Выражение скорости химической реакции через здм: 404 — Ошибка: 404

Содержание

Скорость химической реакции

Говорить об осуществимости процесса можно по изменению энергии Гибсса системы. Но данная величина не отражает настоящую возможность протекания, механизм и скорость химической реакции.

Понятие скорости химической реакции

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм.

Определение скорости химической реакции:

Скорость химической реакции — это изменение концентрации реагирующих веществ в единицу времени

Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные.

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. 

Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени.

Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

υ = ± dn/dt·V

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

υ= ± dC/dt,

где C – концентрация, моль/л

Единица измерения скорости реакции — моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой, которая имеет вид:

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

υ = — ΔC/Δt [моль/л·с]

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом:

Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Т.е. скорость прямой химической реакции зависит от концентраций исходных веществ.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением:

υ = k·[A]a·[B]b или

υ = k·CaA·CbB

Здесь [A] и [B] (CA и CB )- концентрации реагентов,

а и b – стехиометрические коэффициенты простой реакции,

kконстанта скорости реакции.

Химический смысл величины константы скорости реакции k — это скорость реакции при единичных концентрациях.

То есть, если концентрации веществ А и В равны 1, то υ = k.

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения молекул.
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k.

К сложным процессам закон действия масс применить нельзя!

Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которая называется лимитирующей.

Каждая реакция имеет свой порядок. Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок.

Например, в выражении скорости химической реакции для процесса

а А + b В = продукты

υ = k·[A]a·[B]b

a – порядок по реагенту А

bпорядок по реагенту В

Общий порядок a + b = n

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения.

Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Факторы, влияющие на скорость химической реакции

Определим факторы, влияющие на скорость химической реакции υ:

1. Зависимость скорости реакции от концентрации реагирующих веществ

определяется законом действующих масс:

υ = k[A]a·[B]b

Очевидно, что с увеличением концентраций реагирующих веществ, скорость реакции υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами.

Причем, важно учитывать порядок реакции:

если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества.

Если по какому-либо реагенту n = 2, то удвоение его концентрации приведет к росту скорости реакции в 22 = 4 раза.

А увеличение концентрации в 3 раза ускорит реакцию в 32 = 9 раз.

2. Зависимость скорости реакции от давления

Справедлива для веществ в газообразном состоянии и определяется уравнением Клапейрона – Менделеева, которое связывает концентрацию и давление:

pV = nRT, откуда

С = p/RT

Таким образом, изменение концентрации в системе, а следовательно и скорости реакции имеет прямую зависимость от изменения давления.

Например, для реакции первого порядка, увеличение давления в 2 раза вызовет рост концентрации вещества в 2 раза, что непременно изменит скорость реакции υ – она станет в 2 раза больше.

3. Зависимость скорости реакции от площади поверхности

Для гетерогенных реакций скорость реакции зависит от площади соприкосновения частиц:

Vгетер.=Δn/(S⋅Δt),

где S — площадь соприкосновения частиц, мм2,

Δn — изменение количества веществ, принимающих участие в реакции (исходных веществ или продуктов реакции), моль;

Δt — промежуток времени, с;

Единица измерения скорости гетерогенной реакции, моль/м2⋅с.

Таким образом, вещества реагируют быстрее, если площадь поверхности, на которой может происходить взаимодействие веществ больше.

Растворяя вещество, мы уменьшаем его размеры до размеров молекулы, увеличивая тем самым площадь поверхности.

Поэтому химические процессы между веществами, находящимися в растворенном, жидком или газообразном состоянии имеют большую скорость, чем взаимодействия между твердыми веществами.

4. Зависимость скорости реакции от природы вещества.

В этом случае, большое значение имеет строение электронной оболочки атома, тип химической связи и ее прочность в молекулах, структура вещества, прочность его кристаллической решетки.

Например, натрий будет активнее взаимодействовать с водой, чем олово. Поэтому и скорость взаимодействия натрия с водой выше скорости взаимодействия олова с водой.

5. Зависимость скорости реакции от температуры

определяется правилом Вант-Гоффа и уравнением Аррениуса

Повышая температуру, мы сообщаем молекулам дополнительную энергию (увеличивая, тем самым, энергию активации), которая способствует протеканию реакции.

Поэтому, при повышении температуры скорость химической реакции увеличивается.

Сванте Аррениус в 1889 году, изучая зависимость скорости реакции υ от температуры, установил, что большинство химических процессов подчиняются уравнению: 

где k  — константа скорости реакции

Еа -энергия активации – минимальная (критическая) энергия, необходимая для осуществления реакции, единица измерения Дж/моль

Т — абсолютная температура

R – газовая постоянная, R = 8,314 Дж/моль·град

A — предэкспоненциальный множитель (частотный фактор), единица измерения совпадает с k. Эта константа выражает вероятность того, что при столкновении молекулы будут ориентированы так, чтобы взаимодействие было возможно.

Если известна константа скорости k при одной температуре Т1, а требуется найти константу скорости k при некой другой температуре Т2, то это легко сделать, если взять логарифм уравнения Аррениуса при Т1 и Т2:

ln k1 = lg A – Ea/2,3RT1 и

ln k2 = lg A – Ea/2,3RT2

Вычитая второе равенство из первого, получаем: 

Уравнение Аррениуса при определении скорости химической реакции (в случае, если υ описывается степенным уравнением) , принимает вид:

υ = k·[A]a·[B]b

Если принять, что концентрации веществ А и В постоянны и прологарифмировать данное выражение, то получим следующее выражение:

ln υ = const – Ea/2,3RT

Правило Вант-Гоффа

Также удобно пользоваться эмпирическим правилом, которое сформулировал Якоб Вант-Гофф:

увеличение температуры на каждые 10 градусов, приводит к росту скорости реакции в 2 – 4 раза.  

Правило Вант-Гоффа имеет математическое выражение:

где υT1 и υT2  скорости реакции при температурах Т1 и Т2

γ — температурный коэффициент реакции, значения которого лежат в интервале от 2 до 4.

Приведем пример применения правила Вант-Гоффа.

Допустим, что γ = 3, а Т2  Т1 = 20о, тогда

υT1T2 = 32 = 9. Это означает, что υ возросла в 9 раз.

6. Зависимость скорости реакции от присутствия катализатора

Катализ – это любое изменение скорости реакции под действием катализатора. Он может быть положительным и отрицательным. Суть катализа – генерирование активного субстрата или реагента с участием катализаторов.

Катализатор представляет собой вещество, которое селективно ускоряет химическую реакцию, вступая при этом в промежуточную стадию, но регенирируясь к ее концу (к моменту образования конечных продуктов). Например, в биохимической среде в качестве катализаторов выступают ферменты.

Если  такое вещество замедляет химическую реакцию, то оно называется ингибитором.

Влияние катализатора на скорость реакции основывается на том, что он изменяет энергию активации Еа. Понижение энергии активации под действием катализатора схематично представлено на рисунке ниже:

влияние катализатора на энергию активации

Видно, что веществам А и В требуется большое количество энергии, чтобы образовать конечные продукты. Но в присутствии катализатора для получения конечных продуктов требуется гораздо меньше энергии, т.к. идет понижение полной энергии активации, и тем самым, увеличение скорости реакции.

Обращаю ваше внимание на то, что энергии как начальных, так и конечных веществ остаются одинаковыми в обеих реакциях.

Урок 42. движение как качественное изменение. химические реакции — Естествознание — 10 класс

Естествознание, 10 класс

Урок 42. Движение как качественное изменение. Химические реакции

Перечень вопросов, рассматриваемых в теме: Как во времени протекает химическая реакция? Что такое механизм химической реакции и как реакции можно классифицировать по механизму их протекания? Как определяется скорость химической реакции для различных процессов? Что такое кинетическое уравнение реакции и в чём его смысл? Как различные факторы влияют на скорость реакции? Каков механизм действия катализатора?

Глоссарий по теме:

Химическая кинетика – это раздел химической науки, изучающий механизм и скорость химической реакции.

Скорость химической реакции определяется изменением количества реагирующих веществ или продуктов реакции за единицу времени в единице объёма (для гомогенных систем) или на единице поверхности (для гетерогенных систем).

Закон действующих масс – при постоянной температуре скорость данной реакции пропорциональна произведению концентраций реагирующих веществ.

Механизм химической реакции – это последовательность элементарных стадий процесса, в результате которого исходные вещества превращаются в продукты реакции.

Энергия активации – это средняя избыточная энергия (по сравнению со средней энергией движения), которой должны обладать реагирующие частицы (атомы, молекулы), чтобы преодолеть энергетический барьер, разделяющий в химической реакции реагенты (исходные вещества) и продукты (конечное состояние).

Правило Вант-Гоффа – при повышении температуры на каждые 100 С скорость реакции увеличивается в среднем в 2 – 4 раза.

Катализ – это изменение скорости реакции под действием катализаторов.

Катализатор (от греч. katalysis – разрушение) – это вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся.

Ферменты (от лат. fermentum – закваска) – это вещества, катализирующие биохимические реакции в организмах.

Основная и дополнительная литература по теме урока:

1. Естествознание. 10 класс: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017. – С. 184-189.

2. Энциклопедия для детей. Том 17. Химия. / Глав. ред. В.А. Володин. – М.: Аванта+, 2000. – С. 116-126; 568-576.

3. Савинкина Е.В. История химии. Элективный курс: Учебное пособие / Е.В. Савинкина, Г.П. Логинов, С.С. Плоткин. – М.: БИНОМ. Лаборатория знаний, 2007. – С. 139-144.

Открытые электронные ресурсы по теме урока:

Левченков С.И. Химическая кинетика // Краткий очерк истории химии: Учебное пособие для студентов химфака РГУ. URL:

http://www.physchem.chimfak.rsu.ru/Source/History/Sketch_7.html#Кинетика

Теоретический материал для самостоятельного изучения

Многообразие объектов Вселенной отражается в многообразии видов и форм движения. Качественные изменения, которые происходят в ходе химических превращений, можно интерпретировать как особый вид движения, а саму химическую реакцию рассматривать как определенную химическую форму движения. Изучением того, как во времени протекают химические процессы, занимается химическая кинетика – область химической науки, становление которой началось со второй половины XIX века.

Химические процессы протекают с различной скоростью: бронзовый памятник во влажном воздухе медленно покрывается голубоватым налетом, значительно быстрее покрывается ржавчиной железный предмет, лежащий в воде, долька яблока через несколько часов покрывается бурой пленкой, а образование осадка при сливании растворов, например, сульфата натрия и хлорида бария, происходит очень быстро. Для количественной характеристики скорости химической реакции используют не время её протекания, а скорость изменения количества вещества (в моль), вступающего в реакцию или образующегося в ходе реакции. Таким образом, скорость химической реакции определяется изменением количества реагирующих веществ или продуктов реакции за единицу времени в единице объёма (для гомогенных систем) или на единице поверхности (для гетерогенных систем). Напомним, что гомогенная система состоит из одной фазы, а гетерогенная система – из нескольких фаз, разграниченных между собой поверхностями раздела. Наиболее часто в химии рассматривается зависимость концентрации веществ от времени, поэтому скорость реакции можно определять как изменение концентрации одного из реагирующих веществ или одного из образующихся в ходе реакции веществ в единицу времени.

𝑣 = ± ∆с/∆t, где 𝑣 – скорость реакции, ∆с – изменение концентрации вещества, ∆t – промежуток времени, в котором определяют скорость реакции. Если скорость определяют по изменению концентрации реагирующего вещества, которая в ходе реакции уменьшается, то перед формулой ставят знак «–», если скорость определяется по изменению концентрации продукта реакции, которая в ходе реакции увеличивается, то перед формулой ставят знак «+». Скорость химической реакции изменяется во времени, поэтому по приведенной формуле можно вычислить только среднюю скорость реакции в определенном интервале времени. Графическое изображение зависимости концентрации реагентов от времени называется кинетической кривой. С помощью кинетической кривой можно графически определить истинную скорость реакции в каждый момент времени.

Чтобы управлять химической реакцией – замедлять или ускорять химические процессы, необходимо знать, от чего зависит скорость реакции. Особенно важно знать зависимость скорости реакции от концентрации реагирующих веществ. Впервые скорость химической реакции и её зависимость от концентрации исходных веществ исследовал немецкий химик Людвиг Фердинанд Вильгельми (1812 – 1864), изучая гидролиз сахарозы. В своей работе, опубликованной в 1850 году, он привел формулу, отражающую зависимость скорости реакции от концентрации реагирующих веществ – первое кинетическое уравнение химической реакции. В 1864 – 1867 гг. норвежские учёные Като Максимилиан Гульдберг (1836 – 1902) и Петер Вааге (1833 – 1900) опубликовали работы, в которых на основе сотен экспериментов доказали, что скорость реакции пропорциональна произведению «действующих масс» реагентов, т. е. (концентрациям). Таким образом, количественно зависимость между скоростью реакции и концентрацией определяется основным законом химической кинетикизаконом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в степенях, равных стехиометрическим коэффициентам в уравнении реакции.

Для некоторой реакции xA + yB → zD эта зависимость будет иметь вид: 𝑣 = k∙CAx∙CBy, где СА и СВ – молярные концентрации веществ А и В, k – коэффициент пропорциональности, называемый константой скорости химической реакции, численно равный скорости реакции при концентрации всех реагирующих веществ, равных 1 моль/л и определяемый экспериментально. Зависимость скорости реакции от концентрации реагирующих веществ определяется экспериментально и называется кинетическим уравнением химической реакции. Скорость гетерогенных реакций, протекающих на границе раздела фаз не зависит от концентрации. Как правило, при низких температурах скорость гетерогенных реакций зависит от площади поверхности раздела фаз и температуры.

Превращение одних веществ в другие не является одномоментным событием, – это сложный процесс, который развертывается во времени и пространстве. Еще в XIX веке учёные определили, что химические реакции в подавляющем большинстве являются многостадийными процессами. Последовательность элементарных стадий процесса, в результате которого исходные вещества превращаются в продукты реакции, называется механизмом реакции. По числу стадий реакции подразделяются на простые (элементарные) и сложные. Простые реакции осуществляются в одну стадию, химическое уравнение таких реакций полностью отражает какие и сколько частиц участвуют непосредственно в элементарном акте химического взаимодействия. В реакциях изомеризации или диссоциации, например, происходит химическое превращение одной молекулы. Есть простые реакции, элементарный акт которых осуществляется при столкновении двух частиц (одинаковых или разных) или даже трёх частиц. Сложные реакции осуществляются в несколько стадий, каждая из которых является простой реакцией. Каждая из стадий протекает со своей скоростью. Скорости отдельных стадий могут существенно отличаться друг от друга. Скорость сложной реакции в целом будет определяться скоростью самой медленной стадии, которая называется лимитирующей. Механизмы химических реакций определяются экспериментально.

Скорость химической реакции зависит от температуры. Впервые влияние температуры на скорость реакции было учтено Якобом Генриком Вант-Гоффом (1852 – 1911), им было сформулировано эмпирическое правило (правило Вант-Гоффа): при повышении температуры на каждые 10°С скорость реакции увеличивается в 2 – 4 раза. Однако это правило носит приближенный характер и применимо лишь в узком интервале температур. Более точно зависимость скорости химической реакции от температуры была определена шведским химиком Сванте Августом Аррениусом (1859 – 1927), он ввёл понятие энергии активации и сформулировал закон температурной зависимости для константы скорости простых реакций.

Многие химические процессы в растворе или газовой фазе происходят при столкновении частиц реагирующих веществ. Число таких соударений огромно. Если бы все соударения частиц приводили к химическому взаимодействию, то реакции протекали бы мгновенно, однако этого не происходит. Это объясняется тем, что не все соударения приводят к химическому взаимодействию. Чтобы соударение было эффективным (привело к химическому взаимодействию) столкнувшиеся частицы должны обладать достаточной энергией для разрыва или ослабления химических связей в молекулах реагирующих веществ. В результате происходит образование некоторого промежуточного неустойчивого комплекса (активированного комплекса) с последующим перераспределением электронной плотности и образованием продуктов реакции. Средняя избыточная энергия (по сравнению со средней энергией движения), которой должны обладать реагирующие частицы (атомы, молекулы), чтобы преодолеть энергетический барьер, разделяющий в химической реакции реагенты (исходные вещества) и продукты (конечное состояние) называется энергией активации. Так как при повышении температуры доля частиц, обладающих избыточной энергией увеличивается, то увеличивается и число эффективных соударений и, следовательно, константа скорости реакции.

На скорость реакции могут оказывать влияние вещества, которые получили название катализаторов. Еще с начала XIX века химики обратили внимание на необычные химические реакции, для протекания которых требовалось добавление некоторых веществ. Эти вещества в реакциях не расходовались, но без их добавления реакции не протекали. В 1835 году все известные на тот момент каталитические исследования обобщил шведский химик Йёнс Якоб Берцелиус (1779 – 1848), он же первым использовал термин «катализ» (от греч. katalysis – разрушение). Однако, механизм влияния этих добавок был непонятен химикам XIX века. Только в самом конце XIX века немецкий химик Вильгельм Фридрих Оствальд (1853 – 1932) сумел дать современные определения катализа и катализатора. Появление современных теорий катализа относится к 20-м годам XX века. Первой из них была мультиплетная теория, которую разработал российский химик Алексей Александрович Баландин (1898 – 1967).

Катализаторы – это вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся. Изменение скорости реакции под действием катализаторов называют катализом. Известны различные виды катализа. Катализ может быть положительным – увеличивать скорость реакции, или отрицательным – уменьшать скорость реакции. Отрицательный катализ часто называют ингибированием, а отрицательные катализаторы, замедляющие течение реакции – ингибиторами. Катализ, при котором катализатор образует одну фазу с реагирующими веществами, называют гомогенным катализом. Если катализатор образует самостоятельную фазу и реакция происходит на поверхности катализатора, то катализ называется гетерогенным катализом. Хорошо известный Вам из школьного курса процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 (2SO2 + O2 = 2SO3 + Q) можно проводить с использованием разных катализаторов.

В начале XX века этот процесс осуществляли в газовой фазе с использованием оксида азота (II) NO в качестве катализатора – это пример гомогенного катализа. Если в качестве катализатора использовать оксид ванадия (V) V2O5, который является твердым веществом, то реакция протекает на его поверхности – это пример гетерогенного катализа. Гетерогенный катализ может быть усилен добавлением промоторов – веществ, которые сами не являются катализаторами, но повышают активность катализатора данной реакции. Так, для синтеза аммиака, идущего с использование железного катализатора, используется добавление оксидов алюминия и калия. Однако, есть вещества, которые наоборот снижают активность катализатора. Такие вещества называются каталитическими ядами. Так, например, платиновый катализатор очень чувствителен по отношению к соединениям серы и селена.

Важными свойствами катализаторов является их специфичность и селективность. Под специфичностью катализатора понимается его способность ускорять только какую-то одну группу реакций и никак не влиять на скорость других реакций. Хорошо известный Вам пример: платина Pt и никель Ni являются катализаторами процессов гидрирования. Другое свойство катализаторов – селективность (избирательность) заключается в способности катализаторов ускорять только одну из возможных при данных условиях параллельных реакций. На этом свойстве катализаторов основаны способы получения разных продуктов из одних и тех же исходных веществ. Например, из этилового спирта C2H5OH в присутствии оксида алюминия Al2O3 получают этилен CH2=CH2, а в присутствии меди Cu – уксусный альдегид CH3COH. Наибольшей селективностью отличаются биологические катализаторы белковой природы – ферменты. Кроме того, ферменты обладают высокой активностью, что объясняется значительным снижением энергии активации биохимического процесса ферментами.

В чем же заключается действие катализатора? Оказывается, катализаторы снижают энергию активации реакции, в результате чего увеличивается число частиц, обладающих энергией, достаточной для химического взаимодействия. Катализаторы участвуют в образовании активированного комплекса, требующего меньшей энергия активации.

Таким образом, превращение одних веществ в другие – это процесс, развертывающийся во времени, т. е. имеющий свою временную структуру, которая выражена механизмом реакции. Вместе с тем механизм реакции учитывает не только изменения в составе веществ-участников реакции, но и изменение положений атомов в пространстве по мере протекания реакции. Поэтому можно говорить о пространственно-временной структуре реакции. Любое превращение одних веществ в другие, т.е. химическую реакцию, можно рассматривать как качественное изменение и особую форму движения.

Выводы:

1. Скорость химической реакции определяется изменением количества реагирующих веществ или продуктов реакции за единицу времени в единице объёма (для гомогенных систем) или на единице поверхности (для гетерогенных систем).

2. На скорость реакции оказывают влияние: природа реагирующих веществ, их концентрация (для гомогенных систем), площадь поверхности (для гетерогенных систем), температура и наличие катализатора.

3. Количественно зависимость между скоростью реакции и концентрацией определяется основным законом химической кинетики – законом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

4. Большинство химических реакций являются многостадийными процессам, механизм которых определяется экспериментально. Под механизмом химической реакции понимают последовательность элементарных стадий процесса, в результате которых исходные вещества превращаются в продукты реакции.

5. Многие химические реакции являются каталитическими, т.е. для их осуществления необходимы катализаторы – вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся.

6. Химическая реакция – имеет сложную пространственно-временную структуру, что позволяет её рассматривать не только как качественное изменение веществ, но и особую форму движения.

Примеры и разбор решения заданий тренировочного модуля:

1. Укажите верные утверждения:

Утверждение

Правильный ответ и пояснение

А. Химическое уравнение не отражает механизм протекания реакции.

Правильное утверждение. Химическое уравнение не отражает механизм протекания реакции, механизм реакции определяется экспериментально.

Б. Катализатор ускоряет реакцию, но сам в реакции не участвует.

Неправильное утверждение. Катализаторы – вещества, изменяющие скорость реакции, участвующие в промежуточных стадиях реакции, но при этом не расходующиеся.

В. Закон действующих масс выражает количественную зависимость скорости реакции от концентрации реагирующих веществ.

Правильное утверждение. Количественно зависимость между скоростью реакции и концентрацией определяется основным законом химической кинетики – законом действующих масс: скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ, взятых в некоторых степенях.

2. Установление соответствие между элементами двух множеств. К каждой позиции первого столбца подберите соответствующую позицию второго.

Утверждение

Теория

1. Процесс гидрирования этилена СН2=СН2 c использованием никеля Ni в качестве катализатора.

А. Гомогенный катализ

Б. Гетерогенный катализ

2. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида азота (II) NO в качестве катализатора.

3. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида ванадия (V) V2O5 в качестве катализатора.

Правильный ответ:1 – Б; 2 – А; 3 – Б.

Утверждение

Теория

1. Процесс гидрирования этилена СН2=СН2 c использованием никеля Ni в качестве катализатора.

Б. Гетерогенный катализ

2. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида азота (II) NO в качестве катализатора.

А. Гомогенный катализ

3. Процесс получения оксида серы (VI) SO3 из оксида серы (IV) SO2 с использованием оксида ванадия (V) V2O5 в качестве катализатора.

Б. Гетерогенный катализ

Закон действующих масс

                                     

1. Закон действия масс в химической кинетике.

(The law of mass action in chemical kinetics)

Закон масс в кинетической форме основное уравнение кинетики гласит, что скорость элементарной химической реакции пропорциональна произведению концентраций реагентов в степени равной стехиометрическим коэффициентам в реакции уравнение. это положение сформулировано в 1864 — 1867 лет норвежские исследователи К.{n_{3}}}

для трех исходных веществ, аналогично предыдущему уравнение. вот n 1 (Н 1) {\свойства стиль отображения значение n_{1}} (П{1}}), n 2 (н 2) {\свойства стиль отображения значение n_{2}} (п{2}}), n 3 (н 3) {\свойства стиль отображения значение n_{3}} (П{3}}) — порядок реакции по веществам A 1 (В 1) {\свойства стиль отображения значение A_{1}} (Ох{1}}), A 2 (В 2) {\свойства стиль отображения значение A_{2}} (Ох{2}}), A 3 (В 3) {\свойства стиль отображения значение A_{3}} (Ох{3}}) соответственно, и сумма n = n 1 (Н = Н 1) n 2 (н 2) n 3 (н 3) {\свойства стиль отображения значение п=п{1} п{2} п{3}} — общая или общая реакция порядке. n 1 (Н 1) {\свойства стиль отображения значение n_{1}} (П{1}}), n 2 (н 2) {\свойства стиль отображения значение n_{2}} (п{2}}), n 3 (н 3) {\свойства стиль отображения значение n_{3}} (П{3}}) не могут быть равны стехиометрическим коэффициентам и не обязательно целочисленные. n {\свойства стиль отображения значение n} при определенных условиях может быть равна и нулю.{n_{3}}}

для трех исходных веществ, аналогично приведённому выше уравнению. Здесь n 1 {\displaystyle n_{1}}, n 2 {\displaystyle n_{2}}, n 3 {\displaystyle n_{3}} — порядок реакции по веществам A 1 {\displaystyle A_{1}}, A 2 {\displaystyle A_{2}}, A 3 {\displaystyle A_{3}} соответственно, а сумма n = n 1 + n 2 + n 3 {\displaystyle n=n_{1}+n_{2}+n_{3}} — общий или суммарный порядок реакции. n 1 {\displaystyle n_{1}}, n 2 {\displaystyle n_{2}}, n 3 {\displaystyle n_{3}} могут быть не равны стехиометрическим коэффициентам и не обязательно целочисленные. n {\displaystyle n} при определённых условиях может быть равно и нулю.

ⓘ Закон действующих масс устанавливает соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической ..

                                     

1. Закон действующих масс в химической кинетике

Закон действующих масс в кинетической форме основное уравнение кинетики гласит, что скорость элементарной химической реакции пропорциональна произведению концентраций реагентов в степенях, равных стехиометрическим коэффициентам в уравнении реакции.{n_{3}}}

для трех исходных веществ, аналогично приведённому выше уравнению. Здесь n 1 {\displaystyle n_{1}}, n 2 {\displaystyle n_{2}}, n 3 {\displaystyle n_{3}} — порядок реакции по веществам A 1 {\displaystyle A_{1}}, A 2 {\displaystyle A_{2}}, A 3 {\displaystyle A_{3}} соответственно, а сумма n = n 1 + n 2 + n 3 {\displaystyle n=n_{1}+n_{2}+n_{3}} — общий или суммарный порядок реакции. n 1 {\displaystyle n_{1}}, n 2 {\displaystyle n_{2}}, n 3 {\displaystyle n_{3}} могут быть не равны стехиометрическим коэффициентам и не обязательно целочисленные. n {\displaystyle n} при определённых условиях может быть равно и нулю.

Скорость химической реакции

Обычно концентрацию выражают в моль⁄ л, а время — в секундах или минутах. Если, например, исходная концентрация одного из реагирующих веществ составляла 1 моль⁄л, а через 4 с. от начала реакции она стала 0,6 моль⁄л, то средняя скорость реакции будет равна (1-0,6) ⁄ 4 = 0,1 моль⁄(л∙с).

Рассмотрим в общем виде скорость реакции, протекающей по уравнению

А + В = С + D (1)

По мере расходования вещества А скорость реакции уменьшается. Отсюда следует, что скорость реакции может быть определена лишь для некоторого промежутка времени.

Так как концентрация вещества А в момент времени t1 измеряется величиной c1, а в момент t2 — величиной c2, то за промежуток времени ∆t = t2 — t1 изменение концентрации вещества составит ∆c = c2— c1, откуда определится средняя скорость реакции (υ)

υ = — ( c2 — c1 ⁄ t2 — t1) = ∆c⁄∆t

Знак минус ставится потому, что, несмотря на убывание концентрации вещества А и, следовательно, на отрицательное значение разности c2— c1, скорость реакции может быть только положительной величиной.

Можно также следить за изменением концентрации одного из продуктов реакции — веществ С или D; она в ходе реакции будет возрастать, и поэтому в правой части уравнения нужно ставить знак плюс.

Поскольку скорость реакции все время изменяется, то в химической кинетике рассматривают только истинную скорость реакции υ, т. е. скорость в данный момент времени.

Скорость химической реакции зависит от:

1. природы реагирующих веществ и условий протекания реакции

2. концентрации реагирующих веществ c;

3. температуры t;

4. присутствия катализаторов;

5. а также от некоторых других факторов (например, от давления — для газовых реакций, от измельчения — для твердых веществ, от радиоактивного облучения).

Чтобы осуществлялось химическое взаимодействие веществ А и В, их молекулы (частицы) должны столкнуться. Чем больше столкновений, тем быстрее протекает реакция. Число же столкновений тем больше, чем выше концентрация реагирующихвеществ.

Отсюда на основе обширного экспериментального материала сформулирован основной закон химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ:

скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.

Для реакции (1) этот закон выразится уравнением

υ =k c А∙ c В , или υ =k[А]∙[В] ,

где cА и cВ или [А] и [В] — концентрации веществ А и В, моль⁄л;

k — коэффициент пропорциональности, называемый
константой скорости реакции. Основной закон химической кинетики часто называют законом действующих масс.

В общем случае, если в реакцию вступают одновременно т молекул вещества А и n молекул вещества В, т. е.

mА +nВ = С,

уравнение скорости реакции имеет вид:

υ = k[А] m ∙[В]n ,

Это уравнение есть математическое выражение закона действующих масс в общем виде.

Из данных уравнений нетрудно установить физический смысл константы скорости k: она численно равна скорости реакции, когда концентрации каждого из реагирующих веществ составляют 1 моль⁄л или когда их произведение равно единице.

Константа скорости реакции зависит от природы реагирующих веществ и от температуры, но не зависит от их концентраций.

Основной закон химической кинетики не учитывает реагирующие вещества, находящиеся в твердом состоянии, т. к. их концентрации постоянны и они реагируют лишь на поверхности.

Так, например, для реакции горения угля:

С + О2= СО2

скорость реакции пропорциональна только концентрации кислорода: υ = k[О2].

Влияние температуры. Зависимостьскорости реакции от температуры определяется правилом Вант-Гоффа:
приповышении температуры на каждые 10 скорость большинства реакцийувеличивается в 2 — 4 раза.

Математически эта зависимость выражается соотношением

V t2 = V t1 γt2- t 1 ⁄ 10

Где Vt1 и Vt2 — скорости реакции соответственно при начальной и конечной температурах, а γ — температурный коэффициент скорости реакции, который показывает, во сколько раз увеличивается скорость реакции с повышением температуры реагирующих веществ на 10.

Скорость химической реакции

Закон действующих масс — основной постулат химической кинетики, устанавливающий зависимость скорости реакции от концентрации реагирующих веществ.

  • Скорость химической реакции пропорциональна произведению концентраций реагирующих веществ.

Так, для реакции aA + bB → продукты реакции (a, b — стехиометрические коэффициенты) закон действующих масс выражается уравнением:
v = k [А]х [B]у,

    где v — скорость реакции; k — коэффициент пропорциональности, или константа скорости реакции;
    [А] и [B] — молярные концентрации веществ А и В, соответственно;
    х и у — экспериментально определяемые числа, называемые порядком реакции по веществам А и В.

    Сумма показателей степеней x+y называется общим порядком реакции.
    Если реакция проходит в одну стадию, то порядки по веществам равны стехиометрическим коэффициентам (х = a и у = b), а общий порядок соответствует молекулярности реакции (т.е. минимальному числу частиц, участвующих в элементарной стадии).
    Чаще всего х ≠ а и у ≠ b, так как большинство реакций протекает в несколько стадий.

Константа скорости реакции (k). Физический смысл этой константы следует из уравнения закона действующих масс: k – коэффициент пропорциональности, численно равный скорости реакции, когда произведение молярных концентраций реагентов равно 1. Константа скорости реакции зависит от температуры, от природы реагирующих веществ, но не зависит от их концентрации.
Следует иметь в виду, что размерность константы скорости зависит от порядка реакции. Для реакций 1-го порядка k выражается в 1/c, 2-го порядка – в л/моль·с, 3-го порядка – в л2/моль2·с и т.д. Поэтому называть константу k скоростью (удельной скоростью) реакции можно лишь для реакций 2-го порядка, когда размерность k соответствует размерности скорости.

2.5: Скорость реакции — химия LibreTexts

В ходе реакции, показанной ниже, реагенты A и B расходуются, а концентрация продукта AB увеличивается. Скорость реакции можно определить, измерив, насколько быстро уменьшается концентрация A или B или насколько быстро увеличивается концентрация AB.

\ [\ A + B \ longrightarrow AB \]

Рисунок \ (\ PageIndex {1} \): На рисунке выше показан гипотетический профиль реакции, в котором концентрация реагентов (красный) уменьшается по мере увеличения концентрации продуктов (синий).

Для стехиометрически сложной Реакции:

\ [aA + bB \ longrightarrow cC + dD \ label {1} ​​\]

\ [\ text {Rate} = \ dfrac {-1} {a} \ dfrac {d [A]} {dt} = \ dfrac {-1} {b} \ dfrac {d [B]} {dt} = \ dfrac {1} {c} \ dfrac {d [C]} {dt} = \ dfrac {1} {d} \ dfrac {d [D]} {dt} \]

Глядя на рисунок \ (\ PageIndex {1} \) выше, мы видим, что скорость может быть измерена в единицах реагента (A или B) или любого продукта (C или D). Не все переменные необходимы для определения скорости. Следовательно, если у вас есть значение для «A», а также значение для «a», вы можете вычислить скорость реакции.

Вы также можете заметить из уравнения \ ref {1}, что изменение реагентов с течением времени должно иметь отрицательный знак перед ними. Причина этого в том, что количество реагентов уменьшается со временем, скорость будет отрицательной (потому что это обратная скорость). Следовательно, поставив отрицательный знак перед переменной, решение будет положительным.

Химические реакции сильно различаются по скорости.Некоторые из них сверхбыстрые, в то время как другим могут потребоваться миллионы лет, чтобы достичь равновесия.

Определение скорости реакции

Скорость реакции для данной химической реакции является мерой изменения концентрации реагентов или изменения концентрации продуктов в единицу времени. Скорость химической реакции можно определить как изменение концентрации вещества, деленное на интервал времени, в течение которого наблюдается это изменение:

\ [\ text {rate} = \ dfrac {\ Delta \ text {концентрация}} {\ Delta \ text {time}} \ label {2-1} \]

Для реакции формы \ (A + B \ rightarrow C \) скорость может быть выражена через изменение концентрации любого из ее компонентов

\ [\ text {rate} = — \ dfrac {\ Delta [A]} {\ Delta t} \]

\ [\ text {rate} = — \ dfrac {\ Delta [B]} {\ Delta t} \]

\ [\ text {rate} = \ dfrac {\ Delta [C]} {\ Delta t} \]

, в котором \ (Δ [A] \) — разница между концентрацией \ (A \) за интервал времени \ (t_2 — t_1 \):

\ [\ Delta [A] = [A] _2 — [A] _1 \ label {2-2} \]

Обратите внимание на знаки «минус» в первых двух приведенных выше примерах.Концентрация реагента всегда уменьшается со временем, поэтому \ (\ Delta [A] \) и \ (\ Delta [A] \) оба отрицательны. Поскольку отрицательные скорости не имеют особого смысла, скорости, выраженные в терминах концентрации реагентов, равны , всегда перед стоит знак минус, чтобы скорость была положительной.

Рассмотрим теперь реакцию с другими коэффициентами:

\ [A + 3B \ rightarrow 2D \]

Понятно, что \ ([B] \) уменьшается в три раза быстрее, чем \ ([A] \), поэтому во избежание двусмысленности при выражении скорости через различные компоненты принято делить каждое изменение на концентрация по соответствующему коэффициенту:

\ [\ text {rate} = — \ dfrac {\ Delta [A]} {\ Delta t} = — \ dfrac {\ Delta [B]} {3 \ Delta t} = \ dfrac {\ Delta [D] » } {2 \ Delta t} \ label {2-3} \]

Пример \ (\ PageIndex {1} \): Окисление аммиака

Для окисления аммиака

\ [\ ce {4 Nh4 + 3O2 -> 2 N2 + 6 h3O} \]

было установлено, что скорость образования N 2 равна 0.27 моль л –1 с –1 .

  1. С какой скоростью образовывалась вода?
  2. С какой скоростью потреблялся аммиак?

Решение

a) Исходя из стехиометрии уравнения, Δ [H 2 O] = 6/2 Δ [N 2 ], поэтому скорость образования H 2 O составляет

3 × (0,27 моль л –1 с –1 ) = 0,81 моль л –1 с –1 .

б) 4 моля NH 3 расходуются на каждые 2 моля образовавшегося N 2 , поэтому скорость исчезновения аммиака составляет

.

2 × (0.27 моль л –1 с –1 ) = 0,54 моль л –1 с –1 .

Комментарий : Из-за того, как этот вопрос сформулирован, было бы приемлемо выразить это последнее значение как отрицательное число.

Мгновенные ставки

Большинство реакций замедляются по мере расходования реагентов. Следовательно, скорости, указанные в приведенных выше выражениях, имеют тенденцию терять свой смысл при измерении в течение более длительных интервалов времени Δ t .Примечание. Мгновенные ставки также известны как дифференциальные ставки.

Таким образом, для реакции, ход которой показан здесь, фактическая скорость (измеряемая по возрастающей концентрации продукта) непрерывно изменяется, достигая максимума в нулевой момент времени. Мгновенная скорость реакции задается наклоном касательной к кривой зависимости концентрации от времени.

Мгновенная скорость, взятая в начале реакции (t = 0), известна как начальная скорость (здесь метка (1) ).Как мы вскоре увидим, начальные скорости играют важную роль в изучении кинетики реакции. Если вы изучали дифференциальное исчисление, вы будете знать, что эти касательные наклоны представляют собой производных , значения которых могут быть очень разными в каждой точке кривой, так что эти мгновенные скорости на самом деле являются предельными скоростями , определенными как

.

\ [\ text {rate} = \ lim _ {\ Delta t \ rightarrow 0} \ dfrac {- [A]} {\ Delta T} \]

Если вы не разбираетесь в расчетах, имейте в виду, что чем больше временной интервал Δ t , тем меньше будет точность мгновенной скорости.t \ label {2} \]

Как видно из уравнения \ ref {2} выше, скорость реакции зависит от концентрации реагентов, а также константы скорости. Однако есть и другие факторы, которые могут повлиять на скорость реакции. Эти факторы включают температуру и катализаторы. Когда вы можете написать уравнение закона скорости для определенной реакции, вы можете определить порядок реакции на основе значений s и t.

Порядок реакции

Скорость реакции для данной реакции — важный инструмент, который позволяет нам вычислить конкретный порядок реакции.t \ label {4} \]

\ [\ text {Порядок реакции} = s + t \ label {5} \]

Важно отметить, что хотя порядок реакции можно определить из закона скорости, в общем случае нет связи между порядком реакции и стехиометрическими коэффициентами в химическом уравнении.

ПРИМЕЧАНИЕ: Скорость реакции должна быть неотрицательной величиной. Это может быть ноль и необязательно целое число.

Как показано в уравнении \ ref {5}, полный порядок реакции равен сумме «s» и «t».«Но что означает каждая из этих переменных? Каждая переменная представляет собой порядок реакции по отношению к реагенту, на который она помещена. В этой определенной ситуации s — это порядок реакции по отношению к [A], а t — это порядок реакции относительно [B].

Вот пример того, как вы можете посмотреть на этот : Если порядок реакции относительно [A] был 2 (s = 2), а [B] был 1 (t = 1), то это в основном означает, что концентрация реагента A уменьшается в 2 раза, а концентрация [B] уменьшается в 1 раз.

Итак, если у вас порядок реакции Нулевой (т.е. \ (s + t = 0 \)), это в основном означает, что концентрация реагентов не влияет на скорость реакции. Вы можете удалить или добавить реагенты в смесь, но скорость не изменится.

Список различных уравнений скорости реакции для реакций нулевого, первого и второго порядка можно увидеть в Таблице \ (\ PageIndex {1} \). Эта таблица также включает дополнительные уравнения, которые можно определить с помощью этого уравнения, если известен порядок реакции (период полураспада, закон интегрированной скорости и т. Д.)

Таблица \ (\ PageIndex {1} \): В таблице ниже показаны многочисленные значения и уравнения, используемые при наблюдении за химической кинетикой для различных типов реакций
Нулевой порядок Первый порядок Второй порядок
Закон о тарифах

\ (\ {Rate} = \ {k} \)

\ (\ {Rate} = \ {k [A]} \)

\ (\ text {Rate} = \ {k [A] ^ 2} \)

Закон о комплексных тарифах

\ (\ {[A] _t} = \ {-kt + [A] _0} \)

\ (\ {ln [A] _t} = \ {-kt + ln [A] _0} \)

\ (\ dfrac {1} {[A] _t} = -kt + \ dfrac {1} {[A] _0} \)

Единицы измерения скорости (k):

\ (\ {mol L ^ {- 1} s ^ {- 1}} \)

\ (s ^ {- 1} \)

\ (\ {L mol ^ {- 1} s ^ {- 1}} \)

Линейный график для определения (k):

\ ([A] \) от времени

\ (\ ln [A] \) в зависимости от времени

\ (\ dfrac {1} {[A]} \) в зависимости от времени

Зависимость постоянной скорости от наклона прямой:

\ (\ {slope} = \ {-k} \)

\ (\ {slope} = \ {-k} \)

\ (\ {slope} = \ {k} \)

Период полураспада:

\ (\ dfrac {[A] _0} {2k} \)

\ (\ dfrac {\ ln2} {k} \)

\ (\ dfrac {1} {k [A] _0} \)

Примеры задач

1.Определить скорость реакции

2. ВЕРНО или НЕВЕРНО: изменение температуры или введение катализатора повлияет на константу скорости реакции.

Для примеров задач 3-6 используйте Формулу 6 , чтобы ответить на вопросы

\ [H_2O \ longrightarrow 2H_2 + O_2 \ label {6} \]

* Предположим, реакция протекает при постоянной температуре

3. Для данной реакции укажите закон скорости.

4. Укажите общий порядок реакции.

5. Найдите коэффициент при k = 1,14 x 10 -2 и [H 2 O] = 2,04M

6. Найдите период полураспада реакции.

ответы

1. Скорость реакции является мерой изменения концентрации исчезновения реагентов или изменения концентрации появления продуктов в единицу времени.

2. НЕВЕРНО. Константа скорости не зависит от присутствия катализатора. Однако катализаторы могут влиять на общую скорость реакции.

3. \ (\ {Rate} = \ {k [H_2O]} \)

4. Первый — Заказ

5. 2,33 x 10 -2 с -1

6. 60,8 с ((t1 / 2 = ln 2 / k = ln 2 / 1,14 x 10 -2 = 60,8 с).

Список литературы

  1. Чанг, Раймонд. (2005). Физическая химия для биологических наук . Саусалито, Калифорния: Университетские научные книги.
  2. Кроу, Джонатан, Брэдшоу, Тони, МонкПол. (2006) Химия для биологических наук: основные концепции .Oxford Press.
  3. Айзекс, Н.С. (1995). Physical Organic Chemistry (второе издание). Харлоу Великобритания: Эдисон Уэсли Лонгман.
  4. Кеннет Коннорс. (1990). Химическая кинетика . Издатели ВЧ.
  5. Левин, Ира Н. (1988). Physical Chemistry (Третье издание). McGraw-Hill Inc.
  6. Сегель, Ирвин. (1993). Enzyme Kinetics . Библиотека Wiley Classics.
  7. Zumdahl, Steven S. и Zumdahl, Susan A. (2003) Chemistry (шестое издание).Houghton Mifflin Co.
  8. Шагури, Ричард. Химия 1A Книга лекций. 4-е изд. Публикация на заказ. 2006. Печать
  9. .

Авторы и авторство

4.2: Выражение скорости реакции — Chemistry LibreTexts

Цели обучения

  • Определите скорость химической реакции
  • Выведите выражения для скоростей из сбалансированного уравнения данной химической реакции
  • Рассчитать скорость реакции по экспериментальным данным

Оценка — это мера того, как какое-то свойство изменяется со временем.Скорость — это знакомая скорость, которая выражает расстояние, пройденное объектом за заданный промежуток времени. Заработная плата — это ставка, которая представляет собой сумму денег, заработанную человеком, работающим в течение определенного времени. Точно так же скорость химической реакции является мерой того, сколько реагента потребляется или сколько продукта производится в результате реакции за заданный промежуток времени.

Скорость реакции — это изменение количества реагента или продукта в единицу времени. Поэтому скорости реакции определяют путем измерения зависимости от времени некоторого свойства, которое может быть связано с количествами реагента или продукта.Например, скорость реакций, в которых потребляются или образуются газообразные вещества, удобно определять путем измерения изменений объема или давления. Для реакций с участием одного или нескольких окрашенных веществ скорость можно контролировать путем измерения поглощения света. Для реакций с участием водных электролитов скорость можно измерить по изменению проводимости раствора.

Для реагентов и продуктов в растворе их относительные количества (концентрации) удобно использовать для целей выражения скоростей реакции.Если мы измерим концентрацию перекиси водорода, H 2 O 2 , в водном растворе, мы обнаружим, что она медленно изменяется со временем, поскольку H 2 O 2 разлагается в соответствии с уравнением:

\ [\ ce {2h3O2} (водн.) ⟶ \ ce {2h3O} (l) + \ ce {O2} (g) \ nonumber \]

Скорость разложения пероксида водорода можно выразить через скорость изменения его концентрации, как показано здесь:

\ [\ begin {align *}
\ ce {скорость \: of \: разложение \: of \: H_2O_2}
& = \ mathrm {- \ dfrac {изменение \: in \: концентрация \: of \: реагент } {time \: interval}} \\ [4pt]
& = — \ dfrac {[\ ce {h3O2}] _ {t_2} — [\ ce {h3O2}] _ {t_1}} {t_2 − t_1} \ \ [4pt]
& = — \ dfrac {Δ [\ ce {h3O2}]} {Δt}
\ end {align *} \]

Это математическое представление изменения концентрации компонентов с течением времени является выражением скорости реакции.Скобки указывают молярные концентрации, а символ дельта (Δ) указывает «изменение в». Таким образом, \ ([\ ce {h3O2}] _ {t_1} \) представляет собой молярную концентрацию пероксида водорода в определенный момент времени t 1 ; аналогично, \ ([\ ce {h3O2}] _ {t_2} \) представляет молярную концентрацию пероксида водорода в более позднее время t 2 ; и Δ [H 2 O 2 ] представляет изменение молярной концентрации пероксида водорода в течение интервала времени Δ t (то есть t 2 t 1 ).Поскольку концентрация реагента уменьшается по мере протекания реакции, Δ [H 2 O 2 ] является отрицательной величиной; мы ставим отрицательный знак перед выражением, потому что скорость реакции, по соглашению, является положительной величиной. На рисунке \ (\ PageIndex {1} \) представлен пример данных, собранных во время разложения H 2 O 2 .

Рисунок \ (\ PageIndex {1} \): Скорость разложения H 2 O 2 в водном растворе уменьшается с уменьшением концентрации H 2 O 2 .{−1}} \]

Такое поведение указывает на то, что реакция постоянно замедляется со временем. Использование концентраций в начале и в конце периода времени, в течение которого скорость реакции изменяется, приводит к вычислению средней скорости реакции за этот интервал времени. В любое конкретное время скорость, с которой протекает реакция, называется ее мгновенной скоростью. Мгновенная скорость реакции в «нулевой момент времени», когда реакция начинается, является ее начальной скоростью. Рассмотрим аналогию с автомобилем, который замедляется при приближении к знаку остановки.Начальная скорость автомобиля — аналогичная началу химической реакции — будет показанием спидометра в момент, когда водитель начинает нажимать на тормоза ( t 0 ). Несколько мгновений спустя мгновенная скорость в определенный момент — назовем ее t 1 — будет несколько ниже, о чем свидетельствуют показания спидометра в этот момент времени. По прошествии времени мгновенная скорость будет продолжать падать, пока не достигнет нуля, когда машина (или реакция) остановится.В отличие от мгновенной скорости, средняя скорость автомобиля не отображается на спидометре; но его можно рассчитать как отношение пройденного расстояния ко времени, необходимому для полной остановки транспортного средства (Δ t ). Подобно замедляющемуся автомобилю, средняя скорость химической реакции будет находиться где-то между начальной и конечной скоростью.

Мгновенную скорость реакции можно определить одним из двух способов. Если экспериментальные условия позволяют измерять изменения концентрации в течение очень коротких интервалов времени, тогда средние скорости, вычисленные, как описано ранее, обеспечивают достаточно хорошее приближение мгновенных скоростей.В качестве альтернативы может использоваться графическая процедура, которая, по сути, дает результаты, которые были бы получены, если бы были возможны измерения с короткими временными интервалами. Если мы построим график зависимости концентрации перекиси водорода от времени, мгновенная скорость разложения H 2 O 2 в любой момент времени t будет выражена наклоном прямой линии, касательной к кривой в это время ( Рисунок \ (\ PageIndex {2} \)). Мы можем использовать исчисление для оценки наклона таких касательных, но процедура для этого выходит за рамки данной главы.

Рисунок \ (\ PageIndex {1} \): На этом графике показан график зависимости концентрации от времени для 1.000 М раствора H 2 O 2 . Скорость в любой момент равна величине, противоположной наклону линии, касательной к этой кривой в этот момент. Касательные показаны при t = 0 ч («начальная скорость») и при t = 10 ч («мгновенная скорость» в это конкретное время).

Скорость реакции при анализе: тест-полоски для анализа мочи

Врачи часто используют одноразовые тест-полоски для измерения количества различных веществ в моче пациента (Рисунок \ (\ PageIndex {2} \)).Эти тест-полоски содержат различные химические реагенты, встроенные в небольшие подушечки в различных местах вдоль полоски, которые меняют цвет при воздействии достаточных концентраций определенных веществ. В инструкциях по использованию тест-полосок часто подчеркивается, что правильное время считывания имеет решающее значение для получения оптимальных результатов. Такой акцент на времени считывания предполагает, что важными факторами являются кинетические аспекты химических реакций, происходящих на тест-полоске.

Тест на глюкозу в моче основан на двухэтапном процессе, представленном химическими уравнениями, показанными здесь:

\ [\ ce {C6h22O6 + O2} \ underset {\ large \ textrm {катализатор}} {\ xrightarrow {\ hspace {45px}}} \ ce {C6h20O6 + h3O2} \ label {eq1} \]

\ [\ ce {2h3O2 + 2I -} \ underset {\ large \ textrm {катализатор}} {\ xrightarrow {\ hspace {45px}}} \ ce {I2 + 2h3O + O2} \ label {eq2} \]

Уравнение \ (\ ref {eq1} \) описывает окисление глюкозы в моче с образованием глюколактона и перекиси водорода.Полученная перекись водорода впоследствии окисляет бесцветный ион йодида с образованием коричневого йода (уравнение \ (\ ref {eq2} \)), который можно обнаружить визуально. Некоторые полоски содержат дополнительное вещество, которое вступает в реакцию с йодом, вызывая более отчетливое изменение цвета.

Две показанные выше тестовые реакции по своей природе очень медленные, но их скорость увеличивается за счет специальных ферментов, встроенных в подушечку для тест-полосок. Это пример катализатора , тема которого обсуждается далее в этой главе.Обычной тест-полоске для определения уровня глюкозы в моче требуется около 30 секунд для завершения реакции формирования цвета. Слишком раннее прочтение результата может привести к выводу, что концентрация глюкозы в образце мочи ниже, чем она есть на самом деле (ложноотрицательный результат ). Слишком долгое ожидание для оценки изменения цвета может привести к ложному положительному результату из-за более медленного (не катализируемого) окисления йодид-иона другими веществами, обнаруженными в моче.

Рисунок \ (\ PageIndex {2} \): Тест-полоски обычно используются для определения наличия определенных веществ в моче человека.Многие тест-полоски имеют несколько подушечек, содержащих различные реагенты, что позволяет обнаруживать несколько веществ на одной полоске. (Источник: Икбал Осман).

Относительные скорости реакции

Скорость реакции может быть выражена через изменение количества любого реагента или продукта и может быть просто получена из стехиометрии реакции. Рассмотрим реакцию, представленную следующим уравнением:

\ [\ ce {2Nh4} (g) ⟶ \ ce {N2} (g) + \ ce {3h3} (g) \]

Стехиометрические коэффициенты, полученные из этого уравнения, могут использоваться для связи скоростей реакции таким же образом, как они используются для соответствующих количеств реагента и продукта.Соотношение между скоростями реакции, выраженными в единицах производства азота и потребления аммиака, например, составляет:

\ [\ mathrm {- \ dfrac {Δmol \: NH_3} {Δ \ mathit t} × \ dfrac {1 \: mol \: N_2} {2 \: mol \: NH_3} = \ dfrac {Δmol \: N_2 } {Δ \ mathit t}} \]

Мы можем выразить это проще, не показывая единиц стехиометрического фактора:

\ [- \ dfrac {1} {2} \ dfrac {\ mathrm {Δmol \: NH_3}} {Δt} = \ dfrac {\ mathrm {Δmol \: N_2}} {Δt} \]

Обратите внимание, что был добавлен отрицательный знак для учета противоположных знаков двух изменений количества (количество реагента уменьшается, а количество продукта увеличивается).Если реагенты и продукты присутствуют в одном растворе, молярные количества могут быть заменены на концентрации:

\ [- \ dfrac {1} {2} \ dfrac {Δ [\ ce {Nh4}]} {Δt} = \ dfrac {Δ [\ ce {N2}]} {Δt} \]

Точно так же скорость образования H 2 в три раза превышает скорость образования N 2 , потому что три моля H 2 образуются за время, необходимое для образования одного моля N 2 :

\ [\ dfrac {1} {3} \ dfrac {Δ [\ ce {h3}]} {Δt} = \ dfrac {Δ [\ ce {N2}]} {Δt} \]

На рисунке \ (\ PageIndex {3} \) показано изменение концентраций во времени разложения аммиака на азот и водород при 1100 ° C.{−6} \: M / \ ce s} ≈3 \]

Рисунок \ (\ PageIndex {3} \): Этот график показывает изменения концентраций реагентов и продуктов во время реакции \ (\ ce {2Nh4⟶N2 + 3h3} \). Скорости изменения трех концентраций связаны их стехиометрическими факторами, как показано разными наклонами касательных при t = 500 с.

Пример \ (\ PageIndex {1} \): выражения для относительной скорости реакции

Первым этапом производства азотной кислоты является сжигание аммиака:

\ [\ ce {4Nh4} (g) + \ ce {5O2} (g) ⟶ \ ce {4NO} (g) + \ ce {6h3O} (g) \ nonumber \]

Напишите уравнения, связывающие скорости потребления реагентов и скорости образования продуктов.

Решение

Учитывая стехиометрию этой гомогенной реакции, скорости потребления реагентов и образования продуктов составляют:

\ [- \ dfrac {1} {4} \ dfrac {Δ [\ ce {Nh4}]} {Δt} = — \ dfrac {1} {5} \ dfrac {Δ [\ ce {O2}]} { Δt} = \ dfrac {1} {4} \ dfrac {Δ [\ ce {NO}]} {Δt} = \ dfrac {1} {6} \ dfrac {Δ [\ ce {h3O}]} {Δt} \ nonumber \]

Упражнение \ (\ PageIndex {1} \)

Скорость образования Br 2 составляет 6,0 × 10 −6 моль / л / с в реакции, описываемой следующим чистым ионным уравнением:

\ [\ ce {5Br- + BrO3- + 6H + ⟶ 3Br2 + 3h3O} \ nonumber \]

Напишите уравнения, связывающие скорости потребления реагентов и скорости образования продуктов.

Ответ

\ [- \ dfrac {1} {5} \ dfrac {Δ [\ ce {Br -}]} {Δt} = — \ dfrac {Δ [\ ce {BrO3 -}]} {Δt} = — \ dfrac {1} {6} \ dfrac {Δ [\ ce {H +}]} {Δt} = \ dfrac {1} {3} \ dfrac {Δ [\ ce {Br2}]} {Δt} = \ dfrac {1 } {3} \ dfrac {Δ [\ ce {h3O}]} {Δt} \ nonumber \]

Пример \ (\ PageIndex {2} \): Выражения скорости реакции для разложения H 2 O 2

График на рисунке \ (\ PageIndex {3} \) показывает скорость разложения H 2 O 2 во времени:

\ [\ ce {2h3O2 ⟶ 2h3O + O2} \ nonumber \]

На основании этих данных, мгновенная скорость разложения H 2 O 2 при t = 11.{−1}} \ nonumber \]

Упражнение \ (\ PageIndex {2} \)

Если скорость разложения аммиака, NH 3 , при 1150 K составляет 2,10 × 10 −6 моль / л / с, какова скорость образования азота и водорода?

Ответ

1,05 × 10 −6 моль / л / с, N 2 и 3,15 × 10 −6 моль / л / с, H 2 .

Авторы и авторство

Сводка

Скорость реакции может быть выражена либо через уменьшение количества реагента, либо через увеличение количества продукта в единицу времени.Соотношения между различными выражениями скорости для данной реакции выводятся непосредственно из стехиометрических коэффициентов уравнения, представляющего реакцию.

Глоссарий

средняя оценка
Скорость химической реакции, вычисляемая как отношение измеренного изменения количества или концентрации вещества к интервалу времени, в течение которого это изменение произошло
начальная ставка
мгновенная скорость химической реакции при т = 0 с (сразу после начала реакции)
мгновенная скорость
Скорость химической реакции в любой момент времени, определяемая наклоном касательной к графику концентрации как функции времени
скорость реакции
Мера скорости, с которой протекает химическая реакция
скорость выражения
математическое представление, связывающее скорость реакции с изменениями количества, концентрации или давления реагентов или продуктов в единицу времени

Авторы и авторство

12.1 Скорость химических реакций — Химия

Цели обучения

К концу этого раздела вы сможете:

  • Определите скорость химической реакции
  • Выведите выражения для скоростей из сбалансированного уравнения данной химической реакции
  • Рассчитать скорость реакции по экспериментальным данным

Оценка — это мера того, как какое-то свойство изменяется со временем. Скорость — это знакомая скорость, которая выражает расстояние, пройденное объектом за заданный промежуток времени.Заработная плата — это ставка, которая представляет собой сумму денег, заработанную человеком, работающим в течение определенного времени. Точно так же скорость химической реакции является мерой того, сколько реагента потребляется или сколько продукта производится в результате реакции за заданный промежуток времени.

Скорость реакции — это изменение количества реагента или продукта в единицу времени. Поэтому скорости реакции определяют путем измерения зависимости от времени некоторого свойства, которое может быть связано с количествами реагента или продукта.Например, скорость реакций, в которых потребляются или образуются газообразные вещества, удобно определять путем измерения изменений объема или давления. Для реакций с участием одного или нескольких окрашенных веществ скорость можно контролировать путем измерения поглощения света. Для реакций с участием водных электролитов скорость можно измерить по изменению проводимости раствора.

Для реагентов и продуктов в растворе их относительные количества (концентрации) удобно использовать для целей выражения скоростей реакции.Если мы измерим концентрацию перекиси водорода, H 2 O 2 , в водном растворе, мы обнаружим, что она медленно изменяется со временем, поскольку H 2 O 2 разлагается в соответствии с уравнением:

[латекс] 2 \ text {H} _2 \ text {O} _2 (aq) \; {\ longrightarrow} \; 2 \ text {H} _2 \ text {O} (l) \; + \; \ text {O} _2 (г) [/ латекс]

Скорость разложения пероксида водорода можно выразить через скорость изменения его концентрации, как показано здесь:

[латекс] \ begin {array} {r @ {{} = {}} l} \ text {rate \; of \; разложение \; of \; H} _2 \ text {O} _2 & — \ frac { \ text {изменение \; в \; концентрация \; \; реагента}} {\ text {время \; интервал}} \\ [0.5em] & — \ frac {[\ text {H} _2 \ text {O} _2] _ {t_2} \; — \; [\ text {H} _2 \ text {O} _2] _ {t_1}} { t_2 \; — \; t_1} \\ [0.5em] & — \ frac {{\ Delta} [\ text {H} _2 \ text {O} _2]} {{\ Delta} t} \ end {array} [/ латекс]

Это математическое представление изменения концентрации компонентов с течением времени является выражением скорости для реакции. Скобки указывают молярные концентрации, а символ дельта (Δ) указывает «изменение в». Таким образом, [латекс] [\ text {H} _2 \ text {O} _2] _ {t_1} [/ latex] представляет молярную концентрацию перекиси водорода в определенный момент времени t 1 ; аналогично, [латекс] [\ text {H} _2 \ text {O} _2] _ {t_2} [/ latex] представляет молярную концентрацию перекиси водорода в более позднее время t 2 ; и Δ [H 2 O 2 ] представляет изменение молярной концентрации пероксида водорода в течение интервала времени Δ t (то есть t 2 t 1 ).Поскольку концентрация реагента уменьшается по мере протекания реакции, Δ [H 2 O 2 ] является отрицательной величиной; мы ставим отрицательный знак перед выражением, потому что скорость реакции, по соглашению, является положительной величиной. На рисунке 1 приведен пример данных, собранных при разложении H 2 O 2 .

Рис. 1. Скорость разложения H 2 O 2 в водном растворе уменьшается с уменьшением концентрации H 2 O 2 .

Чтобы получить табличные результаты для этого разложения, концентрацию перекиси водорода измеряли каждые 6 часов в течение дня при постоянной температуре 40 ° C. Скорости реакции были рассчитаны для каждого временного интервала путем деления изменения концентрации на соответствующий временной интервал, как показано здесь для первого 6-часового периода:

[латекс] \ frac {- {\ Delta} [\ text {H} _2 \ text {O} _2]} {{\ Delta} t} = \ frac {- (0.500 \; \ text {mol / L} \; — \; 1.000 \; \ text {mol / L})} {(6.00 \; \ text {h} \; — \; 0.{-1} [/ латекс]

Такое поведение указывает на то, что реакция постоянно замедляется со временем. Использование концентраций в начале и в конце периода времени, в течение которого скорость реакции изменяется, приводит к вычислению средней скорости для реакции за этот интервал времени. В любое конкретное время скорость, с которой протекает реакция, известна как ее мгновенная скорость . Мгновенная скорость реакции в «нулевой момент времени», когда реакция начинается, равна ее начальной скорости .Рассмотрим аналогию с автомобилем, который замедляется при приближении к знаку остановки. Начальная скорость автомобиля — аналогичная началу химической реакции — будет показанием спидометра в момент, когда водитель начинает нажимать на тормоза ( t 0 ). Несколько мгновений спустя мгновенная скорость в определенный момент — назовем ее t 1 — будет несколько ниже, о чем свидетельствуют показания спидометра в этот момент времени. По прошествии времени мгновенная скорость будет продолжать падать, пока не достигнет нуля, когда машина (или реакция) остановится.В отличие от мгновенной скорости, средняя скорость автомобиля не отображается на спидометре; но его можно рассчитать как отношение пройденного расстояния ко времени, необходимому для полной остановки транспортного средства (Δ t ). Подобно замедляющемуся автомобилю, средняя скорость химической реакции будет находиться где-то между начальной и конечной скоростью.

Мгновенную скорость реакции можно определить одним из двух способов. Если экспериментальные условия позволяют измерять изменения концентрации в течение очень коротких интервалов времени, тогда средние скорости, вычисленные, как описано ранее, обеспечивают достаточно хорошее приближение мгновенных скоростей.В качестве альтернативы может использоваться графическая процедура, которая, по сути, дает результаты, которые были бы получены, если бы были возможны измерения с короткими временными интервалами. Если мы построим график зависимости концентрации перекиси водорода от времени, мгновенная скорость разложения H 2 O 2 в любой момент времени t будет выражена наклоном прямой линии, касательной к кривой в это время ( Фигура 2). Мы можем использовать исчисление для оценки наклона таких касательных, но процедура для этого выходит за рамки данной главы.

Рис. 2. На этом графике показан график зависимости концентрации от времени для 1.000 M раствора H 2 O 2 . Скорость в любой момент равна величине, противоположной наклону линии, касательной к этой кривой в этот момент. Касательные показаны при t = 0 ч («начальная скорость») и при t = 10 ч («мгновенная скорость» в это конкретное время).

Скорость реакции при анализе: тест-полоски для анализа мочи

Врачи часто используют одноразовые тест-полоски для измерения количества различных веществ в моче пациента (рис. 3). {-} \; {\ xrightarrow [\ text {катализатор}] {}} \; \ текст {I} _2 \; + \; 2 \ text {H} _2 \ text {O} \; + \; \ text {O} _2 [/ latex]

Первое уравнение описывает окисление глюкозы в моче с образованием глюколактона и перекиси водорода.Полученная перекись водорода впоследствии окисляет бесцветный ион йодида с образованием коричневого йода, который можно обнаружить визуально. Некоторые полоски содержат дополнительное вещество, которое вступает в реакцию с йодом, вызывая более отчетливое изменение цвета.

Две показанные выше тестовые реакции по своей природе очень медленные, но их скорость увеличивается за счет специальных ферментов, встроенных в подушечку для тест-полосок. Это пример катализатора , тема которого обсуждается далее в этой главе. Обычной тест-полоске для определения уровня глюкозы в моче требуется около 30 секунд для завершения реакции формирования цвета.Слишком раннее прочтение результата может привести к выводу, что концентрация глюкозы в образце мочи ниже, чем она есть на самом деле (ложноотрицательный результат ). Слишком долгое ожидание для оценки изменения цвета может привести к ложному положительному результату из-за более медленного (не катализируемого) окисления йодид-иона другими веществами, обнаруженными в моче.

Рис. 3. Тест-полоски обычно используются для определения наличия определенных веществ в моче человека. Многие тест-полоски имеют несколько подушечек, содержащих различные реагенты, что позволяет обнаруживать несколько веществ на одной полоске.(Источник: Икбал Осман)

Скорость реакции может быть выражена через изменение количества любого реагента или продукта и может быть просто получена из стехиометрии реакции. Рассмотрим реакцию, представленную следующим уравнением:

[латекс] 2 \ text {NH} _3 (g) \; {\ longrightarrow} \; \ text {N} _2 (g) \; + \; 3 \ text {H} _2 (g) [/ latex]

Стехиометрические коэффициенты, полученные из этого уравнения, могут использоваться для связи скоростей реакции таким же образом, как они используются для соответствующих количеств реагента и продукта.Соотношение между скоростями реакции, выраженными в единицах производства азота и потребления аммиака, например, составляет:

[латекс] — \; \ frac {{\ Delta} \ text {mol \; NH} _3} {{\ Delta} t} \; \ times \; \ frac {1 \; \ text {mol \; N } _2} {2 \; \ text {mol \; NH} _3} = \ frac {{\ Delta} \ text {mol \; N} _2} {{\ Delta} t} [/ latex]

Мы можем выразить это проще, не показывая единиц стехиометрического фактора:

[латекс] — \; \ frac {1} {2} \; \ frac {{\ Delta} \ text {mol \; NH} _3} {{\ Delta} t} = \ frac {{\ Delta} \ текст {mol \; N} _2} {{\ Delta} t} [/ latex]

Обратите внимание, что был добавлен отрицательный знак для учета противоположных знаков двух изменений количества (количество реагента уменьшается, а количество продукта увеличивается).Если реагенты и продукты присутствуют в одном растворе, молярные количества могут быть заменены на концентрации:

[латекс] — \; \ frac {1} {2} \; \ frac {{\ Delta} [\ text {NH} _3]} {{\ Delta} t} = \ frac {{\ Delta} [\ текст {N} _2]} {{\ Delta} t} [/ latex]

Точно так же скорость образования H 2 в три раза превышает скорость образования N 2 , потому что три моля H 2 образуются за время, необходимое для образования одного моля N 2 :

[латекс] \ frac {1} {3} \; \ frac {{\ Delta} [\ text {H} _2]} {{\ Delta} t} = \ frac {{\ Delta} [\ text {N } _2]} {{\ Delta} t} [/ latex]

На рис. 4 показано изменение концентраций во времени разложения аммиака на азот и водород при 1100 ° C.{-6} \; M / \ text {s}} \; {\ приблизительно} \; 3 [/ латекс]

Рисунок 4. На этом графике показаны изменения концентраций реагентов и продуктов во время реакции 2NH 3 → 3N 2 + H 2 . Скорости изменения трех концентраций связаны их стехиометрическими факторами, как показано разными наклонами касательных при t = 500 с.

Пример 1

Выражения для относительных скоростей реакций
Первым этапом производства азотной кислоты является сжигание аммиака:

[латекс] 4 \ text {NH} _3 (g) \; + \; 5 \ text {O} _2 (g) \; {\ longrightarrow} \; 4 \ text {NO} (g) \; + \ ; 6 \ text {H} _2 \ text {O} (g) [/ latex]

Напишите уравнения, связывающие скорости потребления реагентов и скорости образования продуктов.

Раствор
Учитывая стехиометрию этой гомогенной реакции, скорости расходования реагентов и образования продуктов составляют:

[латекс] — \ frac {1} {4} \; \ frac {{\ Delta} [\ text {NH} _3]} {{\ Delta} t} = — \ frac {1} {5} \; \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} = \ frac {1} {4} \; \ frac {{\ Delta} [\ text {NO}]} { {\ Delta} t} = \ frac {1} {6} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O}]} {{\ Delta} t} [/ latex]

Проверьте свои знания
Скорость образования Br 2 равна 6.{+}]} {{\ Delta} t} = \ frac {1} {3} \; \ frac {{\ Delta} [\ text {Br} _2]} {{\ Delta} t} = \ frac { 1} {3} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O}]} {{\ Delta} t} [/ latex]

Пример 2

Выражения скорости реакции для разложения H 2 O 2
График на рисунке 2 показывает скорость разложения H 2 O 2 во времени:

[латекс] 2 \ text {H} _2 \ text {O} _2 \; {\ longrightarrow} \; 2 \ text {H} _2 \ text {O} \; + \; \ text {O} _2 [/ латекс]

На основании этих данных, мгновенная скорость разложения H 2 O 2 при t = 11.{-1} [/ латекс]

Какова мгновенная скорость производства H 2 O и O 2 ?

Раствор
Используя стехиометрию реакции, мы можем определить, что:

[латекс] — \ frac {1} {2} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O} _2]} {{\ Delta} t} = \ frac {1} {2} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O}]} {{\ Delta} t} = \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} [/ латекс]

Следовательно:

[латекс] \ frac {1} {2} \; \ times \; 3. {- 1} = \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} [/ latex]

и

[латекс] \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} = 1.{-1} [/ латекс]

Проверьте свои знания
Если скорость разложения аммиака, NH 3 , при 1150 K составляет 2,10 × 10 −6 моль / л / с, какова скорость образования азота и водорода?

Ответ:

1,05 × 10 −6 моль / л / с, N 2 и 3,15 × 10 −6 моль / л / с, H 2 .

Скорость реакции может быть выражена либо через уменьшение количества реагента, либо через увеличение количества продукта в единицу времени.Соотношения между различными выражениями скорости для данной реакции выводятся непосредственно из стехиометрических коэффициентов уравнения, представляющего реакцию.

  • относительные скорости реакции для [латекса] a \ text {A} \; {\ longrightarrow} \; b \ text {B} = — \ frac {1} {a} \; \ frac {{\ Delta} [\ текст {A}]} {{\ Delta} t} = \ frac {1} {b} \; \ frac {{\ Delta} [\ text {B}]} {{\ Delta} t} [/ latex]

Упражнения по химии в конце главы

  1. В чем разница между средней, начальной и мгновенной скоростью?
  2. Озон разлагается до кислорода в соответствии с уравнением [латекс] 2 \ text {O} _3 (g) \; {\ longrightarrow} \; 3 \ text {O} _2 (g) [/ latex].Напишите уравнение, связывающее выражения скорости этой реакции через исчезновение O 3 и образование кислорода.
  3. В ядерной промышленности трифторид хлора используется для получения гексафторида урана, летучего соединения урана, используемого для разделения изотопов урана. Трифторид хлора получают по реакции [латекс] \ text {Cl} _2 (g) \; + \; 3 \ text {F} _2 (g) \; {\ longrightarrow} \; 2 \ text {ClF} _3 ( г) [/ латекс]. Напишите уравнение, связывающее выражения скорости этой реакции с точки зрения исчезновения Cl 2 и F 2 и образования ClF 3 .
  4. Исследование скорости димеризации C 4 H 6 дало данные, представленные в таблице:
    [латекс] 2 \ text {C} _4 \ text {H} _6 \; {\ longrightarrow} \; \ text {C} _8 \ text {H} _ {12} [/ латекс]
    Время (с) 0 1600 3200 4800 6200
    [C 4 H 6 ] ( M ) 1,00 × 10 −2 5,04 × 10 −3 3.37 × 10 −3 2,53 × 10 −3 2,08 × 10 −3
    Таблица 1.

    (a) Определите среднюю скорость димеризации от 0 до 1600 с и от 1600 до 3200 с.

    (b) Оцените мгновенную скорость димеризации на 3200 с по графику зависимости времени от [C 4 H 6 ]. Какие единицы этой ставки?

    (c) Определите среднюю скорость образования C 8 H 12 за 1600 с и мгновенную скорость образования через 3200 с из скоростей, найденных в частях (a) и (b).

  5. Исследование скорости реакции, представленной как [латекс] 2A \; {\ longrightarrow} \; B [/ latex], дало следующие данные:

    Время (с) 0,0 5,0 10,0 15,0 20,0 25,0 35,0
    [ A ] ( M ) 1,00 0,952 0,625 0,465 0,370 0,308 0.230
    Таблица 2.

    (a) Определите среднюю скорость исчезновения A от 0,0 до 10,0 с и от 10,0 до 20,0 с.

    (b) Оцените мгновенную скорость исчезновения A через 15,0 с по графику зависимости времени от [ A ]. Какие единицы этой ставки?

    (c) Используйте скорости, найденные в частях (a) и (b), чтобы определить среднюю скорость образования B между 0.{+} (aq) \; {\ longrightarrow} \; 3 \ text {Br} _2 (aq) \; + \; 3 \ text {H} _2 \ text {O} (l) [/ latex]

    Если скорость исчезновения Br ( водн. ) в определенный момент реакции составляет 3,5 × 10 −4 M с −1 , то какова скорость появления Br 2 ( водн. ) в тот момент?

Глоссарий

средняя оценка
Скорость химической реакции, вычисляемая как отношение измеренного изменения количества или концентрации вещества к интервалу времени, в течение которого это изменение произошло
начальная ставка
мгновенная скорость химической реакции при т = 0 с (сразу после начала реакции)
мгновенная скорость
Скорость химической реакции в любой момент времени, определяемая наклоном касательной к графику концентрации как функции времени
скорость реакции
Мера скорости, с которой протекает химическая реакция
скорость выражения
математическое представление, связывающее скорость реакции с изменениями количества, концентрации или давления реагентов или продуктов в единицу времени

Решения

Ответы на упражнения в конце главы по химии

1.Мгновенная скорость — это скорость реакции в любой конкретный момент времени, период времени, который настолько короткий, что концентрации реагентов и продуктов изменяются на незначительную величину. Начальная скорость — это мгновенная скорость реакции, когда она начинается (когда продукт только начинает образовываться). Средняя скорость — это средняя мгновенная скорость за период времени.

3. [латекс] \ text {rate} = + \ frac {1} {2} \; \ frac {{\ Delta} [\ text {CIF} _3]} {{\ Delta} t} = — \ frac {{\ Delta} [\ text {Cl} _2]} {{\ Delta} t} = — \ frac {1} {3} \; \ frac {{\ Delta} [\ text {F} _2]} { {\ Delta} t} [/ латекс]

5.(а) средняя скорость, 0 — 10 с = 0,0375 моль л −1 с −1 ; средняя скорость, 12 — 18 с = 0,0225 моль л −1 с −1 ; (б) мгновенная скорость, 15 с = 0,0500 моль л −1 с −1 ; (c) средняя скорость образования B = 0,0188 моль л -1 с -1 ; мгновенная скорость образования B = 0,0250 моль л −1 с −1

Кинетика

Кинетика

Закон о комплексных тарифах

Химическая кинетика

Кинетика — это исследование скорости химических процессов.

Скорость реакции определяется по изменению концентрации во времени:

Выражения скорости описывают реакции с точки зрения изменения концентраций реагентов или продуктов с течением времени. Скорость реакции может быть выражена любым из реагентов или продуктов реакции.

Есть несколько правил для написания выражений скорости:

1) Выражения для реагентов имеют отрицательный знак. Это потому, что реагент израсходован или уменьшается.

2) Выражения для продуктов положительные. Это потому, что они увеличиваются.

3) Все выражения скоростей для различных реагентов и продуктов должны равняться друг другу, чтобы быть правильными. (Это означает, что стехиометрия реакции должна быть компенсирована в выражении)

Пример: в уравнении, которое записано: 2X + 3Y -> 5Z

Выражение скорости будет:

Математический взгляд на это: скорость может изменяться со временем (и концентрацией), поэтому обычно определяют скорость за очень малое время, Δt.Мы думаем о скорости как о производной концентрации по времени: эта производная представляет собой наклон графика зависимости концентрации от времени, взятый в определенное время. На графике экспоненциальная аппроксимация используется для построения линии наилучшего соответствия, которая позволит вам рассчитать скорость в любой точке.

Мы уже установили, что изменение концентрации может повлиять на скорость протекания реакции (теория столкновений). По мере протекания реакции меняются концентрации как реагентов, так и продуктов, и, таким образом, изменяется скорость реакции.Это также означает, что скорость реакции может быть выражена в терминах уменьшающихся концентраций ее реагентов или возрастающих концентраций ее продуктов. Выражения, используемые для описания этих отношений, называются тарифными законами или тарифными уравнениями.

Три способа количественного определения ставки:

Начальная скорость: Метод начальных норм включает измерение скорости реакции r в очень короткие промежутки времени до того, как произойдут какие-либо значительные изменения концентрации.А + 2В -> 3С

Хотя форма дифференциального закона скорости может быть очень сложной, многие реакции имеют следующий закон скорости: r = k [A] a [B] b

Начальные концентрации A и B известны; поэтому, если начальная скорость реакции измеряется, единственными неизвестными в законе скорости являются константа скорости, k, и показатели степени a и b. Обычно измеряют начальную скорость для нескольких различных наборов концентраций, а затем сравнивают начальные скорости.

Показатели a и b являются «порядками» уравнения скорости и должны быть определены экспериментально. Общий порядок реакции определяется сложением показателей степени. Т.е. Если a = 1 и b = 2, реакция в целом третьего порядка.

  1. реакции 1-го порядка
    • Реакции, в которых скорость изменяется в зависимости от концентрации одного вида, а изменение концентрации является экспоненциальным, так что график зависимости ln (концентрации) от времени является линейным.Стехиометрический коэффициент равен 1. Обычно в качестве примера приводят радиоактивный распад, но многие процессы переноса электронов и большинство ферментных механизмов содержат промежуточные реакции первого порядка.
  2. Реакции 2-го порядка класса I
    • Реакции, в которых скорость изменяется в зависимости от концентрации одного вида, но стехиометрический коэффициент равен 2. Скорость изменяется в зависимости от обратной концентрации, так что график 1 / (концентрация) v.время линейно.
  3. Реакции 2-го порядка Класса II
    • Реакции, скорость которых изменяется в зависимости от концентрации двух субстратов, каждый из которых имеет стехиометрический коэффициент 1. График зависимости ln (conc.A / conc.B) от времени является линейным.
  4. Реакции высшего порядка
    • Реакции, в которых участвует более двух видов или один вид реагирует со стехиометрическим коэффициентом> 2.Множество различных классов, из которых самый простой включает один вид со стехиометрическим коэффициентом больше 2. Хотя многие биохимические реакции могут показаться более высокого порядка, в целом механизм фермента функционирует через связывание нескольких субстратов с одним белком, и эмпирический порядок проще и часто оказывается нулевым (см. ниже).
  5. Реакции нулевого порядка
    • Многие реакции в биохимии происходят со скоростью, не зависящей от концентрации субстрата.Говорят, что они показывают поведение нулевого порядка. Как правило, это происходит потому, что реакция катализируется ферментом, а скорость определяется концентрацией фермента, пока субстрат находится в избытке, так что скорость является насыщенной.

Рассмотрим следующий набор данных:

Пробная

Скорость
(моль / л . сек )

Начальная концентрация
А (моль / л)

Начальная концентрация
B (моль / л )

1

2,73

0,100

0,100

2

6.14

0,150

0,100

3

2,71

0,100

0.200

Если для концентраций выбраны простые множители и одновременно изменяется только одна концентрация, можно определить a и b путем проверки. В этом случае значения a и b могут быть неочевидными.Для определения показателей можно использовать следующую алгебраическую технику.

Шаг 1) Сначала запишите соотношение законов скорости для двух испытаний.

Шаг 2) Затем подставьте числовые значения в уравнение.

Шаг 3) Алгебраически просто там, где можно.

Шаг 4) Чтобы преобразовать показатель степени в коэффициент, возьмите логарифм обеих частей уравнения.

а = 1.9995 = ~ 2

Средняя скорость: Рассчитывает скорость за все время реакции.

Мгновенная скорость: Скорость уменьшается со временем. Поэтому иногда используется мгновенная скорость, скорость в любой момент времени. Мгновенную скорость можно определить по касательной в соответствующий момент времени на графике зависимости концентрации от времени.

Сравнение методов демонстрирует сильные и слабые стороны каждого:

Обратите внимание, что ни один из трех методов на самом деле не дает истинной картины изменения скорости реакции.

Закон о комплексной ставке:

Закон скорости сообщает нам мгновенную скорость (наклон кривой) как функцию концентрации.

Закон интегрированной нормы сообщает нам концентрацию как функцию времени (сама кривая).

Рассмотрим реакцию A -> B

Скорость реакции r определяется как

Предположим, что эта реакция подчиняется закону скорости первого порядка: r = k [A]

Этот тарифный закон можно также записать как:

Это уравнение представляет собой дифференциальное уравнение, которое связывает скорость изменения концентрации с самой концентрацией.Интегрирование этого уравнения дает соответствующий закон интегрированной скорости, который связывает концентрацию со временем.

Переставить

, а затем интегрировать. При t = 0 концентрация A составляет [A] 0 . Таким образом, закон интегрированной ставки:

Сводка выражений интегрированной ставки:

Графическое определение заказа:

Нужна практика? Вот банк тестов с множеством вопросов для самооценки, которые помогут вам в обучении: http: // lrc-srvr.mps.ohio-state.edu/under/chemed/qbank/quiz/bank10.htm

Скоростей Реакции | Безграничная химия

Измерение скорости реакции

Скорость реакции определяется путем наблюдения за изменениями концентраций реагентов или продуктов в течение определенного периода времени.

Цели обучения

Составьте выражения скорости, когда даны химические реакции, и обсудите методы измерения этих скоростей

Основные выводы

Ключевые точки
  • Скорость реакции рассчитывается по формуле скорость = Δ [C] / Δt, где Δ [C] — изменение концентрации продукта за период времени Δt.
  • Скорость реакции можно наблюдать, наблюдая за исчезновением реагента или появлением продукта с течением времени.
  • Если в результате реакции образуется газ, такой как кислород или диоксид углерода, есть два способа измерения скорости реакции: использование газового шприца для измерения произведенного газа или расчет уменьшения массы реакционного раствора.
  • Если в результате реакции образуется осадок, образовавшееся количество можно использовать для определения скорости реакции путем измерения того, сколько времени требуется, чтобы образовавшийся осадок скрыл видимость креста через коническую колбу.
Ключевые термины
  • скорость реакции : насколько быстро или медленно происходит реакция.
  • газовый шприц : Элемент лабораторного оборудования, используемый для отбора объема газа из замкнутой химической системы для измерения и / или анализа.
  • продукт : Химическое вещество, образующееся в результате химической реакции.

Скорость реакции

За скоростью реакции обычно наблюдают, наблюдая за исчезновением реагента или появлением продукта в течение заданного периода времени.Возьмем химическую реакцию:

[латекс] \ text {A} + 2 \ text {B} \ rightarrow 3 \ text {C} [/ latex]

Здесь скорость появления продукта C на временном интервале Δt составляет:

[латекс] \ text {средняя скорость} = \ frac {\ Delta \ text {C}} {\ Delta \ text {t}} [/ latex]

Концентрация C [C] обычно выражается в моль / литр. Это средняя скорость появления C за интервал времени Δt. Предел этой средней скорости по мере того, как временной интервал становится меньше, называется скоростью появления C в момент времени t, и это наклон кривой [C] в зависимости от t в момент времени t.Этот мгновенный наклон или скорость записывается как [latex] \ frac {\ text {d} [\ text {C}]} {\ text {dt}} [/ latex]. Поскольку одна молекула A и две молекулы B расходуются на каждые три производимые молекулы C, скорости исчезновения и появления этих химических соединений различны, но связаны между собой.

Скорость исчезновения и появления химических частиц : Это выражение связывает скорости исчезновения и появления химических частиц в реакции A + 2B -> 3C.

Измерение скорости реакции

Способ измерения скорости реакции будет зависеть от того, что это за реакция и какой продукт образуется. В следующих примерах описаны различные способы измерения скорости реакции.

Реакции с образованием газов, таких как кислород или диоксид углерода

Перекись водорода разлагается с образованием кислорода:

[латекс] 2 \ text {H} _2 \ text {O} _2 (\ text {aq}) \ rightarrow 2 \ text {H} _2 \ text {O} (\ text {l}) + \ text {O } _2 (\ text {g}) [/ latex]

Объем произведенного кислорода можно измерить с помощью газового шприца.Газ собирается в шприце, выталкиваясь из поршня. Объем произведенного газа можно определить по отметкам на шприце. Это изменение объема можно преобразовать в изменение концентрации ([латекс] \ Delta [\ text {C}] [/ latex]) и разделить его на время реакции ([латекс] \ Delta \ text {t } [/ latex]) даст среднюю скорость реакции.

Метод газового шприца : В реакции, в которой образуется газ, объем выделяемого газа можно измерить с помощью метода газового шприца.

Изменения массы

Скорость реакции, при которой образуется газ, также можно измерить, рассчитав потерю массы при образовании газа и его выходе из реакционной колбы. Этот метод можно использовать для реакций с образованием диоксида углерода или кислорода, но он не очень точен для реакций с выделением водорода, поскольку масса слишком мала для точного измерения. Измерение изменения массы также может быть подходящим для других типов реакций.

Реакции осаждения

В реакции, в которой образуется осадок, количество осадка, образовавшегося за период времени, можно использовать как меру скорости реакции.Например, когда тиосульфат натрия реагирует с кислотой, образуется желтый осадок серы. Эта реакция записывается так:

[латекс] \ text {Na} _2 \ text {S} _2 \ text {O} _3 (\ text {aq}) + 2 \ text {HCl} (\ text {aq}) \ rightarrow 2 \ text {NaCl } (\ text {aq}) + \ text {SO} _2 (\ text {aq}) + \ text {H} _2 \ text {O} (\ text {l}) + \ text {S} (\ text {s}) [/ латекс]

Один из способов оценить скорость этой реакции — провести исследование в конической колбе и подложить под ее дно лист бумаги с черным крестом.В начале реакции крестик будет хорошо виден, когда вы заглянете в колбу. Однако по мере того, как реакция прогрессирует и образуется больше осадка, крест постепенно становится менее четким и в конечном итоге полностью исчезнет. Используя секундомер, чтобы измерить, сколько времени нужно, чтобы крестик исчез, а затем взвесив количество осадка, образовавшегося за это время, можно рассчитать среднюю скорость реакции. Обратите внимание, что невозможно собрать газ SO 2 , который образуется в реакции, потому что он хорошо растворяется в воде.

Стехиометрия реакции

Стехиометрия реакции изучает количественные отношения между реагентами и продуктами в рамках данной химической реакции.

Цели обучения

Используйте стехиометрию, чтобы сбалансировать химические уравнения

Основные выводы

Ключевые точки
  • Стехиометрия происходит от греческих слов «стоихион» (элемент) и «метрон» (измерять). Таким образом, стехиометрия касается определения количества реагентов и продуктов, которые потребляются и производятся в рамках данной химической реакции.
  • Стехиометрический коэффициент любого вещества, не участвующего в данной химической реакции, равен нулю.
  • Принципы стехиометрии основаны на законе сохранения массы. Материя не может быть ни создана, ни разрушена, поэтому масса каждого элемента, присутствующего в продукте (ах) химической реакции, должна быть равна массе каждого элемента, присутствующего в реагенте (ах).
Ключевые термины
  • Стехиометрия реакции : Описывает количественное соотношение между реагентами и продуктами в рамках данной химической реакции.
  • Стехиометрическое число : Равно стехиометрическому коэффициенту в сбалансированном уравнении, но положительно для продуктов (потому что они производятся) и отрицательно для реагентов (поскольку они потребляются).
  • стехиометрическое соотношение : положительное целочисленное соотношение, которое связывает количество молей реагентов и продуктов, участвующих в химической реакции; это соотношение можно определить из коэффициентов сбалансированного химического уравнения.
  • сбалансированное уравнение : Когда количество каждого отдельного элемента равно в обеих частях уравнения.

Стехиометрия — это раздел химии, который имеет дело с относительными количествами реагентов и продуктов, которые потребляются / производятся в рамках данной химической реакции. Однако, чтобы сделать какие-либо стехиометрические определения, мы должны сначала обратиться к сбалансированному химическому уравнению. В сбалансированном химическом уравнении мы можем легко определить стехиометрическое соотношение между количеством молей реагентов и количеством молей продуктов, потому что это соотношение всегда будет положительным целочисленным отношением.Рассмотрим реакцию газообразного азота и газообразного водорода с образованием аммиака (NH 3 ):

[латекс] \ text {N} _2 (\ text {g}) + 3 \ text {H} _2 (\ text {g}) \ rightarrow 2 \ text {NH} _3 (\ text {g}) [/ латекс]

Из сбалансированного уравнения видно, что стехиометрический коэффициент для азота равен 1, для водорода — 3, а для аммиака — 2. Следовательно, стехиометрическое соотношение часто называют просто «молярным соотношением» или « молярное соотношение ”между N 2 (г), H 2 (г) и NH 3 (г) составляет 1: 3: 2.В особом случае, когда реагенты объединяются в их молярных соотношениях (в данном случае 1 моль N 2 (г) и 3 моль H 2 (г)), они будут полностью реагировать друг с другом, и не реагент останется после того, как реакция завершится. Однако в большинстве реальных ситуаций реагенты не сочетаются в таких идеальных стехиометрических количествах. В большинстве случаев один реагент неизбежно будет первым, который полностью израсходуется в реакции, что приведет к остановке реакции.Этот реагент известен как ограничивающий реагент или ограничивающий реагент.

Из этого краткого описания мы видим, что стехиометрия имеет много важных приложений. Как мы увидим, балансируя химические уравнения и определяя стехиометрические коэффициенты, мы сможем определить количество молей продукта (ов), которые могут быть получены в данной реакции, а также количество молей реагента (s ), который будет использован. Стехиометрию также можно использовать для определения ограничивающих реагентов и для расчета количества избыточного реагента (ов), оставшегося после того, как данная реакция завершилась.

Основы стехиометрии

Наука стехиометрия возможна, потому что она основана на законе сохранения массы. Поскольку материя не может быть ни создана, ни разрушена, ни химическая реакция не может преобразовать один элемент в другой элемент, мы можем быть уверены, что масса каждого отдельного элемента, присутствующего в реагенте (ах) данной реакции, обязательно должна быть учтена в продукты). Этот физический закон делает возможными все стехиометрические вычисления.Однако мы можем выполнить эти расчеты правильно только в том случае, если у нас есть сбалансированное химическое уравнение, с которым можно работать.

Interactive: стехиометрия и уравнения баланса : Для производства хлористого водорода или любого другого химического вещества существует только одно соотношение реагентов, которое работает так, что весь водород и хлор используются для производства хлористого водорода. Попробуйте несколько разных соотношений, чтобы увидеть, какие из них образуют полную реакцию без остатка. Какое самое простое соотношение водорода и хлора для образования хлористого водорода?

Балансирующие уравнения

Прежде чем выполнять какие-либо стехиометрические вычисления, мы должны сначала получить сбалансированное химическое уравнение.Возьмем, к примеру, реакцию газообразного водорода и кислорода с образованием жидкой воды:

[латекс] \ text {H} _2 (\ text {g}) + \ text {O} _2 (\ text {g}) \ rightarrow \ text {H} _2 \ text {O} (\ text {l} ) [/ латекс]

Как здесь написано, мы должны заметить, что наше уравнение не сбалансировано, потому что у нас есть два атома кислорода в левой части уравнения, а только один в правой. Чтобы уравновесить это, нам нужно добавить стехиометрический коэффициент 2 перед жидкой водой:

[латекс] \ text {H} _2 (\ text {g}) + \ text {O} _2 (\ text {g}) \ rightarrow 2 \ text {H} _2 \ text {O} (\ text {l }) [/ латекс]

Однако при этом наши водороды стали неуравновешенными.Чтобы завершить балансировку уравнения, мы должны добавить коэффициент 2 перед газообразным водородом:

[латекс] 2 \ text {H} _2 (\ text {g}) + \ text {O} _2 (\ text {g}) \ rightarrow 2 \ text {H} _2 \ text {O} (\ text { л}) [/ латекс]

Как мы видим, стехиометрический коэффициент для любого данного реагента / продукта — это количество молекул, которые будут участвовать в реакции, как записано в сбалансированном уравнении. Однако имейте в виду, что в наших расчетах мы часто будем работать с молями, а не с молекулами.В нашем примере мы видим, что стехиометрический коэффициент для H 2 (г) равен 2, в то время как для O 2 (г) он равен 1, а для H 2 O (l) он равен 2. Иногда вы можете встретить термин стехиометрическое число, который связан со стехиометрическим коэффициентом, но это не то же самое.

Электролиз воды : Хотя это изображение иллюстрирует обратную реакцию [латекса] 2 \ text {H} _2 (\ text {g}) + \ text {O} _2 (\ text {g}) \ rightarrow 2 \ text {H} _2 \ text {O} (\ text {l}) [/ latex], стехиометрические коэффициенты для каждого типа молекул остаются одинаковыми.Вода — 2, водород — 2, кислород — 1.

Для реагентов стехиометрическое число является отрицательным значением стехиометрического коэффициента, в то время как для продуктов стехиометрическое число просто равно стехиометрическому коэффициенту, оставаясь положительным. Следовательно, в нашем примере стехиометрическое число для H 2 (г) равно -2, а для O 2 (г) — -1. Однако для H 2 O (л) он равен +2. Это связано с тем, что в этой реакции H 2 (г) и O 2 (г) являются реагентами, которые потребляются, тогда как вода является продуктом, который образуется.

Наконец, иногда вы можете встретить некоторые химические соединения, которые присутствуют во время реакции, но не потребляются и не образуются в ходе реакции. Катализатор — наиболее известный пример этого. Для таких видов их стехиометрические коэффициенты всегда равны нулю.

Пример

В уравнении h3 (g) + Cl2 (g) → 2 HCl (g), каково молярное соотношение (стехиометрическое соотношение) между h3 (g) и HCl (g)?

В нашем сбалансированном химическом уравнении коэффициент для h3 (g) равен 1, а коэффициент для HCl (g) равен 2.Следовательно, молярное соотношение между этими двумя соединениями составляет 1: 2. Это говорит нам о том, что на каждый 1 моль h3 (г), который расходуется в реакции, образуется 2 моля HCl (г).

скорость реакции | Факты и формулы

Скорость реакции , в химии, скорость, с которой протекает химическая реакция. Он часто выражается либо через концентрацию (количество на единицу объема) продукта, которая образуется за единицу времени, либо через концентрацию реагента, которая потребляется за единицу времени.Альтернативно, это может быть определено в терминах количества потребляемых реагентов или продуктов, образованных за единицу времени. Например, предположим, что вычисленное химическое уравнение реакции имеет вид A + 3B → 2Z.

реакция осаждения

Осаждение иодида свинца (II) (иодид свинца) приводит к образованию твердого вещества желтого цвета.

© GGW / Fotolia

Британская викторина

Подводки к химии

Возможно, вы знаете, что элементы составляют воздух, которым мы дышим, и воду, которую мы пьем, но знаете ли вы о них больше? Какой элемент почти такой же легкий, как водород? Что вы называете смесью двух химических элементов? Узнайте ответы в этой викторине.

Ставка может быть выражена следующими альтернативными способами: d [Z] / d t , — d [A] / d t , — d [B] / d t , d z / d t , — d a / d t , — d b / d t где t — время , [A], [B] и [Z] — концентрации веществ, а a, b и z — их количества.Обратите внимание, что все эти шесть выражений отличаются друг от друга, но просто связаны.

Химические реакции протекают с совершенно разными скоростями в зависимости от природы реагирующих веществ, типа химического превращения, температуры и других факторов. В общем, реакции, в которых объединяются атомы или ионы (электрически заряженные частицы), происходят очень быстро, в то время как реакции, в которых ковалентные связи (связи, в которых атомы разделяют электроны) разрываются, протекают намного медленнее. Для данной реакции скорость реакции будет варьироваться в зависимости от температуры, давления и количества присутствующих реагентов.Реакции обычно замедляются с течением времени из-за истощения реагентов. В некоторых случаях добавление вещества, которое само по себе не является реагентом, называемого катализатором, ускоряет реакцию. Константа скорости или конкретная константа скорости — это константа пропорциональности в уравнении, которое выражает взаимосвязь между скоростью химической реакции и концентрациями реагирующих веществ. Измерение и интерпретация реакций составляют раздел химии, известный как химическая кинетика.

12.1 Скорость химических реакций — Химия 112 — Главы 12-17 OpenStax General Chemistry

Цели обучения

К концу этого раздела вы сможете:

  • Определите скорость химической реакции
  • Выведите выражения для скоростей из сбалансированного уравнения данной химической реакции
  • Рассчитать скорость реакции по экспериментальным данным

Оценка — это мера того, как какое-то свойство изменяется со временем.Скорость — это знакомая скорость, которая выражает расстояние, пройденное объектом за заданный промежуток времени. Заработная плата — это ставка, которая представляет собой сумму денег, заработанную человеком, работающим в течение определенного времени. Точно так же скорость химической реакции является мерой того, сколько реагента потребляется или сколько продукта производится в результате реакции за заданный промежуток времени.

Скорость реакции — это изменение количества реагента или продукта в единицу времени. Поэтому скорости реакции определяют путем измерения зависимости от времени некоторого свойства, которое может быть связано с количествами реагента или продукта.Например, скорость реакций, в которых потребляются или образуются газообразные вещества, удобно определять путем измерения изменений объема или давления. Для реакций с участием одного или нескольких окрашенных веществ скорость можно контролировать путем измерения поглощения света. Для реакций с участием водных электролитов скорость можно измерить по изменению проводимости раствора.

Для реагентов и продуктов в растворе их относительные количества (концентрации) удобно использовать для целей выражения скоростей реакции.Если мы измерим концентрацию перекиси водорода, H 2 O 2 , в водном растворе, мы обнаружим, что она медленно изменяется со временем, поскольку H 2 O 2 разлагается в соответствии с уравнением:

[латекс] 2 \ text {H} _2 \ text {O} _2 (aq) \; {\ longrightarrow} \; 2 \ text {H} _2 \ text {O} (l) \; + \; \ text {O} _2 (г) [/ латекс]

Скорость разложения пероксида водорода можно выразить через скорость изменения его концентрации, как показано здесь:

[латекс] \ begin {array} {r @ {{} = {}} l} \ text {rate \; of \; разложение \; of \; H} _2 \ text {O} _2 & — \ frac { \ text {изменение \; в \; концентрация \; \; реагента}} {\ text {время \; интервал}} \\ [0.5em] & — \ frac {[\ text {H} _2 \ text {O} _2] _ {t_2} \; — \; [\ text {H} _2 \ text {O} _2] _ {t_1}} { t_2 \; — \; t_1} \\ [0.5em] & — \ frac {{\ Delta} [\ text {H} _2 \ text {O} _2]} {{\ Delta} t} \ end {array} [/ латекс]

Это математическое представление изменения концентрации компонентов с течением времени является выражением скорости для реакции. Скобки указывают молярные концентрации, а символ дельта (Δ) указывает «изменение в». Таким образом, [латекс] [\ text {H} _2 \ text {O} _2] _ {t_1} [/ latex] представляет молярную концентрацию перекиси водорода в определенный момент времени t 1 ; аналогично, [латекс] [\ text {H} _2 \ text {O} _2] _ {t_2} [/ latex] представляет молярную концентрацию перекиси водорода в более позднее время t 2 ; и Δ [H 2 O 2 ] представляет изменение молярной концентрации пероксида водорода в течение интервала времени Δ t (то есть t 2 t 1 ).Поскольку концентрация реагента уменьшается по мере протекания реакции, Δ [H 2 O 2 ] является отрицательной величиной; мы ставим отрицательный знак перед выражением, потому что скорость реакции, по соглашению, является положительной величиной. На рисунке 1 приведен пример данных, собранных при разложении H 2 O 2 .

Рис. 1. Скорость разложения H 2 O 2 в водном растворе уменьшается с уменьшением концентрации H 2 O 2 .

Чтобы получить табличные результаты для этого разложения, концентрацию перекиси водорода измеряли каждые 6 часов в течение дня при постоянной температуре 40 ° C. Скорости реакции были рассчитаны для каждого временного интервала путем деления изменения концентрации на соответствующий временной интервал, как показано здесь для первого 6-часового периода:

[латекс] \ frac {- {\ Delta} [\ text {H} _2 \ text {O} _2]} {{\ Delta} t} = \ frac {- (0.500 \; \ text {mol / L} \; — \; 1.000 \; \ text {mol / L})} {(6.00 \; \ text {h} \; — \; 0.{-1} [/ латекс]

Такое поведение указывает на то, что реакция постоянно замедляется со временем. Использование концентраций в начале и в конце периода времени, в течение которого скорость реакции изменяется, приводит к вычислению средней скорости для реакции за этот интервал времени. В любое конкретное время скорость, с которой протекает реакция, известна как ее мгновенная скорость . Мгновенная скорость реакции в «нулевой момент времени», когда реакция начинается, равна ее начальной скорости .Рассмотрим аналогию с автомобилем, который замедляется при приближении к знаку остановки. Начальная скорость автомобиля — аналогичная началу химической реакции — будет показанием спидометра в момент, когда водитель начинает нажимать на тормоза ( t 0 ). Несколько мгновений спустя мгновенная скорость в определенный момент — назовем ее t 1 — будет несколько ниже, о чем свидетельствуют показания спидометра в этот момент времени. По прошествии времени мгновенная скорость будет продолжать падать, пока не достигнет нуля, когда машина (или реакция) остановится.В отличие от мгновенной скорости, средняя скорость автомобиля не отображается на спидометре; но его можно рассчитать как отношение пройденного расстояния ко времени, необходимому для полной остановки транспортного средства (Δ t ). Подобно замедляющемуся автомобилю, средняя скорость химической реакции будет находиться где-то между начальной и конечной скоростью.

Мгновенную скорость реакции можно определить одним из двух способов. Если экспериментальные условия позволяют измерять изменения концентрации в течение очень коротких интервалов времени, тогда средние скорости, вычисленные, как описано ранее, обеспечивают достаточно хорошее приближение мгновенных скоростей.В качестве альтернативы может использоваться графическая процедура, которая, по сути, дает результаты, которые были бы получены, если бы были возможны измерения с короткими временными интервалами. Если мы построим график зависимости концентрации перекиси водорода от времени, мгновенная скорость разложения H 2 O 2 в любой момент времени t будет выражена наклоном прямой линии, касательной к кривой в это время ( Фигура 2). Мы можем использовать исчисление для оценки наклона таких касательных, но процедура для этого выходит за рамки данной главы.

Рис. 2. На этом графике показан график зависимости концентрации от времени для 1.000 M раствора H 2 O 2 . Скорость в любой момент равна величине, противоположной наклону линии, касательной к этой кривой в этот момент. Касательные показаны при t = 0 ч («начальная скорость») и при t = 10 ч («мгновенная скорость» в это конкретное время).

Скорость реакции при анализе: тест-полоски для анализа мочи

Врачи часто используют одноразовые тест-полоски для измерения количества различных веществ в моче пациента (рис. 3).Эти тест-полоски содержат различные химические реагенты, встроенные в небольшие подушечки в различных местах вдоль полоски, которые меняют цвет при воздействии достаточных концентраций определенных веществ. В инструкциях по использованию тест-полосок часто подчеркивается, что правильное время считывания имеет решающее значение для получения оптимальных результатов. Такой акцент на времени считывания предполагает, что важными факторами являются кинетические аспекты химических реакций, происходящих на тест-полоске. {-} \; {\ xrightarrow [\ text {катализатор}] {}} \; \ текст {I} _2 \; + \; 2 \ text {H} _2 \ text {O} \; + \; \ text {O} _2 [/ latex]

Первое уравнение описывает окисление глюкозы в моче с образованием глюколактона и перекиси водорода.Полученная перекись водорода впоследствии окисляет бесцветный ион йодида с образованием коричневого йода, который можно обнаружить визуально. Некоторые полоски содержат дополнительное вещество, которое вступает в реакцию с йодом, вызывая более отчетливое изменение цвета.

Две показанные выше тестовые реакции по своей природе очень медленные, но их скорость увеличивается за счет специальных ферментов, встроенных в подушечку для тест-полосок. Это пример катализатора , тема которого обсуждается далее в этой главе. Обычной тест-полоске для определения уровня глюкозы в моче требуется около 30 секунд для завершения реакции формирования цвета.Слишком раннее прочтение результата может привести к выводу, что концентрация глюкозы в образце мочи ниже, чем она есть на самом деле (ложноотрицательный результат ). Слишком долгое ожидание для оценки изменения цвета может привести к ложному положительному результату из-за более медленного (не катализируемого) окисления йодид-иона другими веществами, обнаруженными в моче.

Рис. 3. Тест-полоски обычно используются для определения наличия определенных веществ в моче человека. Многие тест-полоски имеют несколько подушечек, содержащих различные реагенты, что позволяет обнаруживать несколько веществ на одной полоске.(Источник: Икбал Осман)

Скорость реакции может быть выражена через изменение количества любого реагента или продукта и может быть просто получена из стехиометрии реакции. Рассмотрим реакцию, представленную следующим уравнением:

[латекс] 2 \ text {NH} _3 (g) \; {\ longrightarrow} \; \ text {N} _2 (g) \; + \; 3 \ text {H} _2 (g) [/ latex]

Стехиометрические коэффициенты, полученные из этого уравнения, могут использоваться для связи скоростей реакции таким же образом, как они используются для соответствующих количеств реагента и продукта.Соотношение между скоростями реакции, выраженными в единицах производства азота и потребления аммиака, например, составляет:

[латекс] — \; \ frac {{\ Delta} \ text {mol \; NH} _3} {{\ Delta} t} \; \ times \; \ frac {1 \; \ text {mol \; N } _2} {2 \; \ text {mol \; NH} _3} = \ frac {{\ Delta} \ text {mol \; N} _2} {{\ Delta} t} [/ latex]

Мы можем выразить это проще, не показывая единиц стехиометрического фактора:

[латекс] — \; \ frac {1} {2} \; \ frac {{\ Delta} \ text {mol \; NH} _3} {{\ Delta} t} = \ frac {{\ Delta} \ текст {mol \; N} _2} {{\ Delta} t} [/ latex]

Обратите внимание, что был добавлен отрицательный знак для учета противоположных знаков двух изменений количества (количество реагента уменьшается, а количество продукта увеличивается).Если реагенты и продукты присутствуют в одном растворе, молярные количества могут быть заменены на концентрации:

[латекс] — \; \ frac {1} {2} \; \ frac {{\ Delta} [\ text {NH} _3]} {{\ Delta} t} = \ frac {{\ Delta} [\ текст {N} _2]} {{\ Delta} t} [/ latex]

Точно так же скорость образования H 2 в три раза превышает скорость образования N 2 , потому что три моля H 2 образуются за время, необходимое для образования одного моля N 2 :

[латекс] \ frac {1} {3} \; \ frac {{\ Delta} [\ text {H} _2]} {{\ Delta} t} = \ frac {{\ Delta} [\ text {N } _2]} {{\ Delta} t} [/ latex]

На рис. 4 показано изменение концентраций во времени разложения аммиака на азот и водород при 1100 ° C.{-6} \; M / \ text {s}} \; {\ приблизительно} \; 3 [/ латекс]

Рисунок 4. На этом графике показаны изменения концентраций реагентов и продуктов во время реакции 2NH 3 → 3N 2 + H 2 . Скорости изменения трех концентраций связаны их стехиометрическими факторами, как показано разными наклонами касательных при t = 500 с.

Таким образом, для химической реакции:

aA + bB → cC + dD

скорость реакции может быть выражена как:

[латекс] \ text {скорость реакции} = — \ frac {1} {a} \; \ frac {{\ Delta} [A]} {{\ Delta} t} = — \ frac {1} {b } \; \ frac {{\ Delta} [B]} {{\ Delta} t} = \ frac {1} {c} \; \ frac {{\ Delta} [C]} {{\ Delta} t} = \ frac {1} {d} \; \ frac {{\ Delta} [D]} {{\ Delta} t} [/ latex]

Пример 1

Выражения для относительных скоростей реакций
Первым этапом производства азотной кислоты является сжигание аммиака:

[латекс] 4 \ text {NH} _3 (g) \; + \; 5 \ text {O} _2 (g) \; {\ longrightarrow} \; 4 \ text {NO} (g) \; + \ ; 6 \ text {H} _2 \ text {O} (g) [/ latex]

Напишите уравнения, связывающие скорости потребления реагентов и скорости образования продуктов.

Раствор
Учитывая стехиометрию этой гомогенной реакции, скорости расходования реагентов и образования продуктов составляют:

[латекс] — \ frac {1} {4} \; \ frac {{\ Delta} [\ text {NH} _3]} {{\ Delta} t} = — \ frac {1} {5} \; \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} = \ frac {1} {4} \; \ frac {{\ Delta} [\ text {NO}]} { {\ Delta} t} = \ frac {1} {6} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O}]} {{\ Delta} t} [/ latex]

Пример 2

Выражения скорости реакции для разложения H 2 O 2
График на рисунке 2 показывает скорость разложения H 2 O 2 во времени:

[латекс] 2 \ text {H} _2 \ text {O} _2 \; {\ longrightarrow} \; 2 \ text {H} _2 \ text {O} \; + \; \ text {O} _2 [/ латекс]

На основании этих данных, мгновенная скорость разложения H 2 O 2 при t = 11.{-1} [/ латекс]

Какова мгновенная скорость производства H 2 O и O 2 ?

Раствор
Используя стехиометрию реакции, мы можем определить, что:

[латекс] — \ frac {1} {2} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O} _2]} {{\ Delta} t} = \ frac {1} {2} \; \ frac {{\ Delta} [\ text {H} _2 \ text {O}]} {{\ Delta} t} = \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} [/ латекс]

Следовательно:

[латекс] \ frac {1} {2} \; \ times \; 3. {- 1} = \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} [/ latex]

и

[латекс] \ frac {{\ Delta} [\ text {O} _2]} {{\ Delta} t} = 1.{-1} [/ латекс]

Это означает, что если мы знаем скорость изменения одного химического вещества (реагента или продукта) в реакции, мы сможем вычислить скорость изменения для всех других химикатов.

Скорость реакции может быть выражена либо через уменьшение количества реагента, либо через увеличение количества продукта в единицу времени. Соотношения между различными выражениями скорости для данной реакции выводятся непосредственно из стехиометрических коэффициентов уравнения, представляющего реакцию.

  • относительные скорости реакции для [латекса] a \ text {A} \; {\ longrightarrow} \; b \ text {B} = — \ frac {1} {a} \; \ frac {{\ Delta} [\ текст {A}]} {{\ Delta} t} = \ frac {1} {b} \; \ frac {{\ Delta} [\ text {B}]} {{\ Delta} t} [/ latex]

Озон разлагается до кислорода согласно уравнению [латекс] 2 \ text {O} _3 (g) \; {\ longrightarrow} \; 3 \ text {O} _2 (g) [/ latex]. Напишите уравнение, связывающее выражения скорости этой реакции через исчезновение O 3 и образование кислорода.
В ядерной промышленности трифторид хлора используется для получения гексафторида урана, летучего соединения урана, используемого для разделения изотопов урана. Трифторид хлора получают по реакции [латекс] \ text {Cl} _2 (g) \; + \; 3 \ text {F} _2 (g) \; {\ longrightarrow} \; 2 \ text {ClF} _3 ( г) [/ латекс]. Напишите уравнение, связывающее выражения скорости этой реакции с точки зрения исчезновения Cl 2 и F 2 и образования ClF 3 .
Исследование скорости димеризации C 4 H 6 дало данные, представленные в таблице:
[латекс] 2 \ text {C} _4 \ text {H} _6 \; {\ longrightarrow} \; \ text {C} _8 \ text {H} _ {12} [/ latex]

Время (с) 0 1600 3200 4800 6200
[C 4 H 6 ] ( M ) 1.00 × 10 −2 5,04 × 10 −3 3,37 × 10 −3 2,53 × 10 −3 2,08 × 10 −3
Таблица 1.

(a) Определите среднюю скорость димеризации от 0 до 1600 с и от 1600 до 3200 с.

(b) Оцените мгновенную скорость димеризации на 3200 с по графику зависимости времени от [C 4 H 6 ].Какие единицы этой ставки?

(c) Определите среднюю скорость образования C 8 H 12 за 1600 с и мгновенную скорость образования через 3200 с из скоростей, найденных в частях (a) и (b).

Исследование скорости реакции, представленной как [латекс] 2A \; {\ longrightarrow} \; B [/ latex], дало следующие данные:

Время (с) 0,0 5,0 10,0 15,0 20,0 25.0 35,0
[ A ] ( M ) 1,00 0,952 0,625 0,465 0,370 0,308 0,230
Таблица 2.

(a) Определите среднюю скорость исчезновения A от 0,0 до 10,0 с и от 10,0 до 20,0 с.

(b) Оцените мгновенную скорость исчезновения A через 15.{+} (aq) \; {\ longrightarrow} \; 3 \ text {Br} _2 (aq) \; + \; 3 \ text {H} _2 \ text {O} (l) [/ latex]

Если скорость исчезновения Br ( водн. ) в определенный момент реакции составляет 3,5 × 10 −4 M с −1 , то какова скорость появления Br 2 ( водн. ) в тот момент?

Глоссарий

средняя оценка
Скорость химической реакции, вычисляемая как отношение измеренного изменения количества или концентрации вещества к интервалу времени, в течение которого это изменение произошло
начальная ставка
мгновенная скорость химической реакции при т = 0 с (сразу после начала реакции)
мгновенная скорость
Скорость химической реакции в любой момент времени, определяемая наклоном касательной к графику концентрации как функции времени
скорость реакции
Мера скорости, с которой протекает химическая реакция
скорость выражения
математическое представление, связывающее скорость реакции с изменениями количества, концентрации или давления реагентов или продуктов в единицу времени

Решения

Ответы на упражнения в конце главы по химии

1.Мгновенная скорость — это скорость реакции в любой конкретный момент времени, период времени, который настолько короткий, что концентрации реагентов и продуктов изменяются на незначительную величину. Начальная скорость — это мгновенная скорость реакции, когда она начинается (когда продукт только начинает образовываться). Средняя скорость — это средняя мгновенная скорость за период времени.

3. [латекс] \ text {rate} = + \ frac {1} {2} \; \ frac {{\ Delta} [\ text {CIF} _3]} {{\ Delta} t} = — \ frac {{\ Delta} [\ text {Cl} _2]} {{\ Delta} t} = — \ frac {1} {3} \; \ frac {{\ Delta} [\ text {F} _2]} { {\ Delta} t} [/ латекс]

5.(а) средняя скорость, 0 — 10 с = 0,0375 моль л −1 с −1 ; средняя скорость, 12 — 18 с = 0,0225 моль л −1 с −1 ; (б) мгновенная скорость, 15 с = 0,0500 моль л −1 с −1 ; (c) средняя скорость образования B = 0,0188 моль л -1 с -1 ; мгновенная скорость образования B = 0,0250 моль л −1 с −1

.

Добавить комментарий

Ваш адрес email не будет опубликован.