Уравнение с решением: Решение уравнений бесплатно — Калькулятор Онлайн

4-x=0
Решение Тригонометрих уравнений sin(2*x)=1

Содержание

Правила ввода уравнений

В поле ‘Уравнение’ можно делать следующие операции:

Правила ввода выражений и функций

Выражения могут состоять из функций (обозначения даны в алфавитном порядке):

absolute(x)
Абсолютное значение x
(модуль x или |x|)
arccos(x)
Функция — арккосинус от x
arccosh(x)
Арккосинус гиперболический от x
arcsin(x)
Арксинус от x
arcsinh(x)
Арксинус гиперболический от x
arctg(x)
Функция — арктангенс от x
arctgh(x)
Арктангенс гиперболический от x
exp(x)
Функция — экспонента от x (что и e^x)
log(x) or ln(x)
Натуральный логарифм от x
(Чтобы получить log7(x), надо ввести log(x)/log(7) (или, например для log10(x)=log(x)/log(10))
sin(x)
Функция — Синус от x
cos(x)
Функция — Косинус от x
sinh(x)
Функция — Синус гиперболический от x
cosh(x)
Функция — Косинус гиперболический от x
sqrt(x)
Функция — квадратный корень из x
sqr(x) или x^2
Функция — Квадрат x
ctg(x)
Функция — Котангенс от x
arcctg(x)
Функция — Арккотангенс от x
arcctgh(x)
Функция — Гиперболический арккотангенс от x
tg(x)
Функция — Тангенс от x
tgh(x)
Функция — Тангенс гиперболический от x
cbrt(x)
Функция — кубический корень из x
gamma(x)
Гамма-функция
LambertW(x)
Функция Ламберта
x! или factorial(x)
Факториал от x

В выражениях можно применять следующие операции:

Действительные числа
вводить в виде 7. 3
— возведение в степень
x + 7
— сложение
x — 6
— вычитание
15/7
— дробь

Другие функции:

asec(x)
Функция — арксеканс от x
acsc(x)
Функция — арккосеканс от x
sec(x)
Функция — секанс от x
csc(x)
Функция — косеканс от x
floor(x)
Функция — округление x в меньшую сторону (пример floor(4.5)==4.0)
ceiling(x)
Функция — округление x в большую сторону (пример ceiling(4.5)==5.0)
sign(x)
Функция — Знак x
erf(x)
Функция ошибок (или интеграл вероятности)
laplace(x)
Функция Лапласа
asech(x)
Функция — гиперболический арксеканс от x
csch(x)
Функция — гиперболический косеканс от x
sech(x)
Функция — гиперболический секанс от x
acsch(x)
Функция — гиперболический арккосеканс от x

Постоянные:

pi
Число «Пи», которое примерно равно ~3. n} \)

6) an > 0

7) an > 1, если a > 1, n > 0

8) anm, если a > 1, n

9) an > am, если 0

В практике часто используются функции вида y = ax, где a — заданное положительное число, x — переменная.
Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является
показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.

Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.

Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, \( a \neq 1\), не имеет корней,
если \( b \leqslant 0\), и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и
убывающей, если 0
Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и
расположен выше оси Oх.

Если х x при a > 0.

Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является
горизонтальной асимптотой графика.

Если х



Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т. е. уравнений, в которых неизвестное содержится в показателе степени.
Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, \( a \neq 1\),
х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны
тогда и только тогда, когда равны их показатели.

Решить уравнение 23x • 3x = 576

Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде
8x • 3x = 242, или в виде 24x = 242, откуда х = 2.

Ответ х = 2

Решить уравнение 3х + 1 — 2 • 3x — 2 = 25

Вынося в левой части за скобки общий множитель 3х — 2, получаем 3х — 2(33 — 2) = 25,
3х — 2 • 25 = 25,

откуда 3х — 2 = 1, x — 2 = 0, x = 2

Ответ х = 2

Решить уравнение 3х = 7х

Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac{3^x}{7^x} = 1 \), откуда \( \left( \frac{3}{7} \right) ^x = 1 \), х = 0

Ответ х = 0

Решить уравнение 9х — 4 • 3х — 45 = 0

Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 — 4t — 45 = 0. {x-2} = 1 \)

x — 2 = 0

Ответ х = 2

Решить уравнение 3|х — 1| = 3|х + 3|

Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|

Возводя это уравнение в квадрат, получаем его следствие (х — 1)2 = (х + 3)2, откуда

х2 — 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1

Проверка показывает, что х = -1 — корень исходного уравнения.

Ответ х = -1

Как решать линейные уравнения — формулы и примеры решения простейших уравнений

Понятие уравнения

Понятие уравнения обычно проходят в самом начале школьного курса алгебры. Его определяют, как равенство с неизвестным числом, которое нужно найти.

В школьной программе за 7 класс впервые появляется понятие переменных. Их принято обозначать латинскими буквами, которые принимают разные значения. Исходя из этого можно дать более полное определение уравнению.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так: ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Система уравнений — это несколько уравнений, для которых нужно найти значения неизвестных. Она имеет вид ax + by + c = 0 и называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому выражению и является верным числовым равенством.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

  • кубические
  • уравнение четвёртой степени
  • иррациональные и рациональные
  • системы линейных алгебраических уравнений

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Как решаем:

  1. Перенесем 6x из левой части в правую. Знак меняем на противоположный, то есть минус.

    6x −5x = 10

  2. Приведем подобные и завершим решение.

    x = 10

Ответ: x = 10.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

Как решаем:

  1. Сократим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | :(−4)
    x = −3

Ответ: x = −3.

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте схему-подсказку — храните ее в телефоне, учебники или на рабочем столе.

А вот и видео «Простейшие линейные уравнения» для тех, кто учиться в 5, 6 и 7 классе.

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

Решаем так:

  1. Перенести 1 из левой части в правую со знаком минус.

    6х = 19 — 1

  2. Выполнить вычитание.

    6х = 18

  3. Разделить обе части на общий множитель, то есть 6.

    х = 2

Ответ: х = 2.

Пример 2. Как решить уравнение: 5(х — 3) + 2 = 3 (х — 4) + 2х — 1.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены.

    5х — 3х — 2х = — 12 — 1 + 15 — 2

  3. Приведем подобные члены.

    0х = 0

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

Решаем так:

  1. Найти неизвестную переменную.

    х = 1/8 : 4

    х = 1/12

Ответ: 1/12 или 0,83. О десятичных дробях можно почитать здесь.

Пример 4. Решить: 4(х + 2) = 6 — 7х.

Решаем так:

  1. 4х + 8 = 6 — 7х
  2. 4х + 7х = 6 — 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = — 0, 18

Ответ: — 0,18.

Пример 5. Решить:

Решаем так:

  1. 3(3х — 4) = 4 · 7х + 24
  2. 9х — 12 = 28х + 24
  3. 9х — 28х = 24 + 12
  4. -19х = 36
  5. х = 36 : (-19)
  6. х = — 36/19

Ответ: 1 17/19.

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

Решаем так:

  1. Раскрыть скобки

    5х — 15 + 2 = 3х — 2 + 2х — 1

  2. Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    х — х = 4 — 7

  3. Приведем подобные члены.

    0 * х = — 3

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 — 7х..

Решаем так:

  1. 2х + 6 = 5 — 7х
  2. 2х + 6х = 5 — 7
  3. 8х = −2
  4. х = −2 : 8
  5. х = — 0,25

Ответ: — 0,25.



Урок 26. уравнение. решение уравнений подбором неизвестного числа — Математика — 2 класс

Математика, 2 класс

Урок №26. Уравнение. Решение уравнений подбором неизвестного числа

Перечень вопросов, рассматриваемых в теме:

— Что такое уравнение, корень уравнения?

— Как решить уравнение?

Глоссарий по теме:

Уравнение – равенство, содержащее неизвестное число, которое надо найти.

Корень уравнения – это значение буквы, при котором из уравнения получается верное равенство.

Решить уравнение, значит найти его корни.

Основная и дополнительная литература по теме урока

1. Моро М. И., Бантова М. А., Бельтюкова Г. В. и др. Математика. 2 класс. Учебник для общеобразовательных организаций. В 2 ч. Ч.1.– 8-е изд. – М.: Просвещение, 2017. – С. 80-81.

2. Моро М. И., Бантова М. А. Математика. Рабочая тетрадь. 2 класс. Учебное пособие для общеобразовательных организаций. В 2 ч. Ч.1. – 6-е изд., дораб. – М.: Просвещение, 2016. – С. 60.

3. Моро М. И., Волкова С. И. Для тех, кто любит математику. Пособие для учащихся общеобразовательных организаций. 9-е изд. – М.: Просвещение, 2014. – С. 60.

Теоретический материал для самостоятельного изучения

Вы умеете читать буквенные выражения. Например:

Вы уже знаете, что равенства бывают верные и неверные.

Рассмотрим верное равенство с окошком: + 4 = 12

Запишем вместо окошка маленькую латинскую букву , как в буквенное выражение. Какое число надо поместить вместо буквы х, чтобы равенство стало верным?

Это число 8. Получили верное равенство: сумма чисел 8 и 4 равна 12.

х + 4 = 12

х = 8

8 + 4 = 12

Равенство с буквой , которое мы записали – это уравнение.

Неизвестное число обозначается маленькими латинскими буквами, как и в буквенном выражении.

Решить уравнение – значит найти все такие значения х (если они есть), при которых равенство будет верным. Значение буквы, при котором из уравнения получается верное равенство, называется корень уравнения.

Решим уравнение 10 – d = 6 способом подбора.

Возьмём число 5. Сейчас проверим, верно ли подобрали число. Заменим d в уравнении числом 5. Получим равенство: 10 – 5 = 6. Оно неверно. Значит, число подобрали неверно.

Попробуем взять другое число. Например, 4. При подстановке его вместо d получили верное равенство: 10 – 4 = 6. Значит, число четыре – корень уравнения, его решение.

Сейчас мы с вами рассмотрим, как по схеме составить уравнение. Перед нами такая схема. Изучим, что обозначает каждое число в схеме. Число 27 обозначает «целое». Оно состоит из двух частей. Первая «часть» – это число 20, вторая «часть» – это число х.

20 х

27

Воспользуемся правилом,

ЧАСТЬ + ЧАСТЬ = ЦЕЛОЕ

Запишем равенства:

20 + x = 27

27 – x = 20

Рассмотрим другой пример. Перед вами другая схема. Изучим, где на схеме целое, а где части: х — это «целое», а 30 и 6 – это части.

30 6

х

Воспользуемся правилом,

Вывод: Уравнение – это равенство, содержащее неизвестное число, которое надо найти. Когда решение уравнения находится легко, пользуются способом подбора. Нужно подобрать такое число, чтобы получилось верное равенство.

Тренировочные задания.

  1. Соедините уравнение с его решением.

Правильные ответы:

2. Выберите и подчеркните среди математических записей уравнения.

15 + 6 = 21

17 – d

b + 3 = 12

3 + 5 > 6

48 – a = 8

9 + e < 39

k – 4 = 10

Правильные ответы:

15 + 6 = 21

17 – d

b + 3 = 12

3 + 5 > 6

48 – a = 8

9 + e < 39

k – 4 = 10

Урок 27. решение уравнений вида: х ∙ 8 = 26 + 70, х : 6 = 18 ∙ 5, 80 : х = 46 – 30 — Математика — 4 класс

Математика, 4 класс

Урок № 27. Решение уравнений вида: х · 8 = 26 + 70, х : 6 = 18 · 5,80 : х = 46 – 30

Перечень вопросов, рассматриваемых в теме:

— как решать уравнения вида: x∙ 8 = 26 + 70, x : 6 = 18 ∙ 5, 80 : x = 46 – 30

— какой алгоритм решения данных уравнений?

Глоссарий по теме:

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Алгоритм — последовательность действия (шагов)

Решить уравнение – это значит найти такое значение неизвестного числа, при котором равенство будет верным.

Основная и дополнительная литература по теме урока:

1. Моро М.И., Бантова М.А. и др. Математика 4 класс. Учебник для общеобразовательных организаций. Ч.1 — М.; Просвещение, 2017. – с.80

2. Моро М.И., Волкова С.И. Математика. Рабочая тетрадь 4 класс. Часть 1. М.; Просвещение, 2016. – с.34,35

3. Волкова С.И. Математика. Проверочные работы 4 класс. М.; Просвещение, 2017. – с.44-45.

4. Волкова С.И. Математика. Тесты 4 класс. М.; Просвещение, 2017. – с.40-41.

5. Кочергина А.В. Учим математику с увлечением (Методическая библиотека). М.: 5 за знания, 2007. – с.159.

Теоретический материал для самостоятельного изучения

Вспомните, как связаны между собой числа при умножении.

Посмотрите, множитель 20, множитель 3, произведение 60.

Если 60 разделить на 20, получится 3.

Если 60 разделить на 3, получится 20.

Значит, если произведение разделить на один из множителей, то получится другой множитель. Это правило потребуется при решении уравнений, в которых неизвестен один из множителей.

20 ∙ 3 = 60

60 : 20 = 3

60 : 3 = 20

Решим уравнение:

произведение неизвестного числа и числа 7 равно числу 91. В нем неизвестен первый множитель. Как его найти? Для нахождения неизвестного первого множителя надо произведение 91 разделить на известный множитель 7. Делим 91 на 7 — получаем 13. Выполним проверку. Подставим в уравнение вместо икс число 13.

13 умножить на 7 получим 91. Получили верное равенство:

91 равно девяносто одному. Значит, решили правильно.

А теперь догадайтесь, как решить уравнение: произведение неизвестного числа и числа 7 равно сумме чисел восьмидесяти и одиннадцати. Найдем значение выражения в правой части уравнения: 80 плюс 11 равно 91. Тем самым мы получили уравнение, которое уже умеем решать. Посмотрите, как записывается решение этого уравнения и его проверка.

Вспомним, как связаны между собой числа при делении.

Посмотрите: делимое 15, делитель 3, частное равно пяти.

Если делитель 3 умножить на частное 5, получим делимое 15.

Если делимое 15 разделить на частное 5, получим делитель 3.

15 : 3 = 5

3 ∙ 5 = 15

15 : 5 = 3

Знание связей между делимым, делителем и частным потребуется для решения уравнений, в которых неизвестен один из компонентов: делимое или делитель. Посмотрите, как решаются такие уравнения. В первом уравнении неизвестно делимое. Чтобы его найти, нужно делитель 3 умножить на частное 9.

Во втором уравнении неизвестен делитель. Чтобы его найти, нужно делимое 45 разделить на частное 3.

А как решить такое уравнение? Вычислим произведение в правой части: 18 умножить на 5 получим 90. Получается уравнение, в котором неизвестно делимое. Вы уже знаете, как его решать. Выполним проверку решения уравнения. Подставим число 540 вместо икс, вычислим левую часть и правую часть выражения: 90 равно 90. Значит уравнение решили верно.

Задания тренировочного модуля:

1.К каждой позиции первого столбца подберите соответствующую позицию второго.

91 : х = 13

x = 20

х : 21=4

x = 7

24 ∙x = 96

x = 84

x∙ 3 = 60

x = 4

Правильный ответ:

91 : х = 13

x = 7

х : 21= 4

x = 84

24 ∙x = 96

x = 4

x∙3 = 60

x = 20

2. Выполните вычисления и выделите верный ответ:

7 ∙x = 140 : 2

Варианты ответов: 10, 400, 2

Правильный вариант:

10

3.Решите уравнение, подчеркните правильный ответ:

(80 : у) ∙ 700 = 2800

Варианты ответов:

2, 4, 20

Правильные варианты:

20

Показательные уравнения (ЕГЭ №15 и ЕГЭ№ 13)

\( {{3}^{3x+1}}-4\cdot {{9}^{x}}=17\cdot {{3}^{x}}-6\)

Решение:

Ясно, что скорее всего заменять придется \( {{3}^{x}}\) (это наименьшая из степеней, входящая в наше уравнение). {2}}-17t+6=0\)

имеет три корня:

\( {{t}_{1}}=3,~{{t}_{2}}=\frac{1}{3},~{{t}_{3}}=-2\).

Последний корень мы, конечно, отбросим, поскольку он меньше нуля. А первые два после обратной замены дадут нам два корня:

\( {{x}_{1}}=1,~{{x}_{2}}=-1\).

Ответ: \( {{x}_{1}}=1,~{{x}_{2}}=-1\).

Этим примером я отнюдь не хотел напугать тебя!

Скорее наоборот, я ставил своей целью показать, что хоть у нас была довольно простая замена, тем не менее она привела к довольно сложному уравнению, решение которого потребовало от нас некоторых особых навыков.

Ну что же, от этого никто не застрахован. Зато замена в данном случае была довольно очевидной.

Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Тригонометрия

      Простейшими тригонометрическими уравнениями называют уравнения вида:

sin x = a ,     cos x = a ,     
tg x = a ,     ctgx = a .

где a – произвольное число.

Решение уравнения   sin 

x = a

Обычная форма
записи решения
Более удобная форма
записи решения
Ограничения
на число a
В случае, когда ,
уравнение решений не имеет

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a:

В случае, когда , уравнение решений не имеет.

      Графическое обоснование решения уравнения   sin x = a представлено на рисунке 1

Рис. 1

Частные случаи решения уравнений   sin x = a

Уравнение:

sin x = – 1

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

>

Уравнение:

sin x = 0

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

sin x = 1

Решение:

Решение уравнения   cos 

x = a

Обычная форма
записи решения
Более удобная форма
записи решения
Ограничения
на число a
В случае, когда ,
уравнение решений не имеет

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a

В случае, когда , уравнение решений не имеет.

      Графическое обоснование решения уравнения   cos x = a   представлено на рисунке 2

Рис. 2

Частные случаи решения уравнений   cos x = a

Уравнение:

cos x = – 1

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

cos x = 0

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

Решение:

Уравнение:

cos x = 1

Решение:

Решение уравнения   tg 

x = a

Обычная форма
записи решения:
Более удобная форма
записи решения
Ограничения
на число a
Ограничений нет

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a:

Ограничений нет.

      Графическое обоснование решения уравнения   tg x = a представлено на рисунке 3.

Рис. 3

Частные случаи решения уравнений   tg x = a

Уравнение:

Решение:

Уравнение:

tg x = – 1

Решение:

Уравнение:

Решение:

Уравнение:

tg x = 0

Решение:

Уравнение:

Решение:

Уравнение:

tg x = 1

Решение:

Уравнение:

Решение:

Решение уравнения   ctg 

x = a

Обычная форма
записи решения
Более удобная форма
записи решения
Ограничения
на число a
Ограничений нет

Обычная форма записи решения:

Более удобная форма записи решения:

Ограничения на число a:

Ограничений нет.

    Графическое обоснование решения уравнения   ctg x = a представлено на рисунке 4.

Рис. 4

Частные случаи решения уравнений   ctg x = a

Уравнение:

Решение:

Уравнение:

ctg x = – 1

Решение:

Уравнение:

Решение:

Уравнение:

ctg x = 0

Решение:

Решение:

Уравнение:

ctg x = 1

Решение:

Уравнение:

Решение:

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Решение уравнений

Решение уравнений с одной переменной

An

уравнение

представляет собой математическое выражение, состоящее из знака равенства между двумя числовыми выражениями или выражениями переменных, как в

3

Икс

+

5

знак равно

11

.

А

решение

к уравнению это число
который может быть подключен к

Переменная

сделать истинное числовое утверждение.


Пример 1:

Подстановка

2

для

Икс

в

3

Икс

+

5

знак равно

11

дает

3

(

2

)

+

5

знак равно

11

, в котором говорится

6

+

5

знак равно

11

; это правда!

Так

2

это решение.

По факту,

2

ЕДИНСТВЕННОЕ решение

3

Икс

+

5

знак равно

11

.

Некоторые уравнения могут иметь более одного решения, бесконечно много решений или вообще не иметь решений.


Пример 2:

Уравнение

Икс

2

знак равно

Икс

имеет два решения,

0

а также

1

, поскольку

0

2

знак равно

0

а также

1

2

знак равно

1

.Никакой другой номер не работает.


Пример 3:

Уравнение

Икс

+

1

знак равно

1

+

Икс

верно для

все реальные числа

. Оно имеет

бесконечно много

решения.


Пример 4:

Уравнение

Икс

+

1

знак равно

Икс

является

никогда

верно для

любой

настоящий номер. Оно имеет

нет решений

.

В

набор

содержащее все решения уравнения, называется

набор решений

для этого уравнения.


Уравнение


Набор решений

3

Икс

+

5

знак равно

11

{

2

}

Икс

2

знак равно

Икс

{

0

,

1

}

Икс

+

1

знак равно

1

+

Икс

р

(набор всех действительных чисел)

Икс

+

1

знак равно

Икс



(пустой набор)

Иногда вас могут попросить решить уравнение над определенным

домен

. Здесь возможности для значений

Икс

ограничены.


Пример 5:

Решите уравнение

Икс

2

знак равно

Икс

по домену

{

0

,

1

,

2

,

3

}

.

Это немного сложное уравнение; это не

линейный

и это не

квадратичный

, поэтому у нас нет хорошего метода ее решения.Однако, поскольку домен содержит только четыре числа, мы можем просто использовать метод проб и ошибок.

0

2

знак равно

0

знак равно

0

1

2

знак равно

1

знак равно

1

2

2

2

3

2

3

Итак

набор решений

в данном домене

{

0

,

1

}

.

Решение уравнений с двумя переменными

Решения для уравнения с одной переменной:

числа

. С другой стороны, решения уравнения с двумя переменными имеют вид

заказанные пары

в виде

(

а

,

б

)

.


Пример 6:

Уравнение

Икс

знак равно

у

+

1

верно, когда

Икс

знак равно

3

а также

у

знак равно

2

.Итак, заказанная пара

(

3

,

2

)

является решением уравнения.

Есть бесконечно много других решений этого уравнения, например:

(

4

,

3

)

,

(

11

,

10

)

,

(

5. 5

,

4.5

)

,

и т.п.

Упорядоченные пары, которые являются решениями уравнения с двумя переменными, можно изобразить на

декартова плоскость

. Результатом может быть линия или интересная кривая, в зависимости от уравнения. Смотрите также

построение графиков линейных уравнений

а также

построение графиков квадратных уравнений

.

Решайте неравенства с помощью программы «Пошаговое решение математических задач»

В этой главе мы разработаем определенные методы, которые помогут решить проблемы, сформулированные на словах.Эти методы включают переписывание задач в виде символов. Например, заявленная проблема

«Найдите число, которое при добавлении к 3 дает 7»

можно записать как:

3+? = 7, 3 + n = 7, 3 + x = 1

и так далее, где символы?, N и x представляют число, которое мы хотим найти. Мы называем такие сокращенные версии поставленных задач уравнениями или символическими предложениями. Такие уравнения, как x + 3 = 7, являются уравнениями первой степени, поскольку переменная имеет показатель степени 1.Члены слева от знака равенства составляют левую часть уравнения; те, что справа, составляют правую часть. Таким образом, в уравнении x + 3 = 7 левый член равен x + 3, а правый член равен 7.

РЕШЕНИЕ УРАВНЕНИЙ

Уравнения могут быть истинными или ложными, так же как словесные предложения могут быть истинными или ложными. Уравнение:

3 + х = 7

будет ложным, если вместо переменной подставлено любое число, кроме 4. Значение переменной, для которой верно уравнение (4 в этом примере), называется решением уравнения.Мы можем определить, является ли данное число решением данного уравнения, подставив число вместо переменной и определив истинность или ложность результата.

Пример 1 Определите, является ли значение 3 решением уравнения

4x — 2 = 3x + 1

Решение Мы подставляем значение 3 вместо x в уравнение и смотрим, равен ли левый член правому.

4 (3) — 2 = 3 (3) + 1

12 — 2 = 9 + 1

10 = 10

Отв.3 — это решение.

Уравнения первой степени, которые мы рассматриваем в этой главе, имеют не более одного решения. Решения многих таких уравнений можно определить путем осмотра.

Пример 2 Найдите решение каждого уравнения путем осмотра.

а. х + 5 = 12
б. 4 · х = -20

Решения а. 7 — решение, так как 7 + 5 = 12.
b. -5 — это решение, поскольку 4 (-5) = -20.

РЕШЕНИЕ УРАВНЕНИЙ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ СЛОЖЕНИЯ И ВЫЧИСЛЕНИЯ

В разделе 3.1 мы решили путем проверки несколько простых уравнений первой степени. Однако решения большинства уравнений не сразу видны при осмотре. Следовательно, нам нужны некоторые математические «инструменты» для решения уравнений.

ЭКВИВАЛЕНТНЫЕ УРАВНЕНИЯ

Эквивалентные уравнения — это уравнения, которые имеют идентичные решения. Таким образом,

3x + 3 = x + 13, 3x = x + 10, 2x = 10 и x = 5

являются эквивалентными уравнениями, потому что 5 — единственное решение каждого из них. Обратите внимание, что в уравнении 3x + 3 = x + 13 решение 5 не очевидно при осмотре, но в уравнении x = 5 решение 5 очевидно при осмотре.Решая любое уравнение, мы преобразуем данное уравнение, решение которого может быть неочевидным, в эквивалентное уравнение, решение которого легко заметить.

Следующее свойство, иногда называемое свойством сложения-вычитания , является одним из способов создания эквивалентных уравнений.

Если к обоим элементам прибавляется или вычитается одинаковое количество
уравнения, полученное уравнение эквивалентно исходному
уравнение.

в символах,

a — b, a + c = b + c и a — c = b — c

— эквивалентные уравнения.

Пример 1 Напишите уравнение, эквивалентное

х + 3 = 7

путем вычитания 3 из каждого члена.

Решение Если вычесть 3 из каждого члена, получится

х + 3 — 3 = 7 — 3

или

х = 4

Обратите внимание, что x + 3 = 7 и x = 4 являются эквивалентными уравнениями, поскольку решение одинаково для обоих, а именно 4. В следующем примере показано, как мы можем сгенерировать эквивалентные уравнения, сначала упростив один или оба члена уравнения.

Пример 2 Напишите уравнение, эквивалентное

4x- 2-3x = 4 + 6

, объединив одинаковые термины, а затем добавив по 2 к каждому члену.

Объединение одинаковых терминов дает

х — 2 = 10

Добавление 2 к каждому члену дает

х-2 + 2 = 10 + 2

х = 12

Чтобы решить уравнение, мы используем свойство сложения-вычитания, чтобы преобразовать данное уравнение в эквивалентное уравнение вида x = a, из которого мы можем найти решение путем проверки.

Пример 3 Решить 2x + 1 = x — 2.

Мы хотим получить эквивалентное уравнение, в котором все члены, содержащие x, находятся в одном члене, а все члены, не содержащие x, — в другом. Если мы сначала прибавим -1 к каждому члену (или вычтем 1 из него), мы получим

.

2x + 1-1 = x — 2-1

2х = х — 3

Если мы теперь прибавим -x к каждому члену (или вычтем x из него), мы получим

2х-х = х — 3 — х

х = -3

, где решение -3 очевидно.

Решением исходного уравнения является число -3; однако ответ часто отображается в виде уравнения x = -3.

Поскольку каждое уравнение, полученное в процессе, эквивалентно исходному уравнению, -3 также является решением 2x + 1 = x — 2. В приведенном выше примере мы можем проверить решение, подставив — 3 вместо x в исходном уравнении.

2 (-3) + 1 = (-3) — 2

-5 = -5

Симметричное свойство равенства также помогает при решении уравнений. В этом объекте указано

Если a = b, то b = a

Это позволяет нам менять местами члены уравнения в любое время, не беспокоясь о каких-либо изменениях знака.Таким образом,

Если 4 = x + 2, то x + 2 = 4

Если x + 3 = 2x — 5, то 2x — 5 = x + 3

Если d = rt, то rt = d

Может быть несколько разных способов применить свойство сложения, указанное выше. Иногда один метод лучше другого, а в некоторых случаях также полезно симметричное свойство равенства.

Пример 4 Решите 2x = 3x — 9. (1)

Решение Если мы сначала добавим -3x к каждому члену, мы получим

2x — 3x = 3x — 9 — 3x

-x = -9

, где переменная имеет отрицательный коэффициент.Хотя при осмотре мы можем видеть, что решение равно 9, поскольку — (9) = -9, мы можем избежать отрицательного коэффициента, добавив -2x и +9 к каждому члену уравнения (1). В этом случае получаем

2x-2x + 9 = 3x- 9-2x + 9

9 = х

, из которого решение 9 очевидно. При желании последнее уравнение можно записать как x = 9 по симметричному свойству равенства.

РЕШЕНИЕ УРАВНЕНИЙ С ИСПОЛЬЗОВАНИЕМ ДЕЛЕНИЯ

Рассмотрим уравнение

3x = 12

Решение этого уравнения — 4.Также обратите внимание, что если мы разделим каждый член уравнения на 3, мы получим уравнения

, решение которого также равно 4. В общем, мы имеем следующее свойство, которое иногда называют свойством деления.

Если оба члена уравнения делятся на одно и то же (ненулевое)
количество, полученное уравнение эквивалентно исходному уравнению.

в символах,

— эквивалентные уравнения.

Пример 1 Напишите уравнение, эквивалентное

-4x = 12

, разделив каждый член на -4.

Решение Разделив оба элемента на -4, получим

При решении уравнений мы используем указанное выше свойство для создания эквивалентных уравнений, в которых переменная имеет коэффициент 1.

Пример 2 Решите 3y + 2y = 20.

Сначала мы объединяем одинаковые термины, чтобы получить

5лет = 20

Тогда, разделив каждый член на 5, получим

В следующем примере мы используем свойство сложения-вычитания и свойство деления для решения уравнения.

Пример 3 Решить 4x + 7 = x — 2.

Решение

Сначала мы добавляем -x и -7 к каждому члену, чтобы получить

4x + 7 — x — 7 = x — 2 — x — 1

Далее, объединяя одинаковые термины, получаем

3x = -9

Наконец, мы разделим каждый член на 3, чтобы получить

РЕШЕНИЕ УРАВНЕНИЙ С ИСПОЛЬЗОВАНИЕМ УМНОЖЕНИЯ

Рассмотрим уравнение

Решение этого уравнения — 12. Также обратите внимание, что если мы умножим каждый член уравнения на 4, мы получим уравнения

, решение которого также равно 12.В общем, мы имеем следующее свойство, которое иногда называют свойством умножения.

Если оба члена уравнения умножаются на одну и ту же ненулевую величину, полученное уравнение эквивалентно исходному уравнению.

в символах,

a = b и a · c = b · c (c ≠ 0)

— эквивалентные уравнения.

Пример 1 Напишите уравнение, эквивалентное

.

путем умножения каждого члена на 6.

Решение Умножение каждого члена на 6 дает

При решении уравнений мы используем указанное выше свойство для создания эквивалентных уравнений, не содержащих дробей.

Пример 2 Решить

Решение Во-первых, умножьте каждый член на 5, чтобы получить

Теперь разделите каждый член на 3,

Пример 3 Решить.

Решение Во-первых, упростите над дробной чертой, чтобы получить

Затем умножьте каждый член на 3, чтобы получить

Наконец, разделив каждого члена на 5, получим

ДАЛЬНЕЙШИЕ РЕШЕНИЯ УРАВНЕНИЙ

Теперь мы знаем все методы, необходимые для решения большинства уравнений первой степени. Не существует определенного порядка, в котором следует применять свойства. Может оказаться подходящим любой один или несколько из следующих шагов, перечисленных на странице 102.

Шаги для решения уравнений первой степени:

  1. Объедините одинаковые члены в каждом члене уравнения.
  2. Используя свойство сложения или вычитания, запишите уравнение со всеми членами, содержащими неизвестное в одном члене, и всеми членами, не содержащими неизвестное в другом.
  3. Объедините одинаковые термины в каждом элементе.
  4. Используйте свойство умножения для удаления дробей.
  5. Используйте свойство деления, чтобы получить коэффициент 1 для переменной.

Пример 1 Решите 5x — 7 = 2x — 4x + 14.

Решение Во-первых, мы объединяем одинаковые термины, 2x — 4x, чтобы получить

5x — 7 = -2x + 14

Затем мы добавляем + 2x и +7 к каждому члену и объединяем одинаковые термины, чтобы получить

5x — 7 + 2x + 7 = -2x + 14 + 2x + 1

7x = 21

Наконец, мы разделим каждый член на 7, чтобы получить

В следующем примере мы упрощаем над полосой дроби перед применением свойств, которые мы изучали.

Пример 2 Решить

Решение Сначала мы объединяем одинаковые термины, 4x — 2x, чтобы получить

Затем мы добавляем -3 к каждому члену и упрощаем

Затем мы умножаем каждый член на 3, чтобы получить

Наконец, мы разделим каждый член на 2, чтобы получить

РЕШЕНИЕ ФОРМУЛ

Уравнения, в которых используются переменные для измерения двух или более физических величин, называются формулами. Мы можем найти любую из переменных в формуле, если известны значения других переменных.Мы подставляем известные значения в формулу и решаем неизвестную переменную методами, которые мы использовали в предыдущих разделах.

Пример 1 В формуле d = rt найти t, если d = 24 и r = 3.

Решение Мы можем найти t, заменив 24 на d и 3 на r. То есть

d = rt

(24) = (3) т

8 = т

Часто бывает необходимо решить формулы или уравнения, в которых есть более одной переменной для одной из переменных в терминах других. Мы используем те же методы, которые продемонстрированы в предыдущих разделах.

Пример 2 В формуле d = rt найдите t через r и d.

Решение Мы можем решить для t в терминах r и d, разделив оба члена на r, чтобы получить

из которых по закону симметрии

В приведенном выше примере мы решили для t, применив свойство деления для создания эквивалентного уравнения. Иногда необходимо применить более одного такого свойства.

Пример 3 В уравнении ax + b = c найдите x через a, b и c.

Решение Мы можем решить для x, сначала добавив -b к каждому члену, чтобы получить

, затем разделив каждый член на a, мы получим

РЕШЕНИЕ УРАВНЕНИЙ

РЕШЕНИЕ УРАВНЕНИЙ

В этом разделе показан процесс решения уравнений различных форм.Здесь также показано, как проверить свой ответ тремя разными способами:
алгебраически, графически и с использованием концепции эквивалентности.
В следующей таблице приведены частичные списки типичных уравнений.

ЛИНЕЙНЫЕ УРАВНЕНИЯ — Решите относительно x в следующих уравнениях.

  1. x — 4 = 10
    Решение
  2. 2 x — 4 = 10
    Решение
  3. 5x — 6 = 3 x — 8
    Решение
  4. Решение

  5. Решение
  6. 2 (3 x -7) + 4 (3 x + 2) = 6 (5 x + 9) + 3
    Решение
  7. Решение

УРАВНЕНИЯ, СОДЕРЖАЩИЕ РАДИКАЛ (S) — Решите для x следующим образом
уравнения.

  1. Решение

  2. Решение

  3. Решение

  4. Решение

  5. Решение

  6. Решение

  7. Решение

УРАВНЕНИЯ, СОДЕРЖАЩИЕ АБСОЛЮТНЫЕ ЗНАЧЕНИЯ — Решите для x в
следующие уравнения.

  1. Решение

  2. Решение

  3. Решение

  4. Решение

  5. Решение

КВАДРАТИЧЕСКИЕ УРАВНЕНИЯ — Решите относительно x следующим образом
уравнения.

  1. x
    Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение

УРАВНЕНИЯ , ВКЛЮЧАЮЩИЕ ДОБИ — Решите для x следующим образом
уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение

ЭКСПОНЕНЦИАЛЬНЫЕ УРАВНЕНИЯ — Решите для x в следующих
уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение
  6. Решение
  7. Решение

ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ — Решите для x в следующем
уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение

  6. Решение

  7. Решение

ТРИГОНОМЕТРИЧЕСКИЕ УРАВНЕНИЯ — Решите для x следующим образом
уравнения.

  1. Решение
  2. Решение
  3. Решение
  4. Решение
  5. Решение
  6. Решение
  7. Решение
  8. Решение
  9. Решение
  10. Решение
  11. Решение
  12. Решение

[Алгебра]
[Тригонометрия]

[Геометрия]
[Дифференциальные уравнения]

[Исчисление]
[Комплексные переменные]
[Матричная алгебра]

С. Домашняя страница O.S MATHematics

Вам нужна дополнительная помощь? Пожалуйста, разместите свой вопрос на нашем

S.O.S. Математика CyberBoard.

Автор: Нэнси Маркус

Авторские права 1999-2021 MathMedics, LLC. Все права защищены.

Свяжитесь с нами

Math Medics, LLC. — П.О. Box 12395 — El Paso TX 79913 — США

пользователей онлайн за последний час

Решение уравнения | Энциклопедия.com

Методы решения простых уравнений

Решение более сложных уравнений

Решение уравнений с несколькими переменными

Решение уравнений второй степени и выше

Ресурсы

Решение уравнения — это набор всех значений, которые при замене неизвестных сделать уравнение истинным. Для уравнений с одним неизвестным, возведенным в единственную степень, для определения его решений используются два фундаментальных правила алгебры, включая свойство аддитивности и свойство мультипликативности. Решения для уравнений с несколькими неизвестными переменными находятся с использованием принципов системы уравнений. Уравнения с членами в степени, большей единицы, могут быть решены путем факторизации, а в некоторых конкретных случаях — квадратного уравнения.

Идея решения уравнений существовала еще со времен древних египтян и вавилонян. В то время они использовали простые алгебраические методы для поиска решений практических проблем, связанных с их повседневной жизнью.Методы, используемые древними, были сохранены в трактате, написанном арабским математиком Аль-Коваризми 825 г. н.э.). В эту работу он включает методы решения линейных уравнений, а также уравнений второй степени. Решения некоторых уравнений более высокой степени были разработаны в шестнадцатом веке итальянским математиком Джероламо Кардано (1501–1576).

Уравнение — это алгебраическое выражение, которое обычно связывает неизвестные переменные с другими переменными или константами. Например, уравнение x + 2 = 15 равно y 2 = 4. Решение или корень уравнения — это любое значение или набор значений, которые можно подставить в уравнение, чтобы сделать его истинным утверждением. Для первого примера решение для x равно 13. Во втором примере есть два значения, которые делают утверждение истинным, а именно 2 и –2. Эти значения составляют набор решений уравнения.

Используя два основных правила алгебры, можно получить решения многих простых уравнений. Первое правило гласит, что одна и та же величина может быть добавлена ​​к обеим сторонам уравнения без изменения решения уравнения.Например, уравнение x + 4 = 7 имеет решение x = 3. Согласно первому правилу, можно добавить любое число к обеим сторонам уравнения и при этом получить то же решение. При добавлении 4 к обеим частям уравнение становится x + 8 = 11, но решение остается x = 3. Это правило известно как аддитивное свойство равенства. Чтобы использовать это свойство для поиска решения уравнения, все, что требуется, — это выбрать правильное число для добавления. Решение предыдущего примера x + 4 = 7 можно найти, прибавив –4 к обеим сторонам уравнения.Если это сделано, уравнение упрощается до x + 4 — 4 = 7 — 4 или x = 3, и уравнение решается.

Второе фундаментальное правило, известное как мультипликативное свойство равенства, гласит, что каждый член в обеих частях уравнения может быть умножен или разделен на одно и то же число без изменения решения уравнения. Например, решением уравнения y — 2 = 10 является y = 12. Используя правило мультипликативности, можно получить эквивалентное уравнение с тем же набором решений, умножив обе части на любое число, например, 2.Таким образом, уравнение принимает вид 2y– 4 = 20, но решение остается y = 12. Это свойство также можно использовать для решения алгебраических уравнений. В случае уравнения 2x = 14 решение получается делением обеих частей на 2. Когда это делается 2x / 2 = 14/2, уравнение упрощается до x = 7.

Часто оба этих правила должны быть используется для решения одного уравнения, такого как уравнение 4x + 7 = 23. В этом уравнении к обеим сторонам уравнения добавляется –7, и оно упрощается до 4x = 16. Обе части этого уравнения затем делятся на 4 и он упрощается до решения x = 4.

Большинство уравнений даются в более сложной форме, которую можно упростить. Рассмотрим уравнение 4x — x — 5 = 2x + 7. Первый шаг в решении этого уравнения — объединить одинаковые члены с каждой стороны уравнения. В правой части нет одинаковых терминов, но 4x и –x в левой части похожи на термины. Это уравнение в упрощенном виде становится 3x — 5 = 2x + 7. Следующим шагом является удаление неизвестного из одной части уравнения. В этом примере это достигается добавлением –2x к обеим частям уравнения, что дает x — 5 = 7.Используя свойство аддитивности, решение получается добавлением 5 к обеим сторонам уравнения, так что x = 12.

Весь процесс решения алгебраических уравнений с одной переменной можно резюмировать с помощью следующих шагов. Во-первых, удалите скобки, умножив множители. Во-вторых, добавьте одинаковые термины с каждой стороны. В-третьих, удалите неизвестное с одной стороны уравнения, используя мультипликативные или аддитивные свойства. В-четвертых, удалите постоянный член со стороны неизвестного, используя аддитивное свойство.Наконец, исключите любой коэффициент при неизвестном, используя свойство мультипликативности.

Многие алгебраические уравнения содержат более одной переменной, поэтому полный набор решений не может быть найден с помощью методов, описанных до сих пор. Уравнения с двумя неизвестными называются линейными уравнениями и могут быть представлены общей формулой ax + by = c; где a, b и c — константы, а x и y — переменные. Решением этого типа уравнения будет упорядоченная пара x и y, которая делает уравнение истинным.Например, набор решений для уравнения x + y = 7 будет содержать все пары значений x и y, которые удовлетворяют уравнению, такие как (2,5), (3,4), (4,3), и т. д. В общем, чтобы найти решение линейного уравнения с двумя переменными, уравнение переписывается и решается в терминах одной переменной. Решением уравнения x + y = 7 становится любая пара значений, которая делает x = 7 — y истинным.

Часто существует несколько линейных уравнений, связывающих две переменные в одной системе.Все уравнения, связанные с переменными, известны как система уравнений, а их решение — это упорядоченная пара, которая делает каждое уравнение истинным. Эти уравнения решаются методами построения графиков, подстановки и исключения.

Уравнения, содержащие неизвестные в степени единицы, известны как уравнения первой степени. Также существуют уравнения второй степени, которые включают:

КЛЮЧЕВЫЕ УСЛОВИЯ

Аддитивное свойство — Свойство уравнения, в котором указано число, может быть добавлено к обеим сторонам уравнения, не влияя на его решение.

Факторинг —Метод сведения уравнения более высокой степени к продукту уравнений более низкой степени.

Уравнение первой степени —Алгебраическое выражение, содержащее неизвестное в первой степени.

Мультипликативное свойство — Свойство уравнения, которое устанавливает все члены в уравнении, можно умножить на одно и то же число, не влияя на окончательное решение.

Уравнение второй степени —Алгебраическое выражение, содержащее неизвестное во второй степени.

как минимум одна переменная, возведенная в квадрат или в степени двойки. Уравнения также могут быть третьей, четвертой и т. Д. Самым известным уравнением второй степени является квадратное уравнение, которое имеет общий вид ax 2 + bx + c = 0; где a, b и c — константы, а a не равно 0. Решение этого типа уравнения часто можно найти с помощью метода, известного как факторинг.

Поскольку квадратное уравнение является произведением двух уравнений первой степени, оно может быть включено в эти уравнения.Например, произведение двух выражений (x + 2) (x — 3) дает одно квадратичное выражение x 2 — x — 6. Два выражения (x + 2) и (x — 3) называются коэффициенты квадратного выражения x 2 — x — 6. Приняв каждый коэффициент квадратного уравнения равным нулю, можно получить решения. В этом квадратном уравнении решениями являются x = –2 и x = 3.

Нахождение множителей квадратного уравнения не всегда легко. Для решения этой проблемы была изобретена квадратная формула, позволяющая решить любое квадратное уравнение.Квадратное уравнение для общего уравнения формулируется следующим образом: ax 2 + bx + c = 0

Чтобы использовать квадратную формулу, числа для a, b и c подставляются в уравнение, и определяются решения для x .

См. Также Системы уравнений.

КНИГИ

Биттингер, Марвин Л. и Давик Элленбоген. Промежуточная алгебра: концепции и приложения . 7-е изд. Ридинг, Массачусетс: Addison-Wesley Publishing, 2006.

Ларсон, Рон. Precalculus . 7-е изд. Бостон, Массачусетс: Houghton Mifflin, 2007.

Лоренц, Фалько. Алгебра. Нью-Йорк: Springer, 2006.

Сетек, Уильям М. Основы математики . Река Аппер Сэдл, Нью-Джерси: Pearson Prentice Hall, 2005.

Perry Romanowski

Решатель уравнений: Wolfram | Alpha

О решении уравнений

Значение называется корнем полинома if.

Наибольший показатель степени появления называется степенью.Если имеет степень, то хорошо известно, что есть корни, если принять во внимание множественность. Чтобы понять, что подразумевается под множественностью, возьмем, например,. Считается, что этот многочлен имеет два корня, оба равны 3.

Человек изучает «теорему о факторах», обычно во втором курсе алгебры, как способ найти все корни, являющиеся рациональными числами. Также можно научиться находить корни всех квадратичных многочленов, используя при необходимости квадратные корни (полученные из дискриминанта).Существуют более сложные формулы для выражения корней многочленов кубической и четвертой степени, а также ряд численных методов аппроксимации корней произвольных многочленов. В них используются методы комплексного анализа, а также сложные численные алгоритмы, и это действительно область постоянных исследований и разработок.

Системы линейных уравнений часто решаются с использованием метода исключения Гаусса или связанных методов. Это также обычно встречается в программах средней школы или колледжа по математике.Для нахождения корней одновременных систем нелинейных уравнений необходимы более совершенные методы. Аналогичные замечания относятся к работе с системами неравенств: линейный случай может быть обработан с использованием методов, описанных в курсах линейной алгебры, тогда как полиномиальные системы более высокой степени обычно требуют более сложных вычислительных инструментов.

Как Wolfram | Alpha решает уравнения

Для решения уравнений Wolfram | Alpha вызывает функции Solve и Reduce языка Wolfram Language, которые содержат широкий спектр методов для всех видов алгебры, от основных линейных и квадратных уравнений до многомерных нелинейных систем.В некоторых случаях используются методы линейной алгебры, такие как исключение Гаусса, с оптимизацией для повышения скорости и надежности. Другие операции полагаются на теоремы и алгоритмы из теории чисел, абстрактной алгебры и других сложных областей для вычисления результатов. Эти методы тщательно спроектированы и выбраны, чтобы позволить Wolfram | Alpha решать самые разнообразные проблемы, а также минимизировать время вычислений.

Хотя такие методы полезны для прямых решений, для системы также важно понимать, как человек решит ту же проблему.В результате в Wolfram | Alpha также есть отдельные алгоритмы для пошагового отображения алгебраических операций с использованием классических методов, которые легко распознаются людьми и которым легко следовать. Это включает в себя исключение, замену, квадратную формулу, правило Крамера и многое другое.

Решение уравнений

Что такое уравнение?

Уравнение говорит, что две вещи равны. Он будет иметь знак равенства «=», например:

.

Это уравнение говорит: то, что слева (x — 2) равно тому, что справа (4)

Таким образом, уравнение похоже на выражение «, это равно , что »

Что такое решение?

Решение — это значение, которое мы можем ввести вместо переменной (например, x ), которая делает уравнение истинным .

Пример: x — 2 = 4

Когда мы ставим 6 вместо x, получаем:

6–2 = 4

, что соответствует действительности

Итак, x = 6 — решение.

Как насчет других значений x?

  • Для x = 5 мы получаем «5−2 = 4», что неверно , поэтому x = 5 не является решением .
  • Для x = 9 мы получаем «9−2 = 4», что неверно , поэтому x = 9 не является решением .
  • и т. Д.

В этом случае x = 6 — единственное решение.

Вы можете попрактиковаться в решении некоторых анимированных уравнений.

Более одного решения

Может быть более одного решения .

Пример: (x − 3) (x − 2) = 0

Когда x равно 3, получаем:

(3−3) (3−2) = 0 × 1 = 0

, что соответствует действительности

И когда x равно 2, получаем:

(2−3) (2−2) = (−1) × 0 = 0

, что также является истинным

Итак, решения:

x = 3 или x = 2

Когда мы собираем все решения вместе, он называется набором решений

Приведенный выше набор решений: {2, 3}

Решения везде!

Некоторые уравнения верны для всех допустимых значений и называются Identities

Пример:

sin (−θ) = −sin (θ) — одно из тригонометрических тождеств

Попробуем θ = 30 °:

sin (-30 °) = -0. 5 и

−sin (30 °) = −0,5

Значит, истинно для θ = 30 °

Попробуем θ = 90 °:

sin (-90 °) = -1 и

−sin (90 °) = −1

Так же истинно для θ = 90 °

Верно ли для все значения θ ? Попробуйте сами!

Как решить уравнение

Не существует «единого идеального способа» решить все уравнения.

Полезная цель

Но мы часто добиваемся успеха, когда наша цель — получить:

Другими словами, мы хотим переместить все, кроме «x» (или любого другого имени переменной), в правую часть.

Пример: Решить 3x − 6 = 9

Начать с: 3x − 6 = 9

Добавьте 6 к обеим сторонам: 3x = 9 + 6

Разделить на 3: x = (9 + 6) / 3

Теперь у нас x = , что-то ,

и короткий расчет показывает, что x = 5

Как пазл

На самом деле решение уравнения похоже на решение головоломки. И, как и в случае с головоломками, есть вещи, которые мы можем (и не можем) делать.

Вот что мы можем сделать:

Пример: Решить √ (x / 2) = 3

Начать с: √ (x / 2) = 3

Квадрат с обеих сторон: x / 2 = 3 2

Вычислить 3 2 = 9: x / 2 = 9

Умножьте обе стороны на 2: x = 18

И чем больше «трюков» и приемов вы изучите, тем лучше вы получите.

Специальные уравнения

Есть специальные способы решения некоторых типов уравнений.Узнайте, как …

Проверьте свои решения

Вы всегда должны проверять, что ваше «решение» действительно — это решение.

Как проверить

Возьмите решения и поместите их в исходное уравнение , чтобы увидеть, действительно ли они работают.

Пример: найти x:

2x x — 3 + 3 = 6 x — 3 (x ≠ 3)

Мы сказали x ≠ 3, чтобы избежать деления на ноль.

Умножим на (x — 3):

2x + 3 (x − 3) = 6

Переместите 6 влево:

2x + 3 (x − 3) — 6 = 0

Разверните и решите:

2x + 3x — 9-6 = 0

5x — 15 = 0

5 (х — 3) = 0

х — 3 = 0

Это можно решить, если x = 3

Проверим:

2 × 3
3–3
+ 3 =
6
3–3

Держись!
Это означает деление на ноль!

И вообще, мы сказали вверху, что x ≠ 3, так что…

x = 3 на самом деле не работает, поэтому:

Есть Нет Решение!

Это было интересно … мы, , думали, что нашли решение, но когда мы оглянулись на вопрос, мы обнаружили, что это запрещено!

Это дает нам моральный урок:

«Решение» дает нам только возможные решения, их нужно проверять!

Подсказки

  • Запишите, где выражение не определено (из-за деления на ноль, квадратного корня из отрицательного числа или по какой-либо другой причине)
  • Показать все шаги , чтобы их можно было проверить позже (вами или кем-то еще)

Определение того, является ли целое число решением уравнения

Результаты обучения

  • Определите, является ли целое число решением уравнения

Определить, является ли число решением уравнения

Решение уравнения похоже на поиск ответа на загадку. Алгебраическое уравнение утверждает, что два алгебраических выражения равны. Решение уравнения — это определение значений переменной, которые делают уравнение истинным. Любое число, которое делает уравнение истинным, называется решением уравнения. Это ответ на загадку!

Решение уравнения

Решение уравнения — это значение переменной, которое делает истинное утверждение при подстановке в уравнение.
Процесс поиска решения уравнения называется решением уравнения.

Найти решение уравнения — это значит найти значение переменной, которая делает уравнение истинным. Можете ли вы распознать решение [латекс] x + 2 = 7? [/ Latex] Если вы сказали [latex] 5 [/ latex], вы правы! Мы говорим, что [latex] 5 [/ latex] является решением уравнения [latex] x + 2 = 7 [/ latex], потому что когда мы заменяем [latex] x [/ latex] [latex] 5 [/ latex], полученное утверждение верно.

[латекс] \ begin {array} {} \\ \ hfill x + 2 = 7 \ hfill \\ \ hfill 5 + 2 \ stackrel {?} {=} 7 \ ​​hfill \\ \\ \ hfill 7 = 7 \ quad \ checkmark \ hfill \ end {array} [/ latex]

Поскольку [latex] 5 + 2 = 7 [/ latex] — верное утверждение, мы знаем, что [latex] 5 [/ latex] действительно является решением уравнения.
Символ [латекс] \ stackrel {?} {=} [/ Latex] спрашивает, равна ли левая часть уравнения правой части. Как только мы узнаем, мы можем изменить знак равенства [latex] \ text {(=)} [/ latex] или знак неравенства [latex] \ text {(\ not =).} [/ Latex]

Определите, является ли число решением уравнения.

  1. Подставьте номер переменной в уравнение.
  2. Упростите выражения в обеих частях уравнения.
  3. Определите, истинно ли полученное уравнение.
    • Если это правда, число является решением.
    • Если это не так, число не является решением.

пример

Определите, является ли [latex] x = 5 [/ latex] раствором [latex] 6x — 17 = 16 [/ latex].

Решение

пример

Определите, является ли [латекс] y = 2 [/ latex] раствором [латекса] 6y — 4 = 5y — 2 [/ latex].

Показать решение

Решение
Здесь переменная появляется с обеих сторон уравнения. Мы должны заменить [latex] 2 [/ latex] на каждый [latex] y [/ latex].

Навигация по записям

Добавить комментарий

Ваш адрес email не будет опубликован.