трапеции. Если сумма углов при любом из них составляет 90 0 , длину отрезка ТХ легко вычислить исходя из разности длин оснований, разделенной пополам: ТХ = (АЕ – КМ)/2
    .
  3. Если через стороны угла трапеции провести параллельные прямые, те разделят стороны угла на пропорциональные отрезки.

Свойства равнобедренной (равнобокой) трапеции

  1. В равнобедренной трапеции равны углы при любом из оснований.
  2. Теперь снова постройте трапецию, чтобы проще было представить, о чем речь. Посмотрите внимательно на основание АЕ – вершина противоположного основания М проецируется в некую точку на прямой, которая содержит АЕ. Расстояние от вершины А до точки проекции вершины М и средняя линия равнобедренной трапеции – равны.
  3. Пару слов о свойстве диагоналей равнобедренной трапеции – их длины равны. А также одинаковы углы наклона этих диагоналей к основанию трапеции.
  4. Только около равнобедренной трапеции можно описать окружность, поскольку сумма противолежащих углов четырехугольника 180 0 – обязательное условие для этого.
  5. Из предыдущего пункта следует свойство равнобедренной трапеции – если возле трапеции можно описать окружность, она является равнобедренной.
  6. Из особенностей равнобедренной трапеции вытекает свойство высоты трапеции: если ее диагонали пересекаются под прямым углом, то длина высоты равна половине суммы оснований: h = (a + b)/2
    .
  7. Снова проведите отрезок ТХ через середины оснований трапеции – в равнобедренной трапеции он является перпендикуляром к основаниям. И одновременно ТХ – ось симметрии равнобедренной трапеции.
  8. На этот раз опустите на большее основание (обозначим его a) высоту из противолежащей вершины трапеции. Получится два отрезка. Длину одного можно найти, если длины оснований сложить и разделить пополам: (a + b)/2
    . Второй получим, когда из большего основания вычтем меньшее и полученную разность разделим на два: (a – b)/2
    .

Свойства трапеции, вписанной в окружность

Раз уже речь зашла о вписанной в окружность трапеции, остановимся на этом вопросе подробней. В частности на том, где находится центр окружности по отношению к трапеции. Тут тоже рекомендуется не полениться взять карандаш в руки и начертить то, о чем пойдет речь ниже. Так и поймете быстрее, и запомните лучше.

  1. Расположение центра окружности определяется углом наклона диагонали трапеции к ее боковой стороне. Например, диагональ может выходить из вершины трапеции под прямым углом к боковой стороне. В таком случае большее основание пересекает центр описанной окружности точно посередине (R = ½АЕ).
  2. Диагональ и боковая сторона могут встречаться и под острым углом – тогда центр окружности оказывается внутри трапеции.
  3. Центр описанной окружности может оказаться вне пределов трапеции, за большим ее основанием, если между диагональю трапеции и боковой стороной – тупой угол.
  4. Угол, образованный диагональю и большим основанием трапеции АКМЕ (вписанный угол) составляет половину того центрального угла, который ему соответствует:МАЕ = ½МОЕ
    .
  5. Коротко про два способа найти радиус описанной окружности. Способ первый: посмотрите внимательно на свой чертеж – что вы видите? Вы без труда заметите, что диагональ разбивает трапецию на два треугольника. Радиус можно найти через отношение стороны треугольника к синусу противолежащего угла, умноженному на два. Например, R = АЕ/2*sinАМЕ
    . Аналогичным образом формулу можно расписать для любой из сторон обоих треугольников.
  6. Способ второй: находим радиус описанной окружности через площадь треугольника, образованного диагональю, боковой стороной и основанием трапеции: R = АМ*МЕ*АЕ/4*S АМЕ
    .

Свойства трапеции, описанной около окружности

Вписать окружность в трапецию можно, если соблюдается одно условие. Подробней о нем ниже. И вместе эта комбинация фигур имеет ряд интересных свойств.

  1. Если в трапецию вписана окружность, длину ее средней линии можно без труда найти, сложив длины боковых сторон и разделив полученную сумму пополам: m = (c + d)/2
    .
  2. У трапеции АКМЕ, описанной около окружности, сумма длин оснований равна сумме длин боковых сторон: АК + МЕ = КМ + АЕ
    .
  3. Из этого свойства оснований трапеции вытекает обратное утверждение: окружность можно вписать в ту трапецию, сумма оснований которой равна сумме боковых сторон.
  4. Точка касания окружности с радиусом r, вписанной в трапецию, разбивает боковую сторону на два отрезка, назовем их a и b. Радиус окружности можно вычислить по формуле: r = √ab
    .
  5. И еще одно свойство. Чтобы не запутаться, этот пример тоже начертите сами. У нас есть старая-добрая трапеция АКМЕ, описанная около окружности. В ней проведены диагонали, пересекающиеся в точке О. Образованные отрезками диагоналей и боковыми сторонами треугольники АОК и ЕОМ – прямоугольные.
    Высоты этих треугольников, опущенные на гипотенузы (т.е. боковые стороны трапеции), совпадают с радиусами вписанной окружности. А высота трапеции – совпадает с диаметром вписанной окружности.

Свойства прямоугольной трапеции

Прямоугольной называют трапецию, один из углов которой является прямым. И ее свойства проистекают из этого обстоятельства.

  1. У прямоугольной трапеции одна из боковых сторон перпендикулярна основаниям.
  2. Высота и боковая сторона трапеции, прилежащая к прямому углу, равны. Это позволяет вычислять площадь прямоугольной трапеции (общая формула S = (a + b) * h/2
    ) не только через высоту, но и через боковую сторону, прилежащую к прямому углу.
  3. Для прямоугольной трапеции актуальны уже описанные выше общие свойства диагоналей трапеции.

Доказательства некоторых свойств трапеции

Равенство углов при основании равнобедренной трапеции:

  • Вы уже наверное и сами догадались, что тут нам снова потребуется трапеция АКМЕ – начертите равнобедренную трапецию. Проведите из вершины М прямую МТ, параллельную боковой стороне АК (МТ || АК).

Полученный четырехугольник АКМТ – параллелограмм (АК || МТ, КМ || АТ). Поскольку МЕ = КА = МТ, ∆ МТЕ – равнобедренный и МЕТ = МТЕ.

АК || МТ, следовательно МТЕ = КАЕ, МЕТ = МТЕ = КАЕ.

Откуда АКМ = 180 0 — МЕТ = 180 0 — КАЕ = КМЕ.

Что и требовалось доказать.

Теперь на основании свойства равнобедренной трапеции (равенства диагоналей) докажем, что трапеция АКМЕ является равнобедренной
:

  • Для начала проведем прямую МХ – МХ || КЕ. Получим параллелограмм КМХЕ (основание – МХ || КЕ и КМ || ЕХ).

∆АМХ – равнобедренный, поскольку АМ = КЕ = МХ, а МАХ = МЕА.

МХ || КЕ, КЕА = МХЕ, поэтому МАЕ = МХЕ.

У нас получилось, что треугольники АКЕ и ЕМА равны между собой, т.к АМ = КЕ и АЕ – общая сторона двух треугольников. А также МАЕ = МХЕ. Можем сделать вывод, что АК = МЕ, а отсюда следует и что трапеция АКМЕ – равнобедренная.

Задача для повторения

Основания трапеции АКМЕ равны 9 см и 21 см, боковая сторона КА, равная 8 см, образует угол 150 0 с меньшим основанием. Требуется найти площадь трапеции.

Решение:
Из вершины К опустим высоту к большему основанию трапеции. И начнем рассматривать углы трапеции.

Углы АЕМ и КАН являются односторонними. А это значит, в сумме они дают 180 0 . Поэтому КАН = 30 0 (на основании свойства углов трапеции).

Рассмотрим теперь прямоугольный ∆АНК (полагаю, этот момент очевиден читателям без дополнительных доказательств). Из него найдем высоту трапеции КН – в треугольнике она является катетом, который лежит напротив угла в 30 0 . Поэтому КН = ½АВ = 4 см.

Площадь трапеции находим по формуле: S АКМЕ = (КМ + АЕ) * КН/2 = (9 + 21) * 4/2 = 60 см 2 .

Послесловие

Если вы внимательно и вдумчиво изучили эту статью, не поленились с карандашом в руках начертить трапеции для всех приведенных свойств и разобрать их на практике, материал должен был неплохо вами усвоиться.

Конечно, информации тут много, разнообразной и местами даже запутанной: не так уж сложно перепутать свойства описанной трапеции со свойствами вписанной. Но вы сами убедились, что разница огромна.

Теперь у вас есть подробный конспект всех общих свойств трапеции. А также специфических свойств и признаков трапеций равнобедренной и прямоугольной. Им очень удобно пользоваться, чтобы готовиться к контрольным и экзаменам. Попробуйте сами и поделитесь ссылкой с друзьями!

blog.сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Планиметрия

Основные определения и свойства трапеций

Тип утверждения Фигура Рисунок Формулировка
Определение Трапеция

Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

      Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

Определение Диагонали
трапеции
Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции
Определение Высота
трапеции
Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение
Свойство Точка пересечения диагоналей

Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Более подробно об этом свойстве

Определение Средняя линия
трапеции
Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции
Свойство

Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Посмотреть доказательство

Свойство Биссектрисы углов при боковой стороне трапеции Биссектрисы углов при боковой стороне трапеции перпендикулярны
Трапеция

Определение: Трапецией называют четырёхугольник, у которого две стороны параллельны, а две другие – не параллельны.

Параллельные стороны трапеции называют основаниями, а непараллельные стороны – боковыми сторонами трапеции

Диагонали трапеции

Определение: Диагоналями трапеции называют отрезки, соединяющие противоположные вершины трапеции

Высота трапеции

Определение: Высотой трапеции называют перпендикуляр, опущенный из любой точки одного оснований трапеции на другое основание или его продолжение

Точка пересечения диагоналей

Свойство: Точка пересечения диагоналей трапеции, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой

Более подробно об этом свойстве

Средняя линия трапеции

Определение: Средней линией трапеции называют отрезок, соединяющий середины боковых сторон трапеции

Свойство: Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме

Посмотреть доказательство

Биссектрисы углов при боковой стороне трапеции

Свойство: Биссектрисы углов при боковой стороне трапеции перпендикулярны

      Подробнее со свойствами средней линии трапеции можно ознакомиться в разделе нашего справочника «Средняя линия трапеции».

      В разделе нашего справочника «Типы четырёхугольников» представлена схема классификации трапеций. В том же разделе представлена таблица, в которой описаны всевозможные типы трапеций.

Свойства и признаки равнобедренных трапеций

Тип утверждения Фигура Рисунок Формулировка
Определение Равнобедренная трапеция Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.
Свойство Равенство углов при основании Если трапеция является равнобедренной, то углы при каждом из её оснований равны.
Признак Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
Свойство Равенство диагоналей Если трапеция является равнобедренной, то её диагонали равны.
Признак Если у трапеции диагонали равны, то она является равнобедренной
Свойство Углы, которые диагонали образуют с основаниями Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.
Признак Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.
Свойство Описанная окружность Если трапеция является равнобедренной, то около неё можно описать окружность.
Признак Если около трапеции можно описать окружность, то она является равнобедренной.
Свойство Высоты трапеции Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований
Определение: Равнобедренная трапеция
Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.
Свойство: равенство углов при основании
Если трапеция является равнобедренной, то углы при каждом из её оснований равны.
Признак: равенство углов при основании
Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.
Свойство: равенство диагоналей
Если трапеция является равнобедренной, то её диагонали равны.
Признак: равенство диагоналей
Если у трапеции диагонали равны, то она является равнобедренной
Свойство: углы, которые диагонали образуют с основаниями
Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.
Признак: углы, которые диагонали образуют с основаниями
Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.
Свойство: описанная окружность
Если трапеция является равнобедренной, то около неё можно описать окружность.
Признак: описанная окружность
Если около трапеции можно описать окружность, то она является равнобедренной.
Свойство: высоты трапеции
Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований
Равнобедренная трапеция

Определение: Равнобедренной трапецией называют трапецию, у которой боковые стороны равны.

Равенство углов при основании

Свойство: Если трапеция является равнобедренной, то углы при каждом из её оснований равны.

Признак: Если у трапеции углы при одном из оснований равны, то углы равны и при другом основании, а трапеция является равнобедренной.

Равенство диагоналей

Свойство: Если трапеция является равнобедренной, то её диагонали равны.

Признак: Если у трапеции диагонали равны, то она является равнобедренной.

Углы, которые диагонали образуют с основаниями

Свойство: Если трапеция является равнобедренной, то её диагонали образуют равные углы с каждым из её оснований.

Признак: Если диагонали трапеции образуют равные углы с одним из оснований, то диагонали образуют равные углы и с другим основанием, а трапеция является равнобедренной.

Описанная окружность

Свойство: Если трапеция является равнобедренной, то около неё можно описать окружность.

Признак: Если около трапеции можно описать окружность, то она является равнобедренной.

Высоты трапеции

Свойство: Основания высот равнобедренной трапеции, опущенных из вершин меньшего основания, делят большее основание на отрезки, один из которых равен меньшему основанию, а два других – полуразности оснований

      На сайте можно также ознакомиться с нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Как найти площадь трапеции

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Использование свойств трапеций для решения задач

Результаты обучения

  • Найдите площадь трапеции по высоте и ширине основания
  • Используйте площадь трапеции для ответов на вопросы по применению

Трапеция — это четырехсторонняя фигура, четырехугольник , две стороны которого параллельны, а две — нет.Параллельные стороны называются основаниями. Мы называем длину меньшей основы [латекс] b [/ латекс], а длину большей основы [латекс] B [/ латекс]. Высота [латекс] h [/ латекс] трапеции — это расстояние между двумя основаниями, как показано на изображении ниже.

Трапеция имеет большую основу, [латекс] B [/ латекс], и меньшую основу, [латекс] b [/ латекс]. Высота [латекс] ч [/ латекс] — это расстояние между основаниями.

Формула площади трапеции:

[латекс] {\ text {Area}} _ {\ text {trapezoid}} = \ Large \ frac {1} {2} \ normalsize h \ left (b + B \ right) [/ latex]

Разделение трапеции на два треугольника может помочь нам понять формулу.Площадь трапеции — это сумма площадей двух треугольников. См. Изображение ниже.

Разделение трапеции на два треугольника может помочь вам понять формулу ее площади.

Высота трапеции — это также высота каждого из двух треугольников. См. Изображение ниже.

Формула площади трапеции

Если раздадим, то получим,

Свойства трапеций

  • У трапеции четыре стороны.
  • Две его стороны параллельны, а две — нет.
  • Площадь [латекс] A [/ latex] трапеции составляет [латекс] \ text {A} = \ Large \ frac {1} {2} \ normalsize h \ left (b + B \ right) [/ латекс].

, пример

Найдите площадь трапеции, высота которой составляет [латекс] 6 [/ латекс] дюймов, а основания — [латекс] 14 [/ латекс] и [латекс] 11 [/ латекс] дюймов.

Решение

Шаг 1. Прочтите проблему. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь трапеции
Шаг 3. Имя. Выберите переменную для ее представления. Пусть [латекс] A = \ text {область} [/ latex]
Шаг 4. Translate.

Напишите соответствующую формулу.

Запасной.

Шаг 5. Решите уравнение. [латекс] A = {\ Large \ frac {1} {2}} \ normalsize \ cdot 6 (25) [/ latex]

[латекс] A = 3 (25) [/ латекс]

[латекс] A = 75 [латекс] квадратных дюймов

Шаг 6. Проверка: Разумный ли этот ответ? [latex] \ checkmark [/ latex] см. Рассуждения ниже

Если мы нарисуем прямоугольник вокруг трапеции с таким же большим основанием [latex] B [/ latex] и высотой [latex] h [/ latex], его площадь должна быть больше, чем у трапеции.
Если мы нарисуем прямоугольник внутри трапеции с таким же маленьким основанием [латекс] b [/ латекс] и высотой [латекс] h [/ латекс], его площадь должна быть меньше, чем у трапеции.

Площадь большего прямоугольника составляет [латекс] 84 [/ латекс] квадратных дюймов, а площадь меньшего прямоугольника составляет [латекс] 66 [/ латекс] квадратных дюймов. Поэтому имеет смысл, что площадь трапеции находится между [латексом] 84 [/ латексом] и [латексом] 66 [/ латексом] квадратных дюймов

.

Шаг 7. Ответьте на вопрос. Площадь трапеции [латекс] 75 [/ латекс] квадратных дюймов.

В следующем видео мы покажем еще один пример того, как использовать формулу для определения площади трапеции с учетом длины ее высоты и основания.

, пример

Найдите площадь трапеции, высота которой составляет [латекс] 5 [/ латекс] футов, а основания — [латекс] 10,3 [/ латекс] и [латекс] 13,7 [/ латекс] футов.

Показать решение

Решение

Шаг 1. Прочтите проблему. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь трапеции
Шаг 3. Имя. Выберите переменную для ее представления. Пусть A = площадь
Шаг 4. Translate.

Напишите соответствующую формулу.

Запасной.

Шаг 5. Решите уравнение. [латекс] A = {\ Large \ frac {1} {2}} \ normalsize \ cdot 5 (24) [/ latex]

[латекс] A = 12 (5) [/ латекс]

[латекс] A = 60 [/ латекс] квадратных футов

Шаг 6. Проверка: Разумный ли этот ответ?

Площадь трапеции должна быть меньше площади прямоугольника с основанием [латекс] 13,7 [/ латекс] и высотой [латекс] 5 [/ латекс], но больше площади прямоугольника с основанием [латекс] 10,3 [/ латекс] и высота [латекс] 5 [/ латекс].

[латекс] \ галочка [/ латекс]
Шаг 7. Ответьте на вопрос. Площадь трапеции [латекс] 60 [латекс] квадратных футов.

, пример

У Винни есть сад в форме трапеции.Трапеция имеет высоту [латекс] 3,4 [/ латекса] ярда, а основания — [латекс] 8,2 [/ латекс] и [латекс] 5,6 [/ латекс] ярда. Сколько квадратных ярдов будет доступно для посадки?

Показать решение

Решение

Шаг 1. Прочтите проблему. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь трапеции
Шаг 3. Имя. Выберите переменную для ее представления. Пусть [latex] A [/ latex] = площадь
Шаг 4. Translate.

Напишите соответствующую формулу.

Запасной.

Шаг 5. Решите уравнение. [латекс] A = {\ Large \ frac {1} {2}} \ normalsize (3.4) (13.8) [/ latex]

[латекс] A = 23,46 [/ латекс] квадратных ярдов.

Шаг 6. Проверка: Разумный ли этот ответ?

Да.Площадь трапеции меньше площади прямоугольника с основанием [латекс] 8,2 [/ латекс] ярд и высотой [латекс] 3,4 [/ латекс] ярд, но больше площади прямоугольника с основанием [латекс] ] 5.6 [/ латекс] ярд и высота [латекс] 3.4 [/ латекс] ярд.

Шаг 7. Ответьте на вопрос. Винни имеет [латекс] 23,46 [/ латекс] квадратного ярда, на котором он может сажать растения.

Геометрия

— Вывод формулы высоты трапеции

Ваша формула «напоминает формулу Герона», потому что основана на формуле Герона.

Одна формула площади треугольника —

.

$$ A = \ frac 12bh $$

, а формула Герона дает

$$ A = \ sqrt {s (s-a) (s-b) (s-c)} $$

, где $ s $ — полупериметр, определяемый

.

$$ s = \ frac {a + b + c} 2 $$

Вот диаграмма для вывода высоты вашей трапеции, предполагая, что $ a> b $ (т.е. $ a $ — большее основание, а $ b $ — меньшее).

Обратите внимание, что я построил отрезок (выделен зеленым), параллельный стороне $ c $ через конец стороны $ b $, которая не находится на стороне $ c $.Этот отрезок, конечно, тоже имеет длину $ c $, и он образует треугольник со сторонами $ a-b, \ c, \ d $, который имеет ту же высоту $ h $ (пунктирная), что и трапеция.

Использование этих сторон треугольника вместо $ a, \ b, \ c $ дает нам уравнения

$$ A = \ frac 12 (a-b) h $$

и

$$ A = \ sqrt {s (s- [a-b]) (s-c) (s-d)} $$

где

$$ s = \ frac {(a-b) + c + d} {2} $$

Решение для $ h $ в $ A = \ frac 12 (a-b) h $, замены и упрощения дают нам

$$ \ begin {align}
h & = \ frac {2} {a-b} A \\ [2ex]
& = \ frac {2} {a-b} \ sqrt {s (s- [a-b]) (s-c) (s-c)} \\ [2ex]
& = \ frac {2} {ab} \ sqrt {\ frac {(ab) + c + d} {2} \ left (\ frac {(ab) + c + d} {2} — [ab] \ right ) \ left (\ frac {(ab) + c + d} {2} -c \ right) \ left (\ frac {(ab) + c + d} {2} -d \ right)} \\ [2ex ]
& = \ frac {2} {ab} \ sqrt {\ frac {a-b + c + d} {2} \ left (\ frac {-a + b + c + d} {2} \ right) \ left (\ frac {ab-c + d} {2} \ right) \ left (\ frac {a-b + cd} {2} \ right)} \\ [2ex]
& = \ frac {1} {2 (ab)} \ sqrt {(a-b + c + d) (- a + b + c + d) (ab-c + d) (a-b + cd)} \\ [2ex]
& = \ frac {\ sqrt {(- a + b + c + d) (a-b + c + d) (ab-c + d) (a-b + cd)}} {2 | ab |} \ \ [2ex]
\ end {align} $$

, что является вашей формулой.

Легко видеть, что если мы предположим, что $ a

Я тестировал эту формулу в Geogebra, и она проверяет.

Геометрия

— Найдите высоту трапеции

Задача: Площадь трапеции равна 2, а сумма ее диагоналей равна 4.Найдите высоту трапеции.

[ВОПРОС]: Я нашел результат, который подразумевает, что высота Треугольника не определена однозначно, любая помощь при обсуждении этого результата или других решений приветствуется

Попытка : Итак, используя обозначение цифры, у меня есть:

$$ a (\ квадрат ABCD) = 2, \: \: \: AC + BD = d_1 + d_2 = 4, \: \: h =? $$

Итак, я делаю следующую конструкцию, отражающую трапецию дважды, один раз по вертикали и один раз по горизонтали:

Здесь я сложил обе трапеции вместе, разделяя сегмент $ \ overline {BC} $. 2-4d_2-20)} + 4 d_2} \ Big) $ $

Это означает, что я не могу найти уникальное значение $ B $ и, следовательно, $ h $, что вроде как имеет смысл, потому что я могу найти много треугольников $ \ треугольник DB \ hat {A} $, которые соответствуют условиям задачи Площадь и сумма диагоналей.Это как если бы у вас есть Основание и высота треугольника, но нельзя указать длины сторон.

Не знаю, могу ли я что-нибудь использовать, любая помощь приветствуется.

Geometry Problem Solver — трапеция

Они дают трекам, что некоторые проблемы могут быть решены автоматически, числовые значения не имеют значения в различных примерах.

Трасса 1

Равнобедренная трапеция имеет высоту 20 м, большее основание 80 м, меньшее основание 50 м.Рассчитайте периметр и площадь трапеции.

Колея 2

Равнобедренная трапеция имеет наклонную сторону 20 см; имеет основание большее 80 см, имеет меньшее основание 50 см. Рассчитайте периметр.

Трасса 3

Прямоугольная трапеция имеет высоту 40 м, основание большее 80 м, меньшее основание 50 м. Рассчитайте периметр и площадь трапеции.

Трасса 4

Равнобедренная трапеция с основанием больше 80 см, имеет меньшее основание 50 см, имеет площадь 1300 см.Рассчитайте высоту трапеции.

Колея 5

Прямоугольник в форме трапеции имеет площадь 1500 см; имеет высоту 30 см. Вычисляет сумму двух оснований.

Колея 6

Равнобедренная трапеция имеет площадь 1500 см; имеет высоту 30 см. Вычисляет сумму двух оснований.

Колея 7

Равнобедренная трапеция имеет периметр 150 см; имеет основание больше 50 см; имеет меньшую базу 30 см.Рассчитайте длину скошенной стороны.

Направляющая 8

Равнобедренная трапеция имеет периметр 150 см, меньшее основание 30 см, наклонную сторону 35 см. Рассчитайте длину более длинного основания.

Колея 9

Равнобедренная трапеция имеет периметр 150 см, основание больше 50 см, наклонную сторону 35 см. Рассчитайте длину более короткого основания.

Колея 10

Прямоугольная трапеция имеет основание больше 50 см, имеет меньшее основание 30 см; имеет наклонную сторону 35 см.Рассчитайте периметр и площадь.

Колея 11

Прямоугольник трапеции имеет периметр 180 см; имеет основание больше 60 см, имеет наклонную сторону 50 см; имеет высоту 40 см. Рассчитайте длину более короткого основания.

Колея 12

Прямоугольник трапеции имеет периметр 180 см; имеет меньшую базу 30 см; имеет косую сторону 50 см; имеет высоту 40 см. Рассчитайте длину более длинного основания.

Колея 13

Прямоугольник в форме трапеции имеет периметр 180 см; имеет меньшую базу 30 см; имеет высоту 40 см; имеет базу больше 60 см.Рассчитайте длину скошенной стороны.

Колея 14

Прямоугольник трапеции имеет периметр 180 см; имеет меньшую базу 30 см; имеет косую сторону 50 см; имеет базу больше 60 см. Рассчитывает длину высоты.

Колея 15

Равнобедренная трапеция имеет основание больше 20 см, наклонную сторону 5 см; имеет высоту 4 см. Рассчитайте меньшую базу.

Колея 16

Равнобедренная трапеция имеет меньшее основание 14 см; имеет скошенную сторону 5 см; имеет высоту 4 см.Вычисляет большую базу.

Колея 17

Равнобедренная трапеция имеет основание больше 20 см, наклонную сторону 5 см; имеет выступ скошенной стороны на большее основание 3 см. Рассчитайте периметр.

Колея 18

Равнобедренный треугольник имеет меньшее основание 14 см; имеет наклонную сторону 5 см. Имеет экранирование наклонной стороны на большем основании 3 см. Рассчитайте периметр.

Трасса 19

Равнобедренная трапеция имеет площадь 2400 см, высоту 40 см, основы составляют треть от другой.Определите периметр.

Дорожка 20

Трапеция образована квадратом и треугольником. Учитывая, что площадь треугольника составляет 6 см, а разница между основаниями трапеции составляет 4 см, вычислите площадь трапеции.

Колея 21

Равнобедренная трапеция имеет наклонную сторону 20 см; имеет основание больше 90 см, имеет меньшее основание, равное 2/3 большего основания. Рассчитайте периметр.

Колея 22

Прямоугольная трапеция эквивалентна 1/4 квадрата с периметром 160 см.Учитывая, что высота трапеции составляет 20 см и 6 см, вычислите площадь прямоугольника, размеры которого совпадают с размерами оснований трапеции.

Направление 23

Прямоугольник в форме трапеции, описанный по кругу, длина скошенной стороны составляет 40 см, а высота равна 3/5 наклонной стороны. Рассчитайте периметр и площадь трапеции.

Дорожка 24

Площадь трапециевидного прямоугольника составляет 2250 см.Зная, что разница размеров проекции наклонной стороны на большее основание и высоты составляет 15 см, а их соотношение составляет 3/4, рассчитайте периметр трапеции.

Трасса 25

Периметр равнобедренной трапеции 250 см, высота 30 см, меньшее основание на 4/7 от большего, равного наклонной стороне. Вычислите площадь трапеции.

Колея 26

Большая база прямоугольной формы трапеции со скошенной стороной под углом 45; зная, что основания 25 см и 15 см, вычисляет площадь трапеции.

Трасса 27

Равнобедренная трапеция ABCD образована тремя равнобедренными равнобедренными треугольниками, периметр каждого из которых равен 170 см, а наклонная сторона составляет 6/5 основания. Рассчитайте периметр трапеции.

Дорожка 28

Равнобедренная трапеция ABCD имеет площадь 900 см. Основание AB является двойным, его высота составляет 20 см. Определите площадь треугольника ACD

Track 29

В равнобедренной трапеции площадь составляет 1032 см, а два основания имеют размер 61 см и 25 см соответственно.Вычислите меру высоты и периметра.

Колея 30

В прямоугольной трапеции с наклонной стороной образует основное основание под широким углом 30. Две базы размером 50 см и 30 см соответственно определяют периметр и площадь трапеции.

Дорожка 31

В равнобедренной трапеции сумма и разница размеров двух оснований составляет соответственно 74 см и 14 см. Вычисляет площадь и периметр трапеции, зная, что наклонная сторона равна 25 см.

Колея 32

Периметр равнобедренной трапеции 176 см. Зная, что меньшее основание составляет 4/3 наклонной стороны, а большее основание составляет 19/10 меньшего основания, вычисляется площадь трапеции.

Трасса 33

Каждая из наклонных сторон равнобедренной трапеции составляет треть меньшего основания. Зная, что периметр равен 230 см, а наибольшее основание — 105 см, вычисляется размер меньшего основания и площадь трапеции.

Колея 34

В прямоугольной трапеции нижняя диагональ перпендикулярна наклонной стороне. Зная, что эта диагональная линия и наклонная сторона 24 см и 18 см соответственно, найдите периметр и площадь трапеции.

Колея 35

В прямоугольной трапеции с наклонной стороной образует большое основание под широким углом 30. Рассчитайте периметр трапеции, зная, что высота равна 11,56 см, а площадь равна 462.42 см.

Направляющая 36

В трапеции главное основание и вспомогательное основание имеют длину 55 см и 30 см, а периметр — 140 см. Определяет длину наклонных сторон, зная, что одна составляет 6/5 другой.

Колея 37

Разница между основаниями равнобедренной трапеции составляет 30 см, меньшее основание — 5/8 большего основания, периметр — 180 см. Рассчитывает размер наклонных сторон.

Колея 38

Из равнобедренной трапеции вы знаете, что: а) высота составляет 20 см.б) разница между двумя базами 30 см. в) основание больше 80 см. Рассчитайте периметр и площадь трапеции.

Колея 39

Периметр трапеции, имеющей высоту 34,60 см, составляет 203,49 см. Вычислите площадь трапеции, зная, что наклонные стороны образуют с большим основанием острые углы шириной 45 и 60.

Дорожка 40

Площадь трапециевидного прямоугольника составляет 1080 квадратных сантиметров, а высота — 24 см.Рассчитайте размеры двух оснований, зная, что периметр равен 140 см.

Колея 41

Периметр равнобедренной трапеции составляет 152 см, а длина скошенной стороны — 26 см. Вычислите высоту и площадь трапеции, зная, что меньшее основание имеет длину 40 см.

Направляющая 42

В прямоугольной трапеции основное основание, меньшее основание и высота имеют длину соответственно 60 см, 50 см и 24 см. Вычисляет площадь и периметр трапеции.

Трасса 43

Вычислите площадь трапеции, у которой большее основание составляет 8/5 меньшего основания, что, в свою очередь, равно высоте, составляющей 50 см.

Трасса 44

Сумма оснований трапеции 80 см, основание 5/3 другого, высота 2/3 вспомогательного основания. Вычислите размер каждой диагонали ромба, эквивалентного трапеции, зная, что одна диагональ равна 25/16 другой.

Дорожка 45

Трапеция образована квадратом со стороной 48 см и двумя треугольниками, катет которых совпадает с одной из двух противоположных сторон квадрата.Гипотенуза двух треугольников составляет 60 см и 50 см соответственно. Рассчитайте периметр и площадь трапеции.

Колея 46

Разносторонняя трапеция имеет периметр 180 см; вычисляет все стороны, зная, что AB = 8/5 DC, DC — AB = 30 см, AD = 2/5 DC.

Дорожка 47

У равнобедренной трапеции ABCD основание CD составляет 15/22 большего основания, наклонные стороны превышают 7 см 3/5 меньшего основания, периметр составляет 124 см. Какой район?

Направляющая 48

Большее основание, высота и наклонная сторона прямоугольника до трапеции соответственно размером 80 см, 48 см и 50 см.Рассчитайте периметр и площадь трапеции.

Колея 49

Окружность имеет радиус 50 см; две параллельные хорды AB и CD расположены на противоположных частях относительно центра и имеют размер соответственно 96 см и 28 см. Вычисляет площадь и периметр трапеции, в основе которой лежат две хорды.

Трасса 50

Равнобедренная трапеция имеет высоту 20 м, основание большее 80 м, меньшее основание 50 м.Вычислите радиус окружности, описанной трапецией.

Трасса 51

Трапеция имеет основания для диаметра окружности длиной 50 см и параллельную ей веревку длиной 30 см. Рассчитайте периметр и площадь трапеции.

Дорожка 52

В круге с радиусом 50 см сделайте две параллельные хорды, расположенные на противоположных сторонах относительно центра и на расстоянии 14 см и 48 см от него соответственно. Вычисляет площадь и периметр трапеции, у которой есть основания для двух струн.

Колея 53

Прямоугольник и равнобедренная трапеция равны по высоте, периметр прямоугольника 140 см, разница размеров прямоугольника между ними 30 см, наклонная сторона трапеции 25 см. Вычислить:
размер оснований прямоугольника;
протяженность оснований трапеции;
площадь трапеции и прямоугольника;
периметр трапеции.

Направляющая 54

Прямоугольник в форме трапеции имеет высоту 24 см, а основания составляют 5/6 от другого.Вычислите площадь круга, радиус которого соответствует наклонной стороне, зная, что площадь трапеции составляет 1320 см.

Дорожка 55

Равнобедренная трапеция имеет высоту 24 см и основание соответственно 28 и 8 см. Вычислите периметр, площадь и две диагонали.

Направляющая 56

Прямоугольная трапеция имеет высоту 24 см и основания соответственно 18 и 10 см. Вычислите периметр, площадь и две диагонали.

Колея 57

Прямоугольная трапеция, сумма оснований 110 см, высота 24 см. Рассчитывает площадь.

Трасса 58

Равнобедренная трапеция, сумма оснований 110 см, высота 24 см. Рассчитывает площадь.

Трасса 59

Равнобедренная трапеция имеет площадь 336 см, сумма оснований 28 см. Рассчитайте высоту.

Дорожка 60

Прямоугольник трапеции имеет площадь 336 см, сумма оснований 28 см.Рассчитайте высоту.

Колея 61

Равнобедренная трапеция имеет большее основание 50 см, меньшее основание 30 см. Рассчитайте высоту, зная, что наклонная сторона равна 26 см.

Колея 62

Равнобедренная трапеция имеет большее основание 72 см, меньшее основание 8 см. Рассчитайте радиус круга, вписанного в трапецию, зная, что высота 24 см.

Колея 63

Равнобедренная трапеция имеет большее основание 72 см, меньшее основание 8 см.Рассчитайте диаметр круга, вписанного в трапецию, зная, что высота 24 см.

Колея 64

Прямоугольная трапеция имеет большее основание 48 см, меньшее основание 16 см. Рассчитайте радиус круга, вписанного в трапецию, зная, что высота 24 см.

Колея 65

Прямоугольная трапеция имеет большее основание 48 см, меньшее основание 16 см. Рассчитайте диаметр круга, вписанного в трапецию, зная, что высота 24 см.

Колея 66

Равнобедренная трапеция имеет большее основание 80 см, меньшее основание 50 см. Рассчитайте диаметр круга на трапеции, зная, что высота составляет 48,75 дюйма.

Колея 67

Равнобедренная трапеция имеет большее основание 80 см, меньшее основание 50 см. Вычислите длину круга, окружающего трапецию, зная, что высота составляет 48,75 дюйма.

Колея 68

Равнобедренная трапеция имеет большее основание 80 см, меньшее основание 50 см.Вычислите площадь описанной круговой трапеции, зная, что высота составляет 48,75 дюйма.

Колея 69

Равнобедренная трапеция имеет большее основание 80 см, меньшее основание 50 см. Вычислите:
площадь круга, описанного трапецией, зная, что высота составляет 48,75 дюйма;
расстояние от центра хорды AB;
расстояние от центра каната CD;
длина дуги АВ;
длина дуги CD;
центральный угол АОБ;
центральный угол наложенным платежом;
— площадь кругового сектора АОБ; площадь кругового сектора наложенным платежом.

Направляющая 70

Прямоугольник в форме трапеции имеет высоту 24 см, а основания составляют 5/6 от другого. Вычислите площадь круга, радиус которого соответствует большему основанию, зная, что площадь трапеции составляет 1320 см.

Направляющая 71

Прямоугольник в форме трапеции имеет высоту 24 см, а основания составляют 5/6 от другого. Вычислите площадь круга, радиус которого равен диагонали, зная, что площадь трапеции составляет 1320 см.

Направляющая 72

Прямоугольная трапеция имеет высоту 24 см и основание соответственно 60 и 50 см. Вычислите радиус окружности, соответствующей трапеции.

Дорожка 73

Прямоугольник в форме трапеции имеет площадь 1320 см и основания соответственно 60 см и 50 см. Вычислите площадь круга, радиус которого соответствует высоте трапеции.

Дорожка 74

Прямоугольник в форме трапеции имеет площадь 1320 см и основания соответственно 60 см и 50 см.Вычислите площадь круга, диаметр которого соответствует диагонали трапеции.

Направляющая 75

Прямоугольник трапеции имеет периметр 160 см, меньшее основание 50 см, высоту 24 см и наклонную сторону 26 см. Вычислите площадь круга, диаметр которого соответствует основанию трапеции.

Дорожка 76

Прямоугольник трапеции имеет основное основание 60 см, меньшее основание 50 см, высоту 24 см. Вычислите площадь круга, имеющего изопериметрическую окружность трапеции.

Направляющая 77

Прямоугольник в форме трапеции имеет высоту 24 см, а основания составляют 5/6 от другого. Вычислите площадь круга, радиус которого соответствует меньшему основанию, зная, что площадь трапеции составляет 1320 см.

Колея 78

Равнобедренная трапеция имеет высоту 24 см, а основания составляют одну из 5/7 другой. Вычислите площадь круга, радиус которого соответствует меньшему основанию, зная, что площадь трапеции составляет 1440 см.

Трасса 79

Равнобедренная трапеция имеет высоту 24 см, а основания составляют одну из 5/7 другой. Вычислите площадь круга, радиус которого соответствует большему основанию, зная, что площадь трапеции составляет 1440 см.

Направляющая 80

Прямоугольник в форме трапеции имеет высоту 24 см, а основания составляют 5/6 от другого. Вычислите площадь круга, радиус которого соответствует малой диагонали, зная, что площадь трапеции составляет 1320 см.

Трасса 81

Равнобедренная трапеция имеет высоту 10 см и основания, которые являются одним из 7/17 другого. Вычислите площадь круга, радиус которого соответствует диагонали, зная, что площадь трапеции составляет 240 см.

Дорожка 82

Равнобедренная трапеция имеет высоту 24 см и основание соответственно 60 и 50 см. Вычислите радиус окружности, соответствующей трапеции.

Трасса 83

Равнобедренная трапеция имеет площадь 1320 см и основания соответственно 60 и 50 см.Вычислите площадь круга, радиус которого соответствует высоте трапеции.

Дорожка 84

Прямоугольник в форме трапеции имеет площадь 360 см и основания соответственно 10 см и 20 см. Вычислите площадь круга, диаметр которого меньше диагонали трапеции.

Трасса 85

Равнобедренная трапеция имеет площадь 240 см и основания соответственно 34 см и 14 см. Вычислите площадь круга, диаметр которого соответствует диагонали трапеции.

Направляющая 86

Равнобедренная трапеция имеет периметр 186 см, меньшее основание 50 см, высоту 24 см и наклонную сторону 26 см. Вычислите площадь круга, диаметр которого соответствует основанию трапеции.

Трасса 87

Равнобедренная трапеция имеет большое основание 70 см, меньшее основание 50 см, высоту 24 см. Вычислите площадь круга, имеющего изопериметрическую окружность трапеции.

Track 88

Рассчитайте площадь и периметр разносторонней трапеции, зная, что большее основание составляет 80 см, а меньшее основание — 50 см, а наклонные стороны имеют длину соответственно 30 см и 20 см.

Направляющая 89

Равнобедренная трапеция имеет меньшее основание 8,4 см и выступ скошенной стороны на большем основании 10,8 см. Зная, что диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Направляющая 90

Прямоугольная трапеция имеет меньшее основание 19,2 см и выступ скошенной стороны на большем основании 10,8 см. Зная, что нижняя диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Колея 91

Прямоугольник в форме трапеции имеет наклонную сторону 18 см и проекцию наклонной стороны на большее основание 10,8 см. Зная, что нижняя диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Колея 92

Равнобедренная трапеция имеет наклонную сторону 18 см и выступание наклонной стороны на большее основание 10,8 см. Зная, что диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Направляющая 93

Равнобедренная трапеция имеет основание 30 см и выступ скошенной стороны на большее основание 10,8 см. Зная, что диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Направляющая 94

Прямоугольная трапеция имеет основание 30 см и выступ скошенной стороны на большее основание 10,8 см. Зная, что нижняя диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Направляющая 95

Прямоугольная трапеция имеет основание 30 см и наклонную сторону 18 см. Зная, что нижняя диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Колея 96

Равнобедренная трапеция имеет основание 30 см и наклонную сторону 18 см. Зная, что диагональ перпендикулярна наклонной, рассчитайте периметр и площадь трапеции.

Колея 97

Периметр равнобедренной трапеции составляет 204 см, а каждая наклонная сторона — 30 см.Вычислите площадь и протяженность оснований, зная, что большее — это 5/3 второстепенного.

Колея 98

Основание большей формы равнобедренной трапеции с косой стороной под углом 45; зная, что основания 35 см и 15 см, вычисляет площадь и периметр трапеции.

***********

Как найти высоту трапеции

Приглашение на занятия геометрией для начинающих.Геометрию часто называют изучением форм. Это более упрощенное определение, чем полное определение, но оно подробно описывает большую часть работы, которую мы выполняем в геометрии. В этом посте мы рассмотрим одну конкретную форму — трапецию — охватывающую как ее определение, так и вывод формулы для определения ее области. Если вам интересно узнать, как найти высоту трапеции, прочтите этот пост.

Трапеция — это четырехугольник. Это говорит о том, что это 4-сторонний многоугольник; все же, в отличие от четырехугольников, о которых мы говорили до сих пор — квадратов, прямоугольников.И параллелограммы — у трапеции всего один набор одинаковых сторон. Обычно мы привлекаем и думаем о трапециях с одинаковой длиной сторон в качестве основания и гораздо более короткой параллельной стороной в качестве вершины. Естественно, это не является обязательным требованием, и вам нужно выбирать трапециевидные формы независимо от того, как они повернуты; однако это стандартное размещение облегчит понимание разработки формулы.

Чтобы получить формулу местоположения трапеции, нам необходимо разделить трапецию на компоненты, которые в настоящее время известны, написать формулы местоположения для каждой части и снова включить их вместе.Нарисуйте две прямые параллельные линии, нижняя линия которых длиннее верхней. После этого привлекайте другую коллекцию противоположных сторон. Однако не делайте их равной длины. Ваша фигура должна появиться. Вы начали с прямоугольника; однако после этого вы взяли нижние края и удлинили их, но на разную величину.

Как найти высоту трапеции

Напомним, что трапеция, также описываемая как трапеция, представляет собой четырехугольник с одним набором одинаковых сторон и дополнительным набором непараллельных сторон.Подобно квадратной и прямоугольной форме, трапеция также является ровной. Следовательно, это 2D.

В трапеции одинаковые стороны называются основаниями, а обе непараллельные стороны называются ножками. Расстояние по вертикали между двумя равными сторонами трапеции называется возвышением трапеции.

Трапеция может быть идеальной (два угла по 90 градусов) и равнобедренной трапеции (две стороны одинаковой длины). Но иметь один идеальный угол невозможно, потому что у него есть набор одинаковых сторон, которые ограничивают его, образуя два подходящих угла одновременно.

Чтобы помочь нам найти область трапеции, мы, скорее всего, добавим пару линий к нашей фигуре, чтобы получить некоторые знакомые формы. Изначально назовем ведущую базу b1, а более расширенную нижнюю базу — b2. Мы хотим «опустить» сегменты вертикальной линии с каждого конца сверху вниз. Теперь у вас должна быть возможность увидеть на полученной фотографии идеальный треугольник с левым крылом, прямоугольник в центре и дополнительный правый треугольник справа. Обозначьте оба перпендикуляра буквой h, учитывая, что они оба имеют высоту.

Мы уже выяснили формулу площади прямоугольной формы — Местоположение = основание, умноженное на высоту, поэтому наш прямоугольник в середине числа имеет Location A = (b1) h.

Следующее действие влечет за собой удаление правого и левого треугольников и сдвигание их друг с другом по вертикали. В результате получился гигантский треугольник с высотой h и основанием b2 — b1. Это означает, что площадь этого большего треугольника A = 1/2 (b2 — b1) h.

Включая участки прямоугольной формы и объединенный треугольник, мы получим площадь исходной трапеции.Расположение прямоугольника + площадь треугольника = b1 h + 1/2 (b2 — b1) h. Избавьтесь от скобок, чтобы включить похожие термины: b1 h + 1/2 b2 h — 1/2 b1 h. Объединение членов b1 приводит к A = 1/2 b1 h + 1/2 b2 h. Эта формула достаточна и верна, но это не та форма, которую обычно пишут в учебниках. Публикации обычно создают формулу в факторизованном виде: A = 1/2 (b1 + b2) h.

Примеры

Как найти высоту трапеции

Есть несколько способов прочитать эту формулу.Прямым переводом, несомненно, будет: площадь трапеции равна половине суммы оснований, умноженной на высоту.

Мой любимый способ запоминать эту формулу заключается в том, чтобы помнить, что когда включены две вещи и сумма разделена на 2, мы определяем их среднее значение. Следовательно, 1/2 (b1 + b2) — «эталон базисов». Это позволяет нам проверить формулу: площадь трапеции — это среднее значение оснований, умноженное на высоту.

Пример: Найдите трапецию с основанием 8 дюймов.и 14 дюймов и даже высотой 12 дюймов

Опция: A = 1/2 (b1 + b2) h получается A = 1/2 (8 + 14) (12) = 1/2 (22) (12) = (11) (12) = 132 кв. Дюйма

Имейте в виду! Студенты, изучающие геометрию, часто стараются не запоминать эту формулу, потому что не думают, что трапеции имеют решающее значение. Это очень негативный выбор!

Площадь трапеции — веб-формулы

Трапеция — это четырехугольник, у которого только одна пара параллельных сторон. Чтобы вычислить площадь трапеций, возьмите среднее значение оснований и умножьте на его высоту.

Площадь трапеции определяется как:
A = (a + b) ∙ h / 2

a: длина вершины
б: длина основания
h: высота

Когда a = 0, форма становится треугольником.

Пример 1:
Какова площадь трапеции с основаниями 5 см и 8 см и высотой 6 см?
Решение :
Используя формулу площади трапеции, получим:

Площадь трапеции = 0.5 × в × (а + б)
Площадь трапеции = 0,5 × 6 × (5 + 8)
Площадь трапеции = 0,5 × 6 × 13
Площадь трапеции = 39 см 2

Пример 2:
Площадь трапеции составляет 52 см 2 , а основания — 11 дюймов и 15 дюймов соответственно. Найдите его высоту.
Решение : Мы знаем, что площадь трапеции определяется по формуле:
Площадь трапеции = 0,5 × h × (a + b), где h — высота, выделив h из формулы, мы сможем определить ее высоту
Площадь = 0.5 × в × (а + б)
или
52 = 0,5 × (11 + 15) × в
52 = 0,5 × 26 × в
52 = 13ч
Таким образом:
h = 52/13 = 4 дюйма

Пример 3: Площадь трапеции составляет 15 см 2 , а расстояние между параллельными основаниями составляет 6 см. Если одно из параллельных оснований составляет 3 см, то какова длина другого параллельного основания?
Решение : Пусть a будет длиной неизвестной параллельной стороны, а b будет известным основанием.

Площадь трапеции = 0,5 × высота × (a + b) = 15 см 2
Подставляя значения, получим:
(0,5) × 6 × (3 + a) = 15

Умножить каждую сторону на 2
6 х (3 + а) = 30
Разделив каждую сторону на 6, получим
3 + а = 5
а = 2 см
Следовательно, длина другой параллельной стороны составляет 2 см.

Пример 4: Какова длина параллельных сторон трапеции, если ее площадь составляет 18 см 2 , высота — 4 см, а длина ее более короткой стороны на 5 см короче ее длинной стороны?
Решение : Пусть y будет длиной большей стороны.

Длина более короткой стороны составляет (y — 5) см, так как более короткая сторона на 5 см короче длинной стороны.

Площадь трапеции = 18 см 2
По формуле для площади трапеции имеем:
(0,5) × 4 × [y + (y — 5)] = 18

Умножить каждую сторону на 2,
4 × (2y — 5) = 36
Разделите каждую сторону на 4
2лет — 5 = 9
Упростив уравнение, мы получим:
2y = 14 и y = 7 см

Таким образом, длина более длинной стороны равна y = 7 см, тогда как длина более короткой стороны равна y — 5 = 7-5 = 2 см

Пример 5: Площадь трапеция 160 см2.Параллельные стороны 18 см и 14 см. Найдите расстояние между параллельными сторонами.
Решение :
Дано A = 160 см 2 , a = 18 см и b = 14 см.
Площадь трапеции, A = (0,5) × (a + b) × h
Подставляя известные значения, получаем:

160 = (0,5) × (18 + 14) × h
то есть (0,5) × (18 + 14) × h = 160
0,5 × 32 × в = 160
16 × h = 160

Разделить на 16 с каждой стороны,
в = 10 см
Таким образом, расстояние между параллельными сторонами составляет 10 сантиметров.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *