Трапеция формула площади: Все формулы площади трапеции — найти онлайн

Содержание

Все формулы площади равнобедренной трапеции


1. Формула площади равнобедренной трапеции через стороны и угол

а — нижнее основание

b — верхнее основание

с — равные боковые стороны

α — угол при нижнем основании

 

Формула площади равнобедренной трапеции через стороны, (S ):

 

Формула площади равнобедренной трапеции через стороны и угол, (S ):

 

 

2. Формулы площади равнобедренной трапеции если в нее вписана  окружность

R — радиус вписанной окружности

D — диаметр вписанной окружности

O — центр вписанной окружности

H — высота трапеции

α, β — углы трапеции

а — нижнее основание

b — верхнее основание

 

Формула площади равнобедренной трапеции через радиус вписанной окружности, (S ):

 

 

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию:


 

 

R — радиус вписанной окружности

m — средняя линия

O — центр вписанной окружности

c — боковые стороны

а — нижнее основание

b — верхнее основание

 

Формула площади равнобедренной трапеции через радиус вписанной окружности, стороны и среднюю линию (S ):

 

СПРАВЕДЛИВО, для вписанной окружности в равнобедренную трапецию:



3. Формула площади равнобедренной трапеции через диагонали и угол между ними

 

 

d — диагональ трапеции

α, β — углы между диагоналями

 

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S ):



 

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

 

c — боковая сторона

m — средняя линия трапеции

α, β — углы при основании

 

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):



 

5. Формула площади равнобедренной трапеции через основания и высоту

 

a — нижнее основание

b — верхнее основание

h — высота трапеции

 

Формула площади равнобедренной трапеции через основания и высоту, (S ):

Площадь трапеции | Онлайн калькуляторы, расчеты и формулы на GELEOT.

RU

Трапеция – это четырехугольник, у которого две стороны параллельны друг другу. Высотой трапеции называют линию, перпендикулярную основаниями, для удобства ее часто проводят из тупого угла трапеции на большее основание. Средняя линия трапеции – это линия, которая параллельна основаниям, и разделяет боковые стороны ровно пополам. Среднюю линию трапеции можно найти средним арифметическим оснований – сложив их и разделив на два.

Площадь трапеции в самом простом виде – это произведение средней линии на высоту, или если раскрыть формулу средней линии, то произведение полусуммы оснований на высоту.

Доказательством этой формулы будет служить представление площади трапеции, как суммы площадей двух треугольников полученных при проведении диагонали.

Площади этих треугольников будут равны соответственно и (для того, чтобы нарисовать высоту во втором треугольнике, необходимо будет продлить основание b). Площадь трапеции будет равна сумме полученных выражений, где мы вынесем высоту за скобку, и получим искомую формулу:


Вывести формулу, для того чтобы вычислить площадь трапеции через стороны, можно с помощью метода подстановки.

Проведя две высоты в трапеции, получаем по бокам прямоугольные треугольники с известными гипотенузами и неизвестными катетами x и y.
Таким образом x+y=d-b, y=d-b-x.
Одинаковый катет у обоих треугольников – высота, которую мы ищем. Через теорему Пифагора в прямоугольных треугольниках выражаем высоту и . Приравнивая, получаем a2-x2=c2-y2 или x2-y2=a2-c2.
x2-(d-b-x)2=a2-c2 — Подставляем вместо х полученное выше выражение d-b-y.
x2-d2+bd+dx-b2+bd-bx-x2+dx-bx=a2-c2 — Раскрываем скобки.
x2-d2+2bd+2dx-b2-2bx-x2=a2-c2 — Приводим подобные слагаемые.
2dx-2bx=a2-c2+d2+b2-2bd — Переносим все вправо, оставляя слева только y.
2x(d-b)=a2-c2+(d-b)2 — Выносим общие множители.

Подставляем обратно y в формулу высоты .
Формула площади трапеции через стороны будет выглядеть так:


Площадь трапеции через диагонали и угол между ними считается условным делением трапеции на четыре треугольника, точно также как и площадь любого произвольного четырехугольника.


Площадь равнобедренной трапеции можно найти еще одним способом, если даны угол при основании и радиус вписанной окружности. Дело в том, что центр вписанной окружности, откуда берет свое начало радиус, находится точно в центре трапеции, таким образом, приравнивая высоту и диаметр окружности (либо удвоенный радиус). Также одно из свойств трапеции, описанной вокруг окружности – это равенство суммы оснований и суммы боковых сторон, значит, мы сможем найти среднюю линию, зная боковые стороны. Проведя высоту, из прямоугольного треугольника получаем боковую сторону и среднюю линию
Тогда площадь трапеции равна

формулы площади, доказательства. Трапеция на занятиях с репетитоом по математике — Колпаков Александр Николаевич

Существует множество способов найти площадь трапеции. Обычно репетитор по математике владеет несколькими приемами ее вычисления, остановимся на них подробнее:
1) , где AD и BC основания, а BH-высота трапеции. Доказательство: проведем диагональ BD и выразим площади треугольников ABD и CDB через полупроизведение их оснований на высоту:

, где DP – внешняя высота в

Сложим почленно эти равенства и учитывая, что высоты BH и DP равны, получим:

Вынесем за скобку

Что и требовалось доказать.

Следствие из формулы площади трапеции:
Так как полусумма оснований равна MN — средней линии трапеции, то

2) Применение общей формулы площади четырехугольника.
Площадь четырехугольника равна половине произведения диагоналей, умноженной на синус угла между ними
Для доказательства достаточно разбить трапецию на 4 треугольника, выразить площадь каждого через «половину произведения диагоналей на синус угла между ними» (в качестве угла берется , сложить получившиеся выражения, вынести за скобку и раскладываю эту скобку на множители методом группировки получить ее равенство выражению . Отсюда

3) Метод сдвига диагонали
Это мое название. В школьных учебниках репетитор по математике не встретит такого заголовка. Описание приема можно найти только в дополнительных учебных пособиях в качестве примера решения какой-нибудь задачи. Отмечу, что большинство интересных и полезных фактов планиметрии репетиторы по математике открывают ученикам в процессе выполнения практической работы. Это крайне неоптимально, ибо школьнику нужно выделять их в отдельные теоремы и называть «громкими именами». Одно из таких – «сдвиг диагонали». О чем идет речь? Проведем через вершину B прямую параллельную к АС до пересечения с нижним основанием в точке E. В таком случае четырехугольник EBCA будет параллелограммом (по определению) и поэтому BC=EA и EB=AC. Нам сейчас важно первое равенство. Имеем:

Заметим, что треугольник BED, площадь которого равна площади трапеции, имеет еще несколько замечательных свойств:
1) Его площадь равна площади трапеции
2) Его равнобедренность происходит одновременно с равнобедренность самой трапеции
3) Верхний его угол при вершине B равен углу между диагоналями трапеции (что очень часто используется в задачах)
4) Его медиана BK равна расстоянию QS между серединами оснований трапеции. С применением этого свойства я недавно столкнулся при подготовке ученика на мехмат МГУ по учебнику Ткачука, вариант 1973 года (задача приводится внизу страницы).

Спецприемы репетитора по математике.

Иногда я предлагаю задачи на весьма хитрый путь нахождении я площади трапеции. Я отношу его к спецприемам ибо на практике репетитор их использует крайне редко. Если вам нужна подготовка к ЕГЭ по математике только в части B, можно про них и не читать. Для остальных рассказываю дальше. Оказывается площадь трапеции в два раза больше площади треугольника с вершинами в концах одной боковой стороны и серединой другой, то есть треугольника ABS на рисунке:
Доказательство: проведем высоты SM и SN в треугольниках BCS и ADS и выразим сумму площадей этих треугольников:

Так как точка S – середина CD, то (докажите это сами).Найдем cумму площадей треугольников:

Так как эта сумма оказалась равной половине площади трапеции, то  — вторая ее половина. Ч.т.д.

В копилку спецприемов репетитора я бы отнес форму вычисления площади равнобедренной трапеции по ее сторонам: где p – полупериметр трапеции. Доказательство я приводить не буду. Иначе ваш репетитор по математике останется без работы :). Приходите на занятия!

Задачи на площадь трапеции:

Замечание репетитора по математике: Нижеприведенный список не является методическим сопровождением к теме, это только небольшая подборка интересных задач на вышерассмотренные приемы.

1) Нижнее основание равнобедренной трапеции равно 13, а верхнее равно 5. Найдите площадь трапеции, если ее диагональ перпендикулярна боковой стороне.
2) Найдите площадь трапеции, если ее основания равны 2см и 5см, а боковые стороны 2см и 3см.
3) В равнобокой трапеции большее основание равно 11, боковая сторона равна 5, а диагональ равна Найти площадь трапеции.
4) Диагональ равнобокой трапеции равна 5, а средняя линия равна 4. Найти площадь.
5) В равнобедренной трапеции основания равны 12 и 20, а диагонали взаимно перпендикулярны. Вычислить площадь трапеции
6) Диагональ равнобокой трапеции составляет с ее нижним основанием угол . Найти площадь трапеции, если ее высота равна 6см.
7) Площадь трапеции равна 20, а одна из ее боковых сторон равна 4 см. Найдите расстояние до нее от середины противоположной боковой стороны.
8) Диагональ равнобокой трапеции делит ее на треугольники с площадями 6 и 14. Найти высоту, если боковая сторона равна 4.
9) В трапеции диагонали равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции (Мехмат МГУ, 1970г).

Я выбирал не самые сложные задачи (не стоит пугаться мехмата!) с расчетом на возможность их самостоятельного решения. Решайте на здоровье! Если вам нужна подготовка к ЕГЭ по математике, то без участия в этом процессе формулы площади трапеции могут возникнуть серьезные проблемы даже с задачей B6 и тем более с C4. Не запускайте тему и в случае каких-либо затруднений обращайтесь за помощью. Репетитор по математике всегда рад вам помочь.

Колпаков А.Н.
Репетитор по математике в Москве, подготовка к ЕГЭ в Строгино.

Как рассчитать площадь трапеции. Формула площади трапеции

Основные свойства трапеции

1. В трапецию можно вписать окружность, если сумма длин оснований равна сумме длин боковых сторон:

AB + CD = BC + AD

2. Средняя линия трапеции разделяет пополам любой отрезок, который соединяет основы, так же делит диагонали пополам:

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

4. Точка пересечения диагоналей трапеции и середины оснований лежат на одной прямой.

5. В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.

6. Каждая диагональ в точке пересечения делится на две части с таким соотношением длины, как соотношение между основаниями:

BC : AD = OC : AO = OB : DO

7. Диагонали трапеции d1 и d2 связаны со сторонами соотношением:

d12 + d22 = 2ab + c2 + d2

Формулы определения длин сторон трапеции:

1. Формула длины оснований трапеции через среднюю линию и другую основу:

a = 2m – b

b = 2m – a

2. Формулы длины основ через высоту и углы при нижнем основании:

a = b + h · (ctg α + ctg β)

b = a – h · (ctg α + ctg β)

3. Формулы длины основ через боковые стороны и углы при нижнем основании:

a = b + c·cos α + d·cos β

b = a – c·cos α – d·cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

с = h d = h
sin α sin β

Как найти площадь трапеции через четыре стороны

Отнимите от большего основания меньшее.

Найдите квадрат полученного числа.

Прибавьте к результату квадрат одной боковой стороны и отнимите квадрат второй.

Поделите полученное число на удвоенную разность оснований.

Найдите квадрат результата и отнимите его от квадрата боковой стороны.

Найдите корень из полученного числа.

Умножьте результат на половину от суммы оснований.

  • S – искомая площадь трапеции.
  • a, b – основания трапеции.
  • c, d – боковые стороны.

Средняя линия трапеции

Определение.

Средняя линия – отрезок, соединяющий середины боковых сторон трапеции.

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Через длины оснований и высоту

Чему равна площадь трапеции, если:
основание a =
основание b =
высота h =

Ответ: S =

0

ед.²

Округление ответа:

Чему равна площадь трапеции если известны основания a и b, а также высота h?

Формула

S = ½ ⋅ (a + b) ⋅ h

Пример

Если у трапеции основание a = 3 см, основание b = 6 см, а высота h = 4 см, то её площадь:

S = ½ ⋅ (3 + 6) ⋅ 4 = 36 / 2 = 18 см²

Площадь трапеции через перпендикулярные диагонали

{S= dfrac{1}{2} d_1 cdot d_2}

Формула для нахождения площади трапеции через перпендикулярные диагонали: {S=dfrac{1}{2}d_1 cdot d_2}, где d1, d2 — диагонали трапеции (перпендикулярные).

Как вычислить площадь равнобедренной трапеции через четыре стороны

Отнимите от большего основания трапеции меньшее и поделите результат на два.

Найдите квадрат полученного числа и отнимите его от квадрата боковой стороны.

Найдите корень из результата.

Умножьте полученное число на сумму оснований и поделите на два.

  • S — искомая площадь трапеции.
  • a, b — основания трапеции.
  • c, d — боковые стороны (напомним, в равнобедренной трапеции они равны).

Таблица с формулами площади трапеции

В зависимости от известных исходных данных и вида трапеции, площадь трапеции можно вычислить по различным формулам.

Найти площадь равнобедренной трапеции, зная радиус вписанной окружности и угол

Радиус вписанной окружности r

Угол трапеции α

Сообщить об ошибке

Через среднюю линию, боковую сторону и угол при основании

Чему равна площадь трапеции, если:
средняя линия m =
сторона c =
угол α =

Ответ: S =

0

ед. ²

Округление ответа:

Чему равна площадь равнобедренной трапеции если средняя линия m, боковая сторона с, a угол при основании α?

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Пусть a и b основания трапеции. доказать что отрезок, соединяющий середины её диагоналей равен 1/2 * | а – б|?

Возьмем трапецию ABCD

Определим точку М как середину диагонали АС, точку N как середину диагонали BD. Тогда средняя линия трапеции KF будет проходить через точки M и N.

Вспомним свойство средней линии трапеции: средняя линия трапеции является параллельной основаниям и равняется полусумме их длин.

Рассмотрим треугольник ACD:

MF = AD/2

Рассмотрим треугольник BCD

NF = BC/2

Выразим MN через отрезки MF и NF:

MN = MF-NF

Подставим в формулу значения отрезков MF и NF:

MN = AD/2-BC/2 = (AD-BC)/2

Площадь трапеции через основания и два угла

[ S = frac{1}{2} left( b^{2} – a^{2} right) frac{ sin(alpha) cdot sin(beta) }{sin(alpha + beta)} ]

  • Параллельные стороны называются основаниями трапеции.
  • Две другие стороны называются боковыми сторонами.
  • Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
  • Расстояние между основаниями называется высотой трапеции.
  • Трапеция, у которой боковые стороны равны, называется равнобокой (или равнобедренной)
  • Трапеция, один из углов которой прямой, называется прямоугольной.
  • Средняя линия трапеции параллельна основаниям и равна их полусумме.
  • Параллельные прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.
  • У равнобокой трапеции углы при основании равны.
  • У равнобокой трапеции диагонали равны.
  • Если трапеция равнобокая, то около нее можно описать окружность.
  • Если сумма оснований трапеции равна сумме боковых сторон, то в нее можно вписать окружность.
  • В трапеции середины оснований, точка пересечения диагоналей и продолжения боковых сторон находятся на одной прямой.

 

Найти площадь трапеции, зная диагонали и угол между ними

Диагональ трапеции d1

Диагональ трапеции d2

Угол между диагоналями α

Источники

  • https://ru.onlinemschool.com/math/formula/trapezium/
  • https://Lifehacker.ru/kak-najti-ploshhad-trapecii/
  • https://poschitat.online/ploshad-trapecii
  • https://mnogoformul.ru/ploshhad-trapecii-formuly-i-kalkulyator-online
  • https://doza.pro/art/math/geometry/area-trapezium
  • https://geleot.ru/education/math/geometry/area/trapezoid
  • https://yandex.ru/q/question/hw.math/kak_naiti_ploshchad_trapetsii_5a22794d/?answer_id=6adac048-9ff1-4e4b-8aae-c657d64364f1&w=answer&w_question_id=1327ad2e-f410-4eda-9d70-bc19c2d134e5&w_origin=grave_unauth
  • https://calcsbox.com/post/formula-plosadi-trapecii. html

Площадь трапеции (формула) и как ее найти для любой трапеции на рисунке

Главная / ЧАстые ВОпросы

18 января 2021

  1. Что такое трапеция
  2. Что такое площадь
  3. Главная формула площади трапеции
  4. Доказательство теоремы о площади трапеции
  5. Как еще можно найти площадь (другие формулы)
  6. Формулы площади для равнобедренной трапеции

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru. В этой статье мы расскажем, как посчитать площадь трапеции. Эту тему подробно изучают в школе в 8-м классе.

Но в классической программе учителя дают далеко не все формулы, с помощью которых можно вычислить нужное значение. И ограничиваются, как правило, одной или двумя.

Мы же дадим максимально развернутый ответ на этот вопрос. Ведь трапеция – это весьма примечательная и сложная фигура в геометрии. А соответственно, и формулы для вычисления ее площади отличаются определенной сложностью и громоздкостью.

Тут нет банальных «перемножить длины сторон», как у площади прямоугольника. Все гораздо мудреней.

Что такое трапеция

Но для начала будет нелишним напомнить, что из себя представляет трапеция.

Трапеция – это геометрическая фигура, которая является четырехугольником, и у которой две противоположные стороны параллельны.

Последнее утверждение очень важное. ТОЛЬКО ДВЕ противоположные стороны параллельны у трапеции. Ведь если бы обе пары лежали на параллельных прямых, то это был бы уже параллелограмм.

Вот так выглядит трапеция:

А вот так параллелограмм:

Кстати, именно по этому принципу древний математик Евклид и разделил все четырехугольники на две большие категории.

Именно он впервые описал разные геометрические фигуры, в том числе трапеции и параллелограммы. И все свои соображения подробно изложил в книге «Начала», которая датируется 300 годом до нашей эры.

Что такое площадь

Раз уж мы решили вычислять эту величину, напомним, что она обозначает.

Площадь – это численное значение геометрической фигуры, нарисованной в двухмерном (плоском) пространстве. А проще говоря, это пространство, которое ограничено границами фигуры, и находится как бы внутри нее.

В нашем случае площадь трапеции – это область, закрашенная синим цветом:

Кстати, в древности вместо термина «площадь» говорили «квадратура». Считалось, что любую фигуру можно разбить на равные квадраты со стороной «один». Частично это понятие докатилось и до наших дней.

Ведь именно в «квадратных метрах» мы измеряем площадь комнаты/квартиры/дачи/офиса. И в «квадратных километрах» частенько озвучивают площадь какой-то территории. Например, когда в телевизионных новостях говорят о масштабах лесных пожаров или наводнений.

Главная формула для вычисления площади трапеции

Та формула, которую изучают в школе, основана на вычислении площади трапеции по длине ее оснований и высоте.

Основания трапеции – это стороны, которые лежат на параллельных прямых. Другая пара сторон называется боковыми.

Высота – это отрезок, проведенный из вершины любого угла к противоположному основанию под углом 90 градусов.

То есть мы имеем вот такие исходные данные:

Здесь «a» и «b» являются основаниями трапеции, а «h» — высотой.

И тогда формула для вычисления площади трапеции выглядит вот так:

Например, если длины сторон и высота равны:

  1. a = 7 см
  2. b = 3 см
  3. h = 5 см

то площадь такой трапеции будет равна:

Опять же заметьте, если стороны и высота у трапеции обозначались в сантиметрах, то площадь будет измеряться в квадратных сантиметрах (то самое понятие «квадратуры», о котором мы писали выше).

То же самое – миллиметры/квадратные миллиметры, метры/квадратные метры, километры/квадратные километры и так далее.

Доказательство теоремы о площади трапеции

Любая формула в геометрии требует доказательства. И в нашем случае, формулы вычисления площади трапеции также доказывают во время уроков.

Возьмем для примера трапецию:

В ней AD и BC – основания, BH – высота. Нам надо доказать, что:

Доказательство строится на том, что если провести диагональ BD, то она разделит нашу трапецию на два треугольника. Это будут треугольники ABD и BCD.

И чтобы получить площадь нашей трапеции, нужно посчитать отдельно площади этих треугольников и сложить их.

А как вычислять площадь треугольника, мы уже знаем (или должны знать, согласно школьному курсу). Надо перемножить длину его основания и высоту и поделить на два.

У треугольника ABD высота – это BH. А у треугольника BCD в силу его выпуклости нам пришлось продлить зрительно основание BC, чтобы получить высоту Dh2.

И получается:

Но в случае с трапецией высоты равны, то есть BH = Dh2. И тогда формулу площади для второго треугольника можно заменить на:

И наконец, с учетом всего вышесказанного начинаем вычислять площадь нашей трапеции. Она равна:

Как часто говориться на уроках геометрии – что и требовалось доказать!

Извиняемся за столь подробное описание доказательства. Но, во-первых, это требуется в рамках школьной программы. А во-вторых, всегда ведь интересно докопаться до самой сути и понять, как и почему именно так что-то устроено.

Как еще можно найти площадь трапеции (другие формулы)

На этот раз мы уже не будем приводить подробные доказательства каждой из формул. Иначе это займет слишком много времени и места. Просто поверьте, все они правильные и по ним можно вычислить площадь трапеции.

По высоте и средней линии

Средняя линия – это та, которая делит боковые стороны трапеции на две равные части. Формула площади выглядит совсем просто:

По четырем сторонам

Тут формула гораздо сложнее:

Площадь трапеции через диагонали

По основанию и углам при нем

Формулы площади для равнобедренной трапеции

Равнобедренная трапеция – та, у которой боковые стороны равны. А соответственно, они еще и соприкасаются с основаниями под одинаковыми углами.

Это частный случай, и для него верны все перечисленные формулы. Но с учетом равенства сторон и углов формулы заметно упрощаются.

По четырем сторонам

По малому основанию, боковой стороне и углу у большого основания

По большому основанию, углу при нем и боковой стороне

По основаниям и углам

Как видите, формулы громоздкие и весьма сложные сами по себе. Без калькулятора здесь точно не обойтись. С другой стороны, они крайне редко применяются. И служат скорее дополнительными средствами.

Вот и все, что мы хотели рассказать о том, как вычислять площадь трапеции.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Как найти площадь трапеции: формула, калькулятор онлайн

Информация

В нашей жизни такая отрасль, как строительство, является одной из важнейших. Это связанно с тем, что именно строительство позволяет нам жить в комфортных условиях, когда тепло, сухо и тихо. Однако, строительство также является невероятно ответственной сферой деятельности. Это целый процесс, состоящий из проектирования, расчетов, технических работ и многих других нюансов. Специалисты, осуществляющие все работы (механические и теоретические) в процессе строительства, несут большую ответственность за жизни тех людей, которые в дальнейшем будут эксплуатировать здание.

Поэтому они обязаны внимательно проводить расчеты различных значений показателей, одним и которых является формула площади трапеции. Данная формула является одной из многих формул, которые обязаны знать специалисты определенных отраслей. Также стоит учитывать существующее разнообразие трапеций: прямоугольные, равнобедренные и произвольные. Всю подобную информацию обязаны учитывать сотрудники многих отраслей и знать, как найти площадь трапеции.

Онлайн калькулятор расчёта площади трапеции

Мы разработали калькулятор, который существенно упрощает работу людям как в сфере строительства, так и в многих других сферах деятельности. Наш калькулятор поможет просчитать площадь прямоугольной трапеции в кротчайшие сроки и избегая вероятности допущения какой-либо ошибки при расчетах. Помимо прямоугольной трапеции, калькулятор может рассчитать площадь равнобедренной трапеции, также просто. Для этого Вам нужно просто ввести исходные данные, которые запрашивает калькулятор.

Наш калькулятор запрограммирован таким образом, что он не только рассчитывает площадь любого вида трапеции, и сообщает чему она ровна, в одно мгновение, но и демонстрирует формулы расчета, а также дает Вам возможность выбрать по какой формуле рассчитать площадь трапеции.

Наш калькулятор онлайн дает большое количество преимуществ:

  • Возможность расчета площади трапеции через любую формулу;
  • Сэкономить много времени, благодаря отсутствию необходимости самостоятельного расчета;
  • Исключить допущение ошибок при расчетах, поскольку программа не попадает под влияние человеческого фактора.

Таким образом, калькулятор онлайн является эффективным инструментом как для строителя, так и любого другого человека, который столкнулся с необходимостью расчета какого-либо показателя.

Как найти площадь трапеции: формулы и примеры

Практика прошлогодних ЕГЭ и ГИА показывает, что задачи по геометрии вызывают сложности у многих школьников. Вы легко справитесь с ними, если заучите все нужные формулы и попрактикуетесь в решении задач.

В этой статье вы увидите формулы нахождения площади трапеции, а также примеры задач с решениями. Такие же могут попасться вам в КИМах на аттестационных экзаменах или на олимпиадах. Поэтому отнеситесь к ним внимательно.

Что нужно знать про трапецию?

Для начала вспомним, что трапецией называется четырехугольник, у которого две противоположные стороны, их еще называют основаниями, параллельны, а две другие – нет.

В трапеции также может быть опущена высота (перпендикуляр к основанию). Проведена средняя линия – это прямая, которая параллельна основаниям и равна половине их суммы. А также диагонали, которые могут пересекаться, образуя острые и тупые углы. Или, в отдельных случаях, под прямым углом. Кроме того, если трапеция равнобедренная, в нее можно вписать окружность. И описать окружность около нее.

Формулы площади трапеции

Для начала рассмотрим стандартные формулы нахождения площади трапеции. Способы вычислить площадь равнобедренной и криволинейной трапеций рассмотрим ниже.

Итак, представьте, что у вас есть трапеция с основаниями a и b, в которой к большему основанию опущена высота h. Вычислить площадь фигуры в таком случае проще простого. Надо всего лишь разделить на два сумму длин оснований и умножить то, что получится, на высоту: S = 1/2(a + b)*h.

Возьмем другой случай: предположим, в трапеции, кроме высоты, проведена средняя линия m. Нам известна формула нахождения длины средней линии: m = 1/2(a + b). Поэтому с полным правом можем упростить формулу площади трапеции до следующего вида: S = m* h. Другими словами, чтобы найти площадь трапеции, надо умножить среднюю линию на высоту.

Рассмотрим еще один вариант: в трапеции проведены диагонали d1и d2, которые пересекаются не под прямым углом α. Чтобы вычислить площадь такой трапеции, вам нужно разделить на два произведение диагоналей и умножить то, что получится, на sin угла между ними: S= 1/2d1d2 *sinα.

Теперь рассмотрим формулу для нахождения площади трапеции, если о ней неизвестно ничего, кроме длин всех ее сторон: a, b, c и d. Это громоздкая и сложная формула, но вам будет полезно запомнить на всякий случай и ее: S = 1/2(a + b) * √c2 – ( ( 1/2(b – a)) * ((b – a)2 + c2 – d2) )2.

Кстати, приведенные выше примеры верны и для того случая, когда вам потребуется формула площади прямоугольной трапеции. Эта трапеция, боковая сторона которой примыкает к основаниям под прямым углом.

Равнобедренная трапеция

Трапеция, боковые стороны которой равны, называется равнобедренной. Мы рассмотрим несколько вариантов формулы площади равнобедренной трапеции.

Первый вариант: для случая, когда внутрь равнобедренной трапеции вписана окружность с радиусом r, а боковая сторона и большее основание образуют острый угол α. Окружность может быть вписана в трапецию при условии, что сумма длин ее оснований равна сумме длин боковых сторон.

Площадь равнобедренной трапеции вычисляется так: умножьте квадрат радиуса вписанной окружности на четыре и разделите все это на sinα: S = 4r2/sinα. Еще одна формула площади является частным случаем для того варианта, когда угол между большим основанием и боковой стороной равен 300: S = 8r2.

Второй вариант: на этот раз возьмем равнобедренную трапецию, в которой вдобавок проведены диагонали d1 и d2, а также высота h. Если диагонали трапеции взаимно перпендикулярны, высота составляет половину суммы оснований: h = 1/2(a + b). Зная это, легко преобразовать уже знакомую вам формулу площади трапеции в такой вид: S = h2.

Формула площади криволинейной трапеции

Начнем с того, что разберемся: что такое криволинейная трапеция. Представьте себе ось координат и график непрерывной и неотрицательной функции f, которая не меняет знака в пределах заданного отрезка [a; b] на оси x. Криволинейную трапецию образуют график функции у = f(x) – вверху, ось х – внизу (отрезок [a; b]), а по бокам – прямые, проведенные между точками a и b и графиком функции.

Вычислить площадь такой нестандартной фигуры нельзя приведенными выше способами. Тут нужно применить математический анализ и использовать интеграл. А именно: формулу Ньютона-Лейбница – S = ∫baf(x)dx = F(x)│ba = F(b) – F(a). В этой формуле F – первообразная нашей функции на выбранном отрезке [a; b]. И площадь криволинейной трапеции соответствует приращению первообразной на заданном отрезке.

Примеры задач

Чтобы все эти формулы лучше улеглись в голове, вот вам несколько примеров задач на нахождение площади трапеции. Лучше всего будет, если вы сперва попробуете решить задачи сами, и только потом сверите полученный ответ с готовым решением.

Задача №1: Дана трапеция. Ее большее основание – 11 см, меньшее – 4см. В трапеции проведены диагонали, одна длиной 12 см, вторая – 9 см.

Решение: Постройте трапецию АМРС. Проведите прямую РХ через вершину Р так, чтобы она оказалась параллельной диагонали МС и пересекла прямую АС в точке Х. Получится треугольник АРХ.

Мы рассмотрим две полученных в результате этих манипуляций фигуры: треугольник АРХ и параллелограмм СМРХ.

Благодаря параллелограмму мы узнаем, что РХ = МС = 12 см и СХ = МР = 4см. Откуда можем вычислить сторону АХ треугольника АРХ: АХ = АС + СХ = 11 + 4 = 15 см.

Мы также можем доказать, что треугольник АРХ – прямоугольный (для этого примените теорему Пифагора – АХ2 = АР2 + РХ2). И высчитать его площадь: SAPX = 1/2(AP * PX) = 1/2(9 * 12) = 54 см2.

Дальше вам потребуется доказать, что треугольники АМР и РСХ являются равновеликими. Основанием послужит равенство сторон МР и СХ (уже доказанное выше). А также высоты, которые вы опустите на эти стороны – они равны высоте трапеции АМРС.

Все это позволит вам утверждать, что SAMPC = SAPX = 54 см2.

Задача №2: Дана трапеция КРМС. На ее боковых сторонах расположены точки О и Е, при этом ОЕ и КС параллельны. Также известно, что площади трапеций ОРМЕ и ОКСЕ находятся в соотношении 1:5. РМ = а и КС = b. Требуется найти ОЕ.

Решение:  Проведите через точку М прямую, параллельную РК, и точку ее пересечения с ОЕ обозначьте Т. А – точка пересечения прямой, проведенной через точку Е параллельно РК, с основанием КС.

Введем еще одно обозначение – ОЕ = х. А также высоту h1 для треугольника ТМЕ и высоту h2 для треугольника АЕС (вы можете самостоятельно доказать подобие этих треугольников).

Будем считать, что b > а. Площади трапеций ОРМЕ и ОКСЕ относятся как 1:5, что дает нам право составить такое уравнение: (х + а) * h1 = 1/5(b + х) * h2. Преобразуем и получим: h1/ h2 = 1/5 * ((b + х)/(х + а)).

Раз треугольники ТМЕ и АЕС подобные, имеем h1/ h2 = (х – а)/( b – х). Объединим обе записи и получим: (х – а)/(b – х) = 1/5 * ((b + х)/(х + а)) ↔ 5(х – а)(х + а) = (b + х)(b – х) ↔ 5(х2 – а2) = (b2 – х2) ↔ 6х2 = b2 + 5а2 ↔ х = √(5а2 + b2)/6.

Таким образом, ОЕ = х = √(5а2 + b2)/6.

Также советуем посмотреть вам наше новое видео по теме нахождения площади фигур, в том числе и трапеции:

Заключение

Геометрия не самая легкая из наук, но вы наверняка сможете справиться с экзаменационными заданиями. Достаточно проявить немного усидчивости при подготовке. И, конечно, запомнить все нужные формулы.

Мы постарались собрать в одном месте все формулы вычисления площади трапеции, чтобы вы могли воспользоваться ими, когда будете готовиться к экзаменам и повторять материал.

Обязательно расскажите про эту статью одноклассникам и друзьям в социальных сетях. Пускай хороших оценок за ЕГЭ и ГИА будет больше!

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Как найти площадь трапеции (формула и видео) // Tutors.com

Содержание

  1. Что такое трапеция?
  2. Как найти площадь трапеции
  3. Площадь трапеции, формула
  • Площадь трапеции Примеры
  • Трапеция представляет собой четырехугольник с одной парой параллельных сторон. Итак, этот четырехсторонний многоугольник представляет собой плоскую фигуру и замкнутую фигуру. Он имеет четыре отрезка линии и четыре внутренних угла.Параллельные стороны — это две базы трапеции ; две другие стороны — его ноги.

    Обычно у трапеции более длинная параллельная сторона — основание , — горизонтально. Перпендикулярная линия от основания к другой параллельной стороне даст вам высоту трапеции или высоту .

    Что такое средний по математике?

    В математике среднее значение представляет собой сумму группы чисел, деленную на количество элементов в группе.

    Итак, если у вас есть три человека, которые держат книги, вы можете найти среднее количество книг, которые они держат, вот так: Мартин держит 5 книг, Мак держит 3 книги, а Мария держит 4 книги. Вместе 12 книг держат 3 человека. Итак, 12 книг ÷ 3 человека = в среднем по 4 книги.

    Чтобы найти площадь трапеции, вы найдете среднюю длину двух оснований.

    Как найти площадь трапеции

    Чтобы найти площадь любой трапеции, начните с обозначения ее основания и высоты.На нашей трапеции обозначьте более длинное основание a и более короткое основание b. Обозначьте линию, перпендикулярную двум основаниям, h для высоты или высоты трапеции.

    Обратите внимание, мы не пометили ноги. Нам не нужно ничего знать о длине ног или углах вершин, чтобы найти площадь.

    Площадь трапеции, формула

    Формула площади трапеции — это среднее значение оснований, умноженное на высоту. В формуле длинное и короткое основание — это a и b, а высота — h:

    Умножение на 12 аналогично делению на 2.Мы берем половину суммы длины двух оснований (их среднее значение), а затем умножаем ее на высоту или высоту, чтобы найти площадь в квадратных единицах.

    Уравнение площади трапеции

    Трапеция LMNO имеет параллельные основания LM и NO. Линейный сегмент LM имеет длину 7 см, а линейный сегмент NO — 13 см. Мы обозначим более длинную сторону NO как a, а короткую сторону LM как b. Высота h 5 см.

    Сначала давайте подставим эти числа в нашу формулу:

    площадь = 13 см + 7 см2 × 5 см

    Далее складываем 13 плюс 7 и получаем:

    площадь = 20 см2 × 5 см

    Потом делим на два и получаем:

    площадь = 10 см × 5 см

    Наконец, умножаем и получаем ответ:

    площадь = 50 см2

    Площадь этой трапеции составляет 50 квадратных сантиметров.

    Площадь трапеции Примеры

    Теперь попробуйте! Другая трапеция имеет длинное основание a, 11 метров, и более короткое основание b, 7 метров. Его высота h составляет 9 метров. Какая площадь в квадратных метрах?

    площадь = 11 см + 7 см2 × 9 см

    Получили 81 квадратный метр? Ваш ответ для площади всегда выражается в квадратных единицах линейного измерения. Таким образом, трапеция, измеренная в футах, дает площадь в квадратных футах, сантиметры — в квадратных сантиметрах и так далее.

    Помните, что умножение на 1/2 аналогично делению на 2, поэтому вы можете сложить длины оснований, а затем разделить их сумму на два, если вам так легче.

    Из-за коммутативности умножения вы можете переставить эти три числа, 12, высоту h и длину основания a + b, в любом порядке, чтобы упростить вычисление.

    Итак, с трапецией LMNO вы могли бы написать такую ​​формулу, как:

    площадь = 12 × 9 × (11 + 7)

    Пример # 2

    Вот вам еще один пример. Новая трапеция перевернута по сравнению с тем, как вы их обычно видите, но пусть это вас не остановит! Короткое основание b имеет длину 21 дюйм.Длинное основание a (на этот раз вверху рисунка) составляет 31 дюйм в длину. Высота h (независимо от того, с какой стороны вы смотрите на трапецию) составляет 5 дюймов.

    площадь = 12 × 5 × (31 + 21)

    ИЛИ

    площадь = 12 × (31 + 21) × 5

    ИЛИ

    площадь = 31 + 212 × 5

    Как бы вы ни использовали формулу, вы всегда получите один и тот же ответ: площадь = 130 дюйм2

    Краткое содержание урока

    В этом уроке и видео мы рассмотрели, что такое трапеция, изучили, как средние значения играют роль в геометрии, научились маркировать и использовать части трапеции для вычисления площади, а также узнали формулу для вычисления площади трапеции в квадратные единицы.

    Следующий урок:

    Формула Герона

    Площадь трапеции — пояснения и примеры

    Напомним, трапеция , также называемая трапецией , — это четырехугольник с одной парой параллельных сторон и другой парой непараллельных сторон. Подобно квадрату и прямоугольнику, трапеция также плоская. Следовательно, это 2D.

    В трапеции параллельные стороны известны как основания, а пара непараллельных сторон известна как ноги.Расстояние по перпендикуляру между двумя параллельными сторонами трапеции называется высотой трапеции.

    Проще говоря, основание и высота трапеции перпендикулярны друг другу.

    Трапеции могут быть как правыми трапециями (два угла 90 градусов), так и равнобедренными трапециями (две стороны одинаковой длины). Но иметь один прямой угол невозможно, потому что у него есть пара параллельных сторон, которые ограничивают его, образуя два прямых угла одновременно.

    Из этой статьи вы узнаете:

    • Как найти площадь трапеции,
    • Как получить формулу площади трапеции и,
    • Как найти площадь трапеции с помощью трапеции формула площади.

    Как найти площадь трапеции?

    Площадь трапеции — это область, покрытая трапецией в двухмерной плоскости. Это пространство, заключенное в 2D-геометрии.

    На рисунке выше трапеция состоит из двух треугольников и одного прямоугольника.Следовательно, мы можем вычислить площадь трапеции, взяв сумму площадей двух треугольников и одного прямоугольника.

    Вывести формулу площади трапеции

    Площадь трапеции ADEF = (½ x AB x FB ) + ( BC x FB ) + (½ x CD x EC )

    = ( ¹ / ₂ × AB × h ) + ( BC × h ) + (¹ / ₂ × CD × h )

    = ¹ / ₂ × h × ( AB + 2 BC + CD )

    = ¹ / ₂ × h × ( FE + AD )

    Но, FE = b 1 и AB = b 2

    Следовательно, Площадь трапеция ADEF ,

    = ¹ / × h × (b 1 + b 2 ) ……………….(Это формула площади трапеции)

    Формула площади трапеции

    Согласно формуле площади трапеции, площадь трапеции равна половине произведения высоты и суммы двух оснований.

    Площадь = ½ x (сумма параллельных сторон) x (расстояние по перпендикуляру между параллельными сторонами).

    Площадь = ½ h (b 1 + b 2 )

    Где h — высота, а b 1, и b 2 — параллельные стороны трапеции.

    Как определить площадь неправильной трапеции?

    Неровная трапеция имеет непараллельные стороны неравной длины. Чтобы найти его площадь, вам нужно найти сумму оснований и умножить ее на половину высоты.

    В вопросе иногда не хватает высоты, что можно найти с помощью теоремы Пифагора.

    Как найти периметр трапеции?

    Вы знаете, что периметр — это сумма всех длин внешнего края фигуры.Следовательно, периметр трапеции — это сумма длин всех 4 сторон.

    Пример 1

    Вычислите площадь трапеции, высота которой составляет 5 см, а основания — 14 см и 10 см.

    Решение

    Пусть b 1 = 14 см и b 2 = 10 см

    Площадь трапеции = ½ h (b 1 + b 2 ) см 2

    = ½ x 5 (14 + 10) см 2

    = ½ x 5 x 24 см 2

    = 60 см 2

    Пример 2

    Найдите площадь трапеции с высота 30 мм, а основания 60 мм и 40 мм.

    Раствор

    Площадь трапеции = ½ h (b 1 + b 2 ) кв. Единиц

    = ½ x 30 x (60 + 40) мм 2

    = ½ x 30 x 100 мм 2

    = 1500 мм 2

    Пример 3

    Площадь трапеции составляет 322 квадратных дюйма. Если длины двух параллельных сторон трапеции составляют 19 дюймов и 27 дюймов, найдите высоту трапеции.

    Раствор

    Площадь трапеции = ½ часа (b 1 + b 2 ) кв.единицы измерения.

    ⇒ 322 квадратных дюйма = ½ x в x (19 + 27) кв. дюймов

    ⇒ 322 квадратных дюйма = ½ x h x 46 кв. дюймы

    ⇒ 322 = 23h

    Разделите обе стороны на 23.

    h = 14

    Итак, высота трапеции составляет 14 дюймов.

    Пример 4

    При условии, что высота трапеции составляет 16 м, а длина одного основания — 25 м. Рассчитайте размер другого основания трапеции, если его площадь составляет 352 м 2 .

    Решение

    Пусть b 1 = 25 м

    Площадь трапеции = ½ h (b 1 + b 2 ) кв. Единиц

    ⇒ 352 м 2 = ½ x 16 м x (25 m + b 2 ) квадратных единиц

    ⇒ 352 = 8 x (25 + b 2 )

    ⇒ 352 = 200 + 8b 2

    Вычтите 200 с обеих сторон.

    ⇒ 152 = 8b 2

    Разделите обе стороны на 8, чтобы получить;

    b 2 = 19

    Следовательно, длина другого основания трапеции составляет 19 м.

    Пример 5

    Рассчитайте площадь трапеции, показанной ниже.

    Решение

    Поскольку стороны (непараллельные стороны) трапеции равны, то высоту трапеции можно рассчитать следующим образом;

    Чтобы получить основание двух треугольников, вычтите 15 см из 27 см и разделите на 2.

    ⇒ (27-15) / 2 см

    ⇒ 12/2 см = 6 см

    12 2 = h 2 + 6 2 По теореме Пифагора высота (h) рассчитывается как;

    144 = h 2 + 36.

    Вычтем 36 с обеих сторон.

    h 2 = 108.

    h = 10,39 см.

    Следовательно, высота трапеции 10,39 см.

    Теперь вычислите площадь трапеции.

    Площадь трапеции = ½ ч (b 1 + b 2 ) кв. единицы измерения.

    = ½ x 10,39 x (27 + 15) см 2 .

    = ½ x 10,39 x 42 см 2 .

    = 218,19 см 2 .

    Пример 6

    Одно основание трапеции на 10 м больше высоты.Если другое основание составляет 18 м, а площадь трапеции равна 480 м 2 , найдите высоту и основание трапеции.

    Решение

    Пусть высота = x

    Другая база равна 10 м, чем высота = x + 10.

    Площадь трапеции = ½ h (b 1 + b 2 ) Кв. единицы измерения.

    Путем подстановки

    480 = ½ * x * (x + 10 + 18)

    480 = ½ * x * (x + 28)

    Используйте свойство распределения, чтобы удалить круглые скобки.

    480 = ½x 2 + 14x

    Умножьте каждый член на 2.

    960 = x 2 + 28x

    x 2 + 28x — 960 = 0

    Решите квадратное уравнение, чтобы получить;

    x = — 48 или x = 20

    Подставьте положительное значение x в уравнение высоты и основания.

    Высота: x = 20 м.

    Другая база = x + 10 = 10 + 20 = 30 м.

    Следовательно, другое основание и высота трапеции 30 и 20 м соответственно.

    Практические задачи

    1. Найдите площадь трапеции, у которой есть параллельные основания длиной 9 единиц и 12 единиц, а высота равна 15 единицам.
    2. Для трапециевидной фигуры сумма параллельных оснований составляет 25 м, а высота — 10 м. Определите площадь этой фигуры.
    3. Рассмотрим трапецию площадью 112b квадратных футов, где b — более короткая базовая длина. Какова высота этой трапеции, если длины двух параллельных оснований таковы, что одно основание в два раза больше, чем другое основание?