Свойство вписанной трапеции в окружность: Трапеция вписана в окружность

Описанная окружность и трапеция

Получи беслпатные курсы подготовки к ЕГЭ и ОГЭ!

ЗАМУЧИЛИ БОЛИ В СПИНЕ?

Александр | 2015-12-05

Описанная окружность и трапеция. Здравствуйте! Для вас ещё одна публикация, в которой рассмотрим задачи с трапециями. Задания входят в состав экзамена по математике. Здесь они объединены в группу, дана не просто одна трапеция, а комбинация тел – трапеция и окружность. Большинство из таких задачек решаются устно. Но есть и такие на которые нужно обратить особое внимание, например, задача 27926.

Какую теорию необходимо помнить? Это:

1. Свойство сторон четырёхугольника описанного около окружности.

2. Теорему Пифагора. *Куда мы без неё )

3. Понятие средней линии трапеции.

Задачи с трапециями, которые имеются на блоге можно посмотреть здесь.

27924. Около трапеции описана окружность. Периметр трапеции равен 22, средняя линия равна 5. Найдите боковую сторону трапеции.

Отметим, что описать окружность можно только около равнобедренной трапеции. Нам дана средняя линия, значит можем определить сумму оснований, то есть:

Значит сумма боковых сторон будет равна 22–10=12 (периметр минус основания).  Так как боковые стороны равнобедренной трапеции равны, то одна сторона будет равна шести.

Ответ: 6

27925. Боковая сторона равнобедренной трапеции равна ее меньшему основанию, угол при основании равен 600, большее основание равно 12. Найдите радиус описанной окружности этой трапеции.

Если вы решали задачи с окружностью и вписанным в неё шестиугольником, то сразу озвучите ответ – радиус равен 6. Почему?

Посмотрите: равнобедренная трапеция с углом при основании равным 600 и равными сторонами AD, DC и CB, представляет собой половину правильного шестиугольника:

В таком шестиугольнике отрезок соединяющий противоположные вершины проходит через центр окружности. *Центр шестиугольника и центр окружности совпадают, подробнее здесь п. 6

То есть большее основание этой трапеции совпадает с диаметром описанной окружности. Таким образом радиус равен шести.

*Конечно, можно рассмотреть равенство треугольников ADO, DOС и OCB. Доказать что они равносторонние. Далее сделать вывод о том, что угол AOB равен 1800 и точка О равноудалена от вершин A, D, C и B, а и значит АО=ОВ=12/2=6.

Ответ: 6

27926. Основания равнобедренной трапеции равны 8 и 6. Радиус описанной окружности равен 5. Найдите высоту трапеции.

Отметим, что центр описанной окружности лежит на оси симметрии, при чём если построить высоту трапеции проходящую через этот центр, то она при пересечении с основаниями разделит их пополам. Покажем это на эскизе, также соединим центр с вершинами:

Отрезок EF является высотой трапеции, его нам нужно найти.

В прямоугольном треугольнике OFC нам известна гипотенуза (это радиус окружности),  FC=3 (так как  DF=FC). По теореме Пифагора можем вычислить OF:

В прямоугольном треугольнике OEB нам известна гипотенуза (это радиус окружности),  EB=4 (так как  AE=EB). По теореме Пифагора можем вычислить OE:

Таким образом EF=FO+OE=4+3=7.

Ответ: 7

Теперь важный нюанс!

В этой задаче на рисунке чётко показано, что основания лежат по разные стороны от центра окружности, поэтому задача решается именно так.

А если бы в условии не было дано эскиза?

Тогда у задачи было бы два ответа. Почему? Посмотрите внимательно – в любую окружность можно вписать две трапеции с заданными основаниями:

*То есть при данных основаниях трапеции и радиусе окружности существует две трапеции.

И решение будет «второго варианта» будет следующим.

По теореме Пифагора вычисляем OF:

Также вычислим OE:

Таким образом EF=FO–OE=4–3=1.

Конечно, в задаче с кратким ответом на ЕГЭ двух ответов быть не может, и подобная задача без эскиза дана не будет. Поэтому обратите особое внимание на эскиз! А именно: как расположены основания трапеции. А вот в заданиях с развёрнутым ответом такая в прошлые годы присутствовала (немного с усложнённым условием). Тот, кто рассматривал только один вариант расположения трапеции теряли балл на этом задании.

27937. Около окружности описана трапеция, периметр которой равен 40. Найдите ее среднюю линию.

Здесь сразу следует вспомнить свойство  четырёхугольника описанного около окружности:

Суммы противоположных сторон любого четырёхугольника описанного около окружности равны.

Значит

А средняя линия равна половине суммы оснований, то есть 10.

Ответ: 10

27938. Периметр прямоугольной трапеции, описанной около окружности, равен 22, ее большая боковая сторона равна 7. Найдите радиус окружности.

Радиус окружности равен половине высоты. Используя свойство указанное в предыдущей задаче получим:

Большая сторона у нас это СВ, следовательно можем вычислить AD=11–CB=11–7=4. Таким образом, радиус будет равен 2.

Ответ: 2

27915. Найдите высоту трапеции, в которую вписана окружность радиуса 1.

Посмотреть решение

27936. Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите среднюю линию трапеции.

Посмотреть решение

На этом всё, успеха вам!

С уважением, Александр Крутицких.

*Расскажите о сайте в социальных сетях.

Категория: Четырёхугольники | ЕГЭ-№1Трапеция

Подготовка к ОГЭ по математике. Полный курс!

Полный Видеокурс по РУССКОМУ ЯЗЫКУ!

ПРЕМИУМ-КУРС по математике на 100 баллов!

Замучили боль и скованность в мышцах спины?

*Нажимая на кнопку, я даю согласие на рассылку, обработку персональных данных и принимаю политику конфиденциальности.

2. Свойства равнобедренной трапации


ФГКОУ «МКК «Пансион воспитанниц МО РФ»

«УТВЕРЖДАЮ»

Руководитель отдельной дисциплины

(математика, информатика и ИКТ)

Ю. В. Крылова _____________

«___» _____________ 2015 г.

«Трапеция и ее свойства»

Методическая разработка

преподавателя математики

Шаталиной Елены Дмитриевны


Рассмотрено и

рекомендовано к использованию

на заседании ПМО от _______________

Протокол №______

Москва

2015 год

Оглавление

Введение 2


  1. Определения 3

  2. Свойства равнобедренной трапеции 4

  3. Вписанные и описанные окружности 7

  4. Свойства вписанных и описанных трапеций 8

  5. Средние величины в трапеции 12

  6. Свойства произвольной трапеции 15

  7. Признаки трапеции 18

  8. Дополнительные построения в трапеции 20

  9. Площадь трапеции 25

. 10. Заключение

. Список используемой литературы

Приложение


  1. Доказательства некоторых свойств трапеции 27

  2. Задачи для самостоятельных работ

  3. Задачи по теме «Трапеция» повышенной сложности

  4. Проверочный тест по теме «Трапеция»

Введение

Данная работа посвящена геометрической фигуре, которая называется трапеция. «Обычная фигура»,- скажете вы, но это не так. Она таит в себе много тайн и загадок, если приглядеться и углубиться в ее изучение, то вы откроете для себя много нового в мире геометрии, задачи, которые раньше не решались, покажутся вам легкими.

Трапеция — греч.слово trapezion – «столик». Заимств. в 18 в. из лат. яз., где trapezion – греч. Это четырехугольник, у которого две противоположные стороны параллельны. Трапеция встречается впервые у древнегреческого ученого Посидония (2 век до н.э.). В нашей жизни много разных фигур. В 7 классе мы близко познакомились с треугольником, в 8 классе по школьной программе мы начали изучать трапецию. Эта фигура заинтересовала нас, а в учебнике непозволимо мало про нее написано. Поэтому мы решили взять это дело в руки и найти информацию про трапецию. ее свойства.

В работе рассматриваются свойства знакомые воспитанницам по пройденному материалу в учебнике, но в большей степени неизвестные свойства, которые необходимы для решения сложных задач. Чем больше количество решаемых задач, тем больше вопросов возникает при решении их. Ответом на эти вопросы иногда кажется тайной, узнавая, новые свойства трапеции, необычные приемы решения задач, а также технику дополнительных построений, мы постепенно открываем тайны трапеции. В интернете, если забить в поисковике, о методах решения задач по теме «трапеция» очень мало литературы. В процессе работы над проектом найден большой объем информации, которая поможет воспитанницам в глубоком изучении геометрии.

Трапеция.


  1. Определения

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны.

Если боковые стороны равны, трапеция называется равнобедренной.

Трапеция,  у которой есть  прямые углы при боковой стороне, называется прямоугольной.

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.

Расстояние между основаниями называется высотой трапеции.

2. Свойства равнобедренной трапеции


  1. Углы при основании равнобедренной трапеции равны.

  1. Сумма углов трапеции, прилежащих к ее боковой стороне, а также противоположных углов равнобедренной трапеции равна 180°.

3. Диагонали равнобедренной трапеции равны.

4. Высота равнобедренной трапеции, проведенная из вершины меньшего основания, разбивает большее основание на отрезки, один из которых равен полуразности оснований, а другой полусумме оснований трапеции, т. е. средней линии трапеции.



  1. Отрезки, последовательно соединяющие середины смежных сторон равнобедренной трапеции, образуют ромб.

  2. В равнобедренной трапеции прямая, проходящая через середины оснований, перпендикулярна им и является осью симметрии трапеции.
  3. Если диагонали равнобедренной трапеции перпендикулярны, то высота трапеции равна средней линии.



  1. Около равнобедренной трапеции можно описать окружность.
  2. С

    В равнобедренной трапеции квадрат диагонали равен квадрату его боковой стороны плюс произведение оснований: d2 = c2 + a• b

10. Проекция боковой стороны равнобедренной трапеции на большее основание равна полуразности оснований, а проекция диагонали равна помусумме оснований.


3. Вписанная и описанная окружность

Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность.

Е
сли трапеция равнобедренная, то около неё можно описать окружность.

4. Свойства вписанных и описанных трапеций

  1. Если в равнобокую трапецию можно вписать окружность, то средняя линия трапеции равна боковой стороне.

2.Если в равнобедренную трапецию можно вписать окружность, то

сумма длин оснований равна сумме длин боковых сторон. Следовательно, длина боковой стороны равна длине средней линии трапеции.

4. Если в трапецию вписана окружность, то боковые стороны из ее центра видны под углом 90°.


  1. Если в трапецию вписана окружность, которая касается одной из боковых сторон, разбивает ее на отрезки m и n, тогда радиус вписанной окружности равен среднему геометрическому этих отрезков.

  1. Е
    сли в равнобокую трапецию вписана окружность, то высота трапеции есть среднее геометрическое ее оснований.


  1. Если в трапецию можно вписать окружность и около трапеции можно описать окружность, то проекция диагонали на большее основание, равна боковой стороне и равна средней линии трапеции.
  2. Если в трапецию вписана окружность, то вершина трапеции, центр вписанной в нее окружности и основание перпендикуляра, опущенного из другой вершины на основание, лежат на одной прямой.

  3. Если диагонали вписанной в окружность трапеции (четырехугольника) взаимно перпендикулярны, то сумма квадратов его противоположных сторон равна квадрату диаметра описанной окружности или удвоенному квадрату боковой стороны: a2 + b2 = 4R2 = 2c2

1
0. Если окружность построена на меньшем основании трапеции как на диаметре, проходит через середины диагоналей и касается нижнего основания, то углы трапеции 30°, 30°, 150°, 150°.

5. Средние величины в трапеции

Среднее геометрическое


  1. Р
    адиус окружности, вписанной в трапецию, есть среднее геометрическое произведения отрезков боковой стороны трапеции, на которые она разбивается точкой касания.


  2. Если в равнобедренную трапецию вписана окружность, то высота трапеции есть среднее геометрическое произведения оснований трапеции


  1. В
    любой трапеции с основаниями a и b отрезок, параллельный основаниям, концы которого лежат на боковых сторонах, равен
    среднему арифметическому оснований, если он соединяет середины боковых сторон (т.е. является средней линией трапеции). MN=(a+b)/2.

  2. В
    любой трапеции с основаниями a и b отрезок, параллельный основаниям, концы которого лежат на боковых сторонах, равен
    среднему гармоническому оснований, если он проходит через точку пересечения диагоналей KL =2 ab/(a+b)

  1. В любой трапеции с основаниями a и b отрезок, параллельный основаниям, концы которого лежат на боковых сторонах, равен среднему геометрическому оснований, если он делит трапецию на две трапеции, подобные между собой.

  2. В
    любой трапеции с основаниями a и b отрезок, параллельный основаниям, концы которого лежат на боковых сторонах, равен
    среднему квадратичному оснований, если он делит трапецию на две трапеции равной площади (равновеликие).


  1. В любой трапеции с основаниями a и b для a > b справедливо неравенство:


b ˂ h ˂ g ˂ m ˂ s ˂ a

6.Свойства произвольной трапеции

1. Середины диагоналей трапеции и середины боковых сторон лежат на одной прямой.

2. Биссектрисы углов, прилежащих к одной из боковых сторон трапеции, перпендикулярны и пересекаются в точке, лежащей на средней линии трапеции, т.е., при их пересечении образуется прямоугольный треугольник с гипотенузой, равной боковой стороне.

3. Отрезки прямой, параллельной основаниям трапеции, пересекающей боковые стороны и диагонали трапеции, заключенные между боковой стороной диагональю, равны.


  1. Точка пересечения продолжения боковых сторон произвольной трапеции, точка пересечения ее диагоналей и середин оснований лежат на одной прямой.

5. При пересечении диагоналей произвольной трапеции образуются четыре треугольника с общей вершиной, причем треугольники, прилежащие к основаниям, подобны, а треугольники, прилежащие к боковым сторонам, равновелики(т.е. имеют равные площади).

6.Сумма квадратов диагоналей произвольной трапеции равна сумме квадратов боковых сторон, сложенной с удвоенным произведением оснований.


d12 + d22 = c2 + d2 + 2ab

7
. В прямоугольной трапеции разность квадратов диагоналей равна разности квадратов оснований d12 d22 = a2 b2

8. Прямые, пересекающие стороны угла, отсекают от сторон угла пропорциональные отрезки.

9. Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам.

7. Признаки трапеции


  1. Ч
    етырехугольник является трапецией тогда и только тогда, когда при его диагональном разбиении ровно два противолежащих треугольника равновелики. При этом квадрат площади каждого из них равен произведению площадей смежных с ним треугольников



  1. Если средняя линия четырехугольника равна полусумме противолежащих ей сторон, то четырехугольник является трапецией (или параллелограммом). Если m= (a+b)/2, то ABCD – трапеция (или параллелограмм)

  2. Т
    рапеция является равнобедренной, если углы при одном из оснований равны.


  3. Если около трапеции можно описать окружность, то трапеция является равнобедренной

8. Дополнительные построения в трапеции

1. Отрезок, соединяющий середины боковых сторон — средняя линия трапеции.

2. Отрезок, параллельный одной из боковых сторон трапеции, один конец которого совпадает с серединой другой боковой стороны, другой принадлежит прямой, содержащей основание.

3. Если даны все стороны трапеции, через вершину меньшего основания проводится прямая, параллельная боковой стороне. Получается треугольник со сторонами, равными боковым сторонам трапеции и разности оснований. По формуле Герона находят площадь треугольника, потом высоту треугольника, которая равна высоте трапеции.

4
. Высота равнобедренной трапеции, проведенная из вершины меньшего основания, разбивает большее основание на отрезки, один из которых равен полуразности оснований, а другой полусумме оснований трапеции, т. е. средней линии трапеции.

5. Высоты трапеции, опущенные из вершин одного основания, высекают на прямой, содержащей другое основание, отрезок, равный первому основанию.

6
. Отрезок, параллельный одной из диагоналей трапеции проводится через вершину – точку, являющуюся концом другой диагонали. В результате получается треугольник с двумя сторонами, равными диагоналям трапеции, и третьей – равной сумме оснований

7.Отрезок, соединяющий середины диагоналей, равен полуразности оснований трапеции.

8. Биссектрисы углов, прилежащих к одной из боковых сторон трапеции, они перпендикулярны и пересекаются в точке, лежащей на средней линии трапеции, т.е., при их пересечении образуется прямоугольный треугольник с гипотенузой, равной боковой стороне.

9. Биссектриса угла трапеции отсекает равнобедренный треугольник.

1
0. Диагонали произвольной трапеции при пересечении образуют два подобных треугольника с коэффициентом подобия, равным отношению оснований, и два равновеликих треугольника, прилежащих к боковым сторонам.


11. Диагонали произвольной трапеции при пересечении образуют два подобных треугольника с коэффициентом подобия, равным отношению оснований, и два равновеликих треугольника, прилежащих к боковым сторонам.

12. Продолжение боковых сторон трапеции до пересечения дает возможность рассматривать подобные треугольники.

13. Если в равнобедренную трапецию вписана окружность, то проводят высоту трапеции — среднее геометрическое произведения оснований трапеции или удвоенное среднее геометрическое произведения отрезков боковой стороны, на которые она делится точкой касания.

9. Площадь трапеции

1. Площадь трапеции равна произведению полусуммы оснований на высоту S = ½(a + b)•h или

П
лощадь трапеции равна произведению средней линии трапеции на высоту S = mh.

2. Площадь трапеции равна произведению боковой стороны и перпендикуляра, проведенного из середины другой боковой стороны к прямой, содержащей первую боковую сторону.


  1. П
    лощадь равнобедренной трапеции, диагонали которой перпендикулярны.
    Если диагонали равнобедренной трапеции перпендикулярны, то площадь трапеции равна квадрату средней линии трапеции или квадрату высоты трапеции. S =h2

  2. Площадь произвольной трапеции со сторонами a, b, c, d:

  1. Площадь равнобедренной трапеции с радиусом вписанной окружности равным r и углом при основании α:

10. Заключение

ГДЕ, КАК И ДЛЯ ЧЕГО ИСПОЛЬЗЕУТСЯ ТРАПЕЦИЯ?

Трапеция в спорте: Трапеция — безусловно прогрессивное изобретение человечества. Она предназначена для того, чтобы разгрузить наши руки, сделать хождение на виндсерфере комфортным и легким отдыхом. Хождение на короткой доске вообще не имеет смысла без трапеции, так как без нее невозможно правильно распределить тягу между степсом и ногами и эффективно разогнаться.

Трапеция в моде: Трапеция в одежде была популярна ещё в средние века, в романскую эпоху IX-XI вв. В тот период основу женской одежды составляли туники в пол, к низу туника сильно расширялась, что и создавало эффект трапеции. Возрождение силуэта произошло в 1961-ом году и стало гимном молодости, независимости и утонченности. Огромную роль в популяризации трапеции сыграла хрупкая модель Лесли Хорнби, известная, как Твигги. Невысокая девочка с анорексичным телосложением и огромными глазами стала символом эпохи, а её излюбленными нарядами были короткие платья трапеции.

Трапеция в природе: трапеция встречается и в природе. У человека есть трапециевидная мышца, у некоторых людей лицо имеет форму трапеции. Лепестки цветов, созвездия, и конечно же вулкан Килиманджаро тоже имеют форму трапеции.

Трапеция в быту: Трапеция используется и в быту, т.к ее форма практична. Она встречается в таких предметах как: ковш экскаватора, стол, винт, машина.

Трапеция — символ архитектуры инков. Доминирующая стилистическая форма в архитектуре инков проста, но изящна — это трапеция. Она имеет не только функциональное значение, но и строго ограниченное художественное оформление. Трапециевидные дверные проемы, окна, и стенные ниши найдены в постройках всех типов, и в храмах и в менее значительных зданиях более грубых, если можно так выразиться, постройках. Трапеция встречается и в современной архитектуре. Эта форма зданий является необычной, поэтому такие постройки всегда притягивают взгляды прохожих.

Трапеция в технике: Трапеция используется при конструировании деталей в космических технологиях и в авиации. Например, некоторые солнечные батареи космических станций имеют форму трапеции так как имеют большую площадь, значит накапливают больше солнечной эн

В 21 первом веке люди уже практически не задумываются о значении геометрических фигур в их жизни. Их совершенно не волнует какой формы у них стол, очки или телефон. Они просто выбирают ту форму, которая практична. Но именно от формы той или иной вещи может зависеть использование предмета, его предназначение, результат работы. Сегодня мы познакомили вас с одной из величайших достижений человечества- с трапецией. Мы приоткрыли вам дверь в удивительный мир фигур, поведали вам тайны трапеции и показали, что геометрия вокруг нас.

Список используемой литературы


  1. Болотов А.А., Прохоренко В.И., Сафонов В.Ф., Математика Теория и Задачи. Книга 1 Учебное пособие для абитуриентов М.1998 Издательство МЭИ.

  2. Быков А.А, Малышев Г.Ю., ГУВШ факультет довузовской подготовки. Математика. Учебно-методическое пособие 4 часть М2004

  3. Гордин Р.К. Планиметрия. Задачник.

  4. Иванов А.А.,. Иванов А.П, Математика: Пособие для подготовки к ЕГЕ и поступлению в вузы-М : Издательство МФТИ,2003-288с. ISBN5-89155-188-3

  5. Пиголкина Т.С, Министерство образования и науки РФ федеральное государственное бюджетное образовательное учреждение дополнительного образования детей «ЗФТШ Московского физико-технического института (государственного университета)». Математика. Планиметрия. Задания №2 для 10-ых классов (2012-2013 учебный год).

  6. Пиголкина Т.С., Планиметрия (часть1).Матиматическая Энциклопедия Абитуриента. М., издательство российского открытого университета 1992.

  7. Шарыгин И.Ф.Избранные задачи по геометрии конкурсных экзаменов в ВУЗЫ (1987-1990) Львов Журнал «Квантор» 1991.

  8. Энциклопедия «Аванта плюс», Математика М., Мир энциклопедий Аванта 2009.

Приложение

1.Доказательство некоторых свойств трапеции.

1. Прямая, проходящая через точку пересечения диагоналей трапеции параллельно её основаниям, пересекает боковые стороны трапеции в точках K и L. Доказать, что если основания трапеции равны а и b, то длина отрезка KL равна среднему геометрическому оснований трапеции. Доказательство

Пусть О — точка пересечения диагоналей, AD = а, ВС = b. Пря­мая KL параллельна основанию AD, следовательно, KОAD, треугольники ВKО и BAD подобны, поэтому

( 1 )


  1. AD BC, ∆AOD ~ ∆COB по двум углам. тогда: т.е.

  2. BD = DO + OD, следовательно

( 2 )

Подставим ( 2 ) в ( 1 ), получим KO =

Аналогично LO = Тогда K L= KO + LO =


  1. Во всякой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжения боковых сторон ле­жат на одной прямой.

  • Доказательство: Пусть продолжения боковых сторон пересекаются в точке К. Через точку К и точку О пересечения диагоналей проведём прямую КО.

Д

K

окажем, что эта прямая делит основания пополам.

Обозначим ВМ = х, МС = у, AN = и, ND = v. Имеем:

ВКМ ~ ∆AKN

M

x

B

C

Y

C ~ ∆NKD → →

O

v

u


A

N

D

BMO ∆DNO

CMO ANO поэтому .

Перемножая полученные равенства, получим , откуда следует

x=y, но тогда и u = v.


  1. дачи для самостоятельных работ и их решения

3. Задачи по теме «Трапеция» повышенной сложности.

Садовничий Ю.В. «Математика. Подготовка к ЕГЭ», Москва, ИЛЕКСА, 2011, стр. 252.

1 . В трапеции диагонали равны 3 и 5, а отрезок, соединяющий сере­дины оснований, равен 2. Найти площадь трапеции.

Ответ: S = 6.

2. Периметр равнобочной трапеции, описанной около круга, равен р. Найти радиус этого круга, если известно, что острый угол при основании трапеции равен ɑ.

psina

3. Длины боковых сторон трапеции равны 3 и 5. Известно, что в тра­пецию можно вписать окружность. Средняя линия трапеции делит ее на две части, отношение площадей которых равно 5/11. Найти длины основа­ний трапеции.

Ответ: 1и 7.


  1. Основание АВ трапеции ABCD вдвое длиннее основания CD и вдвое длиннее боковой стороны AD. Длина диагонали АС равна а, а длина боковой стороны ВС равна b. Найти площадь трапеции.

Ответ: S= 3ab

В трапеции PQRS длина основания QR равна 10, длина диагона­ли QS равна 19, а величина угла QSP равна 30°. Выяснить, что больше, длина основания QR или длина стороны RS.

Ответ: RS > QR.


  1. В трапеции ABCD сторона АВ параллельна CD. Диагонали BD и АС трапеции пересекаются в точке О, причем треугольник ВОС явля­ется равносторонним. Найти длину стороны ВС, если АВ = 5 и CD-3.

  2. В трапеции ABCD основание AD равно 16, сумма диагоналей АС и BD равна 36, угол CAD равен 60°. Отношение площадей тре­угольников AOD и ВОС, где О — точка пересечения диагоналей, рав­но 4. Найти площадь трапеции.

Ответ: S=90√3.

Иванов А.А., Иванов А.П., Математика: Пособие для подготовки к ЕГЭ и поступлению в вузы. – М.: Издательство МФТИ, 2003, стр. 238..

12. Площадь прямоугольной трапеции равна S, острый угол равен а. Найти высоту трапеции, если ее меньшая диагональ равна большему оснозанию. [√2Sctg а]


  1. Около круга радиуса R описана равнобедренная трапеция с острым утлом а при основании. Найти периметр этой трапеции. [8.R: sin а]

  2. В равнобедренной трапеции, описанной около круга, отношение боковой стороны к меньшему основанию равно к. Найти углы трапеции и допустимые значения к.

[arccos(l — 1/к), π — arccos(l — 1/к), к > 1]


  1. На меньшем основании равнобедренной трапеции построен правильный треугольник. Его высота равна высоте трапеции, а площадь в 5 раз меньше площади трапеции. Найти угол при большем основании трапе­ции. [30°]

  2. Основания равнобедренной трапеции равны а и 6 (а > 6), угол при боольшем основании равен а. Найти радиус окружности, описанной около грапеции. [(√/а22+2аbcos2а):(2sin2а)].

  3. Площадь равнобедренной трапеции равна S, угол между ее диагонапями, противолежащий боковой стороне, равен ɑ. Найти высоту трапе­ции…

[√Stg(½ ɑ)]


  1. Равнобедренная трапеция описана около окружности. Ее диагональ равна d, а острый угол при основании равен а. Найти радиус окружности.

  2. В равнобедренной трапеции с основаниями 2 и 6 и углом arccos(—⅔)- найти радиус окружности, касающейся боковой стороны, диагонали и боль­шего основания трапеции.

  3. Отношение радиуса круга, описанного около трапеции, к радиусу круга, вписанного в нее, равно к (к > √2). Найти углы трапеции.

4. Проверочный тест по теме «Трапеция»

В трапеции, имеющей прямой угол, основания равны 5 и 11, а большая диагональ √185. Площадь трапеции составляет

В трапеции боковые стороны и меньшее основание равны Ь, а острый угол вдвое меньше тупого. Площадь трапеции равна

151 в равнобедренной трапеции, описанной около окружности ради­уса 5 м и имеющей основание 20 м, другое основание равно

Меньшее основание трапеции, вписанной в окружность, втрое меньше большего, которое является диаметром окружности. 25j В трапеции с диагональю 20, высотой 12 и площадью 150 вторая

диагональ равна

29j Равнобедренная трапеция с острым углом а описана около окруж- ности. Отношение ее большего основания к меньшему равно

Зо| В описанной около круга равнобочной трапеции расстояние от центра круга до дальней вершины трапеции втрое больше, чем до ближ­ней. Тангенс острого угла трапецииравен

Каталог: uploads -> doc
doc -> Английские слова и выражения в оригинальном написании a horse! a horse! MY KINGDOM FOR a horse! англ букв. «Коня! Коня! Мое царство за коня!»
doc -> Викторина по пьесе В. Шекспира «Гамлет, принц Датский»
doc -> Тест сынып Ұлы Отан соғысы нұсқа
doc -> Пєн атауы: Математика
doc -> Сабаќтыњ тарихы: ХІХ ѓасырдыњ 60-70 жылдарындаѓы ќазаќ халќыныњ отарлыќ езгіге ќарсы азаттыќ к‰ресі
doc -> 1 -сынып, аптасына сағат, барлығы 34 сағат Кіріспе (1 сағат)
doc -> Сабақтың тақырыбы: XVIII ғасырдың бірінші ширегіндегі Қазақ хандығының ішкі және сыртқы жағдайы Сабақтың мақсаты
doc -> Сабақтың тақырыбы: XVIII ғасырдың бірінші ширегіндегі Қазақ хандығының ішкі және сыртқы жағдайы

жүктеу/скачать 2. 8 Mb.


Достарыңызбен бөлісу:

Lesson Равнобедренную трапецию можно вписать в окружность

This Lesson (Равнобедренную трапецию можно вписать в окружность) создал пользователь ikleyn(46119)   : Просмотр исходного кода, Показать
090 0:00 ikleyn

В равнобедренную трапецию можно вписать окружность

Задача 1

Если трапеция равнобедренная, то ее можно вписать в окружность. Доказывать.

Доказательство


Пусть ABCD — равнобедренная трапеция с основаниями AB и CD и

боковые стороны н.э. и до н.э. ( рис. 1a ).

Нам нужно доказать, что существует окружность, проходящая через все вершины

трапеции A , B , C и D .

Проведем диагонали трапеции   AC и BD ( рис. 1b ) и

рассмотрим треугольники ABC и ABD .

Эти треугольники имеют общую сторону AB и конгруэнтные стороны BC и

AD  (последнее из них связано с тем, что трапеция   ABCD  равнобедренная).

Рисунок 1a . К Проблема 1

   Рисунок 1b . К решению
        задачи   1

Углы L BAD и L ABC , заключенные между этими равными сторонами, равны, так как углы при основании равнобедренной трапеции  (см. урок

Трапеции и углы их оснований в теме Многоугольники раздела Геометрия на этом сайте).

Следовательно, треугольники ABC и ABD конгруэнтны в соответствии с тестом SAS на конгруэнтность треугольников.

Отсюда следует, что углы L ACB и L ADB равны как соответствующие углы конгруэнтных треугольников.

Таким образом, углы   L ACB и   L ADB равны и опираются на один и тот же отрезок   АБ . Значит, эти углы вписаны в окружность в соответствии с уроком

Обратная теорема о вписанных углах по теме Окружности и их свойства раздела Геометрия на этом сайте.

Доказательство завершено.

Обратное утверждение доказывается в уроке  Две секущие, параллельные окружности, отсекающие конгруэнтные дуги  по теме   Окружности и их свойства раздела   Геометрия   на этом сайте:  если трапеция вписана в окружность,  то трапеция равнобедренная.

Комбинируя прямое и обратное утверждения, можно заключить, что   трапецию можно вписать в окружность тогда и только тогда, когда трапеция равнобедренная .

Другие мои уроки по кругам на этом сайте в логическом порядке:

    — Окружность, ее хорды, касательные и секущие — основные определения,

    — Чем длиннее хорда, тем больше ее центральный угол,

    — Хорды ​​окружности и радиусы, перпендикулярные хордам,

    — Касательная к окружности перпендикулярна радиусу, проведенному к точке касания,

    — Угол, вписанный в окружность,

    — Две секущие, параллельные окружности, отсекают конгруэнтные дуги,

    — Угол между двумя хордами, пересекающимися внутри окружности,

    — Угол между двумя секущими, пересекающимися вне круга,

    — Угол между хордой и касательной к окружности,

    — Касательные отрезки к окружности из точки вне окружности,

    — Обратная теорема о вписанных углах,

    — Части хорд, пересекающиеся внутри окружности,

    — Метрические соотношения для секущих, пересекающихся вне круга  и

    — Метрические соотношения для касательной и секущей, выпущенной из точки вне круга

по теме Окружности и их свойства раздела Геометрия и

    — КАК СДЕЛАТЬ дугу окружности пополам с помощью циркуля и линейки,

    — КАК найти центр окружности, заданной двумя хордами,

    — Решенные задачи на радиус и касательную к окружности,

    — Решенные задачи на вписанные углы,

    — Свойство углов четырехугольника, вписанного в окружность,

    — КАК ПОСТРОИТЬ касательную к окружности в данной точке окружности,

    — КАК ПОСТРОИТЬ касательную к окружности через заданную точку вне окружности,

    — КАК ПОСТРОИТЬ общую внешнюю касательную к двум окружностям,

    — КАК ПОСТРОИТЬ общую внутреннюю касательную к двум окружностям,

    — Решены задачи на хорды, пересекающиеся внутри окружности,

    – Решены задачи на секущие, пересекающиеся вне круга,

    — Решены задачи на касательную и секущую, выпущенную из точки вне круга

    — Радиус окружности, вписанной в прямоугольный треугольник

    – Решены проблемы с касательными линиями, выпущенными из точки вне круга.

под текущую тему.

Обзор уроков по Свойствам Окружностей находится в этом файле СВОЙСТВА КРУГОВ, ИХ ХОРД, СЕКАНС И КАСАТЕЛЬНЫХ.
Вы можете использовать файл обзора или список ссылок выше, чтобы перемещаться по этим урокам.

Для навигации по всем темам/урокам онлайн-учебника по геометрии используйте этот файл/ссылку  ГЕОМЕТРИЯ — ВАШ ОНЛАЙН-УЧЕБНИК.

геометрия — Равнобедренная трапеция с вписанной окружностью

Вопрос задан

Изменено
7 лет, 6 месяцев назад

Просмотрено
5к раз

$\begingroup$

Площадь равнобедренной трапеции равна $S$, а высота равна половине одной из непараллельных сторон. Если в трапецию можно вписать окружность, найти с доказательством радиус вписанной окружности. Выразите ответ только в $S$.

Я обозначил трапецию $ABCD$ начиная с нижнего левого угла и двигаясь по часовой стрелке. Площадь $S$ равна $h\times\left({a+b\over 2}\right)$. Итак, $S=\left({AD+BC\более 2}\right)\times\left({AB\over 2}\right)=\left({AB\times(AD+BC)\over 4}\ правильно) $. Я интуитивно знаю, что, поскольку окружность вписана и касательные параллельны, два перпендикулярных радиуса образуют диаметр, но я не знаю, как это доказать (мне нужно). Оттуда это то же самое, что и высота, которую я предполагаю, не зная, как действовать дальше.

  • геометрия
  • евклидова геометрия

$\endgroup$

$\begingroup$

Пусть радиус окружности равен $r$; тогда высота равнобедренной трапеции $2r$, а длина боковой стороны $4r$.

Четыре прямоугольных треугольника с гипотенузами $OB$ и $OC$ равны. Четыре прямоугольных треугольника с гипотенузами $OA$ и $OD$ также конгруэнтны. Следовательно, все длины, отмеченные $x$, такие же, как и длины, отмеченные $y$.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *