Решить x 2 5: Решите уравнение x-2=5 (х минус 2 равно 5)

n} \)

6) an > 0

7) an > 1, если a > 1, n > 0

8) anm, если a > 1, n

9) an > am, если 0

В практике часто используются функции вида y = ax, где a — заданное положительное число, x — переменная.
Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является
показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = ax, где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.

Это свойство следует из того, что степень ax где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.

Чтобы убедиться в этом, нужно показать, что уравнение ax = b, где а > 0, \( a \neq 1\), не имеет корней,
если \( b \leqslant 0\), и имеет корень при любом b > 0.

3) Показательная функция у = ax является возрастающей на множестве всех действительных чисел, если a > 1, и
убывающей, если 0
Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = ax при a > 0 и при 0 Использовав рассмотренные свойства отметим, что график функции у = ax при a > 0 проходит через точку (0; 1) и
расположен выше оси Oх.

Если х x при a > 0.

Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = ax при 0
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является
горизонтальной асимптотой графика.

Если х



Содержание

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т. е. уравнений, в которых неизвестное содержится в показателе степени.
Решение показательных уравнений часто сводится к решению уравнения ax = ab где а > 0, \( a \neq 1\),
х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны
тогда и только тогда, когда равны их показатели.

Решить уравнение 23x • 3x = 576

Так как 23x = (23)x = 8x, 576 = 242, то уравнение можно записать в виде
8x • 3x = 242, или в виде 24x = 242, откуда х = 2.

Ответ х = 2

Решить уравнение 3х + 1 — 2 • 3x — 2 = 25

Вынося в левой части за скобки общий множитель 3х — 2, получаем 3х — 2(33 — 2) = 25,
3х — 2 • 25 = 25,

откуда 3х — 2 = 1, x — 2 = 0, x = 2

Ответ х = 2

Решить уравнение 3х = 7х

Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac{3^x}{7^x} = 1 \), откуда \( \left( \frac{3}{7} \right) ^x = 1 \), х = 0

Ответ х = 0

Решить уравнение 9х — 4 • 3х — 45 = 0

Заменой 3х = t данное уравнение сводится к квадратному уравнению t2 — 4t — 45 = 0. {x-2} = 1 \)

x — 2 = 0

Ответ х = 2

Решить уравнение 3|х — 1| = 3|х + 3|

Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|

Возводя это уравнение в квадрат, получаем его следствие (х — 1)2 = (х + 3)2, откуда

х2 — 2х + 1 = х2 + 6х + 9, 8x = -8, х = -1

Проверка показывает, что х = -1 — корень исходного уравнения.

Ответ х = -1

Уравнения в целых числах (диофантовы уравнения) / math5school.ru

 

 

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями

такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому

уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма.

Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в

целых числах – великая теорема Ферма: уравнение

xn + yn = zn

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых

числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы

решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

  • способ перебора вариантов;

  • применение алгоритма Евклида;

  • представление чисел в виде непрерывных (цепных) дробей;

  • разложения на множители;

  • решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

  • метод остатков;

  • метод бесконечного спуска.

 

Задачи с решениями

1. Решить в целых числах уравнение x2 – xy – 2y2 = 7.

Решение

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

 

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

б) 5х + 7у = 19;

в) 201х – 1999у = 12.

Решение

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в

целых числах.

Ответ: решений нет.

 

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

x0 = 1, y0 = 2.

Тогда

5x0 + 7y0 = 19,

откуда

5(х – x0) + 7(у – y0) = 0,

5(х – x0) = –7(у – y0).

Поскольку числа 5 и 7 взаимно простые, то

х – x0 = 7k, у – y0 = –5k.

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

 

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

 

3. Решить в целых числах уравнение:

а) x3 + y3 = 3333333;

б) x3 + y3 = 4(x2y + xy2 + 1).

Решение

а) Так как x3 и y3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x3 + y3

может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

б) Перепишем исходное уравнение в виде (x + y)3 = 7(x2y + xy2) + 4. Так как кубы целых чисел при делении на 7

дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

 

4. Решить

а) в простых числах уравнение х2 – 7х – 144 = у2 – 25у;

б) в целых числах уравнение x + y = x2 – xy + y2.

Решение

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

2 х 16, 2 у 16.

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

 

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x2 – (y + 1)x + y2 – y = 0. 

Дискриминант этого уравнения равен –3y2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из

исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

 

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x2 + y2 + z2 = x3 +

y3 + z3 ?

Решение

Попробуем подбирать такие тройки, где у = –z. Тогда y3 и z3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь

вид

x2 + 2y2 = x3

или, иначе,

x2(x–1) = 2y2.

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно

много, а именно, это все числа вида 2n2+1. Подставляя в x2(x–1) = 2y2 такое число, после несложных преобразований

получаем:

y = xn = n(2n2+1) = 2n3+n.

Все тройки, полученные таким образом, имеют вид (2n2+1; 2n3+n; –2n3– n).

Ответ: существует.

 

6. Найдите такие целые числа x, y, z, u, что x2 + y2 + z2 + u2 = 2xyzu.

Решение

Число x2 + y2 + z2 + u2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x2 + y2 + z2 + u2 делится на 4, но при этом 2xyzu не делится

на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x2 + y2 + z2 + u2 не делится на 4, а 2xyzu делится на 4 –

опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

x = 2x1, y = 2y1, z = 2z1, u = 2u1,

и исходное уравнение примет вид

x12 + y12 + z12 + u12 =

8x1y1z1u1.

Теперь заметим, что (2k + 1)2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1,

z1, u1 нечётны, то x12 + y12 + z12 +

u12 не делится на 8. А если ровно два из этих чисел нечётно, то x12 + y12 +

z12 + u12 не делится даже на 4. Значит,

x1 = 2x2, y1 = 2y2, z1 = 2z2, u1 =

2u2,

и мы получаем уравнение

x22 + y22 + z22 + u22 =

32x2y2z2u2.

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

Ответ: (0; 0; 0; 0).

 

7. Докажите, что уравнение

(х – у)3 + (y – z)3 + (z – x)3 = 30

не имеет решений в целых числах.

Решение

Воспользуемся следующим тождеством:

(х – у)3 + (y – z)3 + (z – x)3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

abc = 10.

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5,

либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в

целых числах.

 

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у2.

Решение

Очевидно, что

если х = 1, то у2 = 1,

если х = 3, то у2 = 9.

Этим случаям соответствуют следующие пары чисел:

х1 = 1, у1 = 1;

х2 = 1, у2 = –1;

х3 = 3, у3 = 3;

х4 = 3, у4 = –3.

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

 

9. Решите следующую систему уравнений в натуральных числах:

a3 – b3 – c3 = 3abc,  a2 = 2(b + c).

Решение

Так как

3abc > 0, то a3 > b3 + c3;

таким образом имеем

b

Складывая эти неравенства, получим, что

b + c

С учётом последнего неравенства, из второго уравнения системы получаем, что

a2

Но второе уравнение системы также показывает, что а – чётное число. Таким образом, а = 2, b = c = 1.

Ответ: (2; 1; 1)

 

10. Найти все пары целых чисел х и у, удовлетворяющих уравнению х2 + х = у4 + у3 + у2 + у.

Решение

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у2 + 1),

или

х(х + 1) = (у2 + у)(у2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому,

приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

х1 = 0, у1 = 0;

х2 = 0, у2 = –1;

х3 = –1, у3 = 0;

х4 = –1, у4 = –1.

Произведение (у2 + у)(у2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля,

только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих

исходному уравнению:

х5 = 5, у5 = 2;

х6 = –6, у6 = 2.

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

 

Задачи без решений

1. Решить в целых числах уравнение:

а) ху = х + у + 3;

б) х2 + у2 = х + у + 2.

 

2. Решить в целых числах уравнение:

а) х3 + 21у2 + 5 = 0;

б) 15х2 – 7у2 = 9.

 

3. Решить в натуральных числах уравнение:

а) 2х + 1 = у2;

б) 3·2х + 1 = у2.

 

4. Доказать, что уравнение х3 + 3у3 + 9z3 = 9xyz в рациональных числах имеет единственное решение

x = y = z = 0.

 

5. Доказать, что уравнение х2 + 5 = у3 в целых числах не имеет решений.

 

Решение уравнений с дробями — как решать дробные уравнения

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это запись числа в математике, в которой a и b — числа или выражения. По сути, это всего лишь одна из форм, в которое можно представить число. Есть два формата записи:

        

  • обыкновенный вид — ½ или a/b,
  •     

  • десятичный вид — 0,5.

Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

        

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 — 0,3)/5.
  2.     

  3. Алгебраические — состоят из переменных. Например, (x + y)/(x — y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3\5.

    
        
            
        
        
            
        
    

Основные свойства дробей
            

                    

  1. Дробь не имеет значения, при условии, если делитель равен нулю.
  2.                 

  3. Дробь равна нулю, если числитель равен нулю, а знаменатель — нет.
  4.                 

  5. Две дроби a/b и c/d называются равными, если a * d = b * c.
  6.                 

  7. Если числитель и знаменатель умножить или разделить на одно и то же натуральное число, то получится равная ей дробь
  8.             

            

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

        

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  •     

  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

    
        
            
            
        
        
            
            
        
    

Линейное уравнение выглядит так ах + b = 0, где a и b — действительные числа.
            

Что поможет в решении:

            

                    

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  •                 

  • если а равно нулю — у уравнения нет корней;
  •                 

  • если а и b равны нулю, то корень уравнения — любое число.
  •             

            

Квадратное уравнение выглядит так: ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Приходите решать увлекательные задачки по математике в детскую школу Skysmart. Поможем разобраться в сложной теме, подтянем оценки и покажем, что математика может быть захватывающим приключением.

Запишите ребенка на бесплатный вводный урок: познакомим с форматом, выявим пробелы и наметим индивидуальную программу обучения.

Ты можешь записаться на онлайн-уроки по математике для учеников 1-11 классов!

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

 

Как решать уравнения с дробями

    
        
            
        
        
            
        
    

Универсальный алгоритм решения
            

                    

  1. Определить область допустимых значений.
  2.                 

  3. Найти общий знаменатель.
  4.                 

  5. Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
  6.                 

  7. Раскрыть скобки, если нужно и привести подобные слагаемые.
  8.                 

  9. Решить полученное уравнение.
  10.                 

  11. Сравнить полученные корни с областью допустимых значений.
  12.                 

  13. Записать ответ, который прошел проверку.
  14.             

            

А теперь еще несколько способов, которые пригодятся ребенку на уроках математики.

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решаем:

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

        

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  •     

  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Вот так просто мы получили тот же ответ, что и в прошлый раз.

    
        
            
        
        
            
        
    

Что еще важно учитывать при решении
            

                    

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  •                 

  • делить и умножать уравнение на 0 нельзя.
  •             

            

А вот и полезные видео для закрепления материала:

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

Как решаем:

        

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2.     

  3. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  4.     

  5. Избавимся от знаменателя. Умножим каждый член уравнения на х.
        

    1 + 2x = 5х

        

  6.     

  7. Решим обычное уравнение.
        

    5x — 2х = 1

        

    3x = 1

        

    х = 1/3

        

Ответ: х = 1/3.

Пример 2. Найти корень уравнения

Как решаем:

        

  1. Область допустимых значений: х ≠ −2.
  2.     

  3. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  4.     

  5. Избавимся от знаменателя. Умножим каждый член уравнения на х.
        

        

  6.     

  7. Переведем новый множитель в числитель..
        

        

  8.     

  9. Сократим левую часть на (х+2), а правую на 2.
        

    4 = х + 2

        

    х = 4 — 2 = 2

        

Ответ: х = 2.

Пример 3. Решить дробное уравнение:

Как решаем:

        

  1. Найти общий знаменатель:
        

    3(x-3)(x+3)

        

  2.     

  3. Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
        

    3(x+3)(x+3)+3(x-3)(x-3)=10(x-3)(x+3)+3*36

        

  4.     

  5. Выполним возможные преобразования. Получилось квадратное уравнение:
        

    x2-9=0

        

  6.     

  7. Решим полученное квадратное уравнение:
        

    x2=9

        

  8.     

  9. Получили два возможных корня:
        

    x1=−3, x2=3

        

    х = 4 — 2 = 2

        

  10.     

  11. Если x = −3, то знаменатель равен нулю:
        

    3(x-3)(x+3)=0

        

    Если x = 3 — знаменатель тоже равен нулю.

        

  12.     

  13. Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.

Ответ: нет решения.

Если нужно решить уравнение с дробями быстро — поможет онлайн-калькулятор дробей. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

ЕГЭ ФИПИ-2016, вариант 9, задача 18

Найдите все значения а, при каждом из которых система уравнений

имеет ровно два решения.

Решение.

Запишем 1-ое уравнение системы в виде: x2 + 5x + y2 -y -52 = |x-5y +5|. ( * )

1) Так как правая часть равенства неотрицательна, то и левая часть равенства должна быть таковой, а именно: x2 + 5x + y2-y-52 ≥ 0. Выделим из алгебраических сумм (x2 + 5x) и (y2— y) полные квадраты двучленов.

x2 + 2 х 2,5 + 2,52-2,52 + y2-2∙y∙0,5 + 0,52-0,52-52 ≥ 0;

(x2 + 2 х 2,5 + 2,52) + (y2-2 y 0,5 + 0,52) ≥ 52 + 2,52 + 0,52;

(х + 2,5)2 + (у-0,5)2 ≥ 52 + 6,25 + 0,25;

(х + 2,5)2 + (у-0,5)2 ≥ 58,5. ОДЗ: решения системы находятся среди множества точек, лежащих вне окружности с центром в точке Q(-2,5; 0,5) и радиусом

 

2) Раскроем модульные скобки в уравнении ( * ), считая, что выражение под знаком модуля неотрицательно, т. е. х-5у +5 ≥ 0 или 5у ≤ х + 5, отсюда у ≤ 0,2х+1. Тогда равенство ( * ) запишется в виде:

x2 + 5x + y2-y-52 = x-5y +5. Перенесём все в левую часть и упростим её.

x2 + 5x + y2-y-52-x + 5y-5 = 0;

x2 + 4x + y2 + 4у-57 = 0. Выделим из алгебраических сумм (x2 + 4x) и (y2 + 4y) полные квадраты двучленов.

x2 + 4x + 4-4 + y2 + 4у +4-4-57 = 0;

(x2 + 4x + 4) + (y2 + 4у +4) = 57 + 4 + 4;

(х + 2)2 + (у + 2)2 = 65. Это уравнение окружности с центром в точке О1(-2; -2) и радиусом

 

Рассматривать будем только те точки этой окружности, которые лежат ниже прямой х-5у +5 = 0, так как мы получили уравнение этой окружности при условии, что х-5у +5 ≥ 0, т.е. при у ≤ 0,2х+1. Заметим, что все точки этой окружности, лежащие ниже прямой  х-5у +5 = 0, находятся вне окружности с центром в точке Q(-2,5; 0,5),  поэтому удовлетворяют ОДЗ.

3) Теперь раскроем модульные скобки в уравнении ( * ), считая, что выражение под знаком модуля отрицательно, т.е. х-5у +5 < 0 или 5у > х + 5, отсюда у>0,2х+1. Тогда равенство ( * ) запишется в виде:

x2 + 5x + y2-y-52 = -x + 5y +5. Перенесём все в левую часть и упростим её.

x2 + 5x + y2-y-52 + x-5y + 5 = 0;

x2 + 6x + y2-6у-47 = 0. Выделим из алгебраических сумм (x2 + 6x) и (y2-6y) полные квадраты двучленов.

x2 + 6x + 9-9 + y2-6у + 9-9-47 = 0;

(x2 + 6x + 9) + (y2-6у +9) = 47 + 9 + 9;

(х + 3)2 + (у-3)2 = 65. Это уравнение окружности с центром в точке О2(-3; 3) и радиусом

Рассматривать будем только те точки этой окружности, которые лежат выше прямой х-5у +5 = 0, так как мы получили уравнение этой окружности при условии х-5у +5 < 0, т.е. при условии у > 0,2х+1. Заметим, что все точки этой окружности, лежащие выше прямой х-5у +5 = 0, находятся вне окружности с центром в точке Q(-2,5; 0,5), поэтому удовлетворяют ОДЗ.

4) Найдем точки пересечения окружностей с центрами в точках О1 и О2. Это также точки пересечения любой из этих окружностей с прямой х-5у +5 = 0. Для определенности возьмем уравнение первой из окружностей и решим систему:

Из 2-го уравнения выразим х через у и подставим в 1-ое уравнение.

Упростим и решим 2-ое уравнение полученной системы.

(5у-3)2 + (у + 2)2 = 65;

25у2-30у + 9 + у2 +4у + 4-65 = 0;

26у2-26у-52 = 0;

у2-у-2 = 0. По теореме Виета у1 + у2 =1, у1 у2 = -2. Отсюда у1 = -1, у2 = 2.

Тогда х1 = 5 у1-5 = 5 (-1)-5 = -10; х2 = 5 у2-5 = 5 2-5 = 2.

Точки пересечения окружностей с центрами О1 и О2 лежат на прямой х-5у +5 = 0, и это точки Т(-10; -1) и А(5; 2).

5) Разберемся, что представляет собой прямая у-2 = а(х-5). Запишем это уравнение в виде у = а(х-5) + 2 и вспомним, как получается график функции  y = f(x-m) + n из графика функции y = f(x). Он получается переносом графика функции y = f(x) на m единичных отрезков вдоль оси Ох и на n единичных отрезков  вдоль оси Оу. Следовательно, график функции у = а(х-5) + 2 можно получить из графика функции у = ах переносом на 5 единиц вправо и на 2 единицы вверх. Другими словами, прямая пройдет через точку А(5; 2) и должна иметь такой угловой коэффициент а, чтобы пересечь  наши окружности с центрами в точках О1 и О2 ровно в двух точках. Это произойдет только в тех случаях, когда прямая, проходя через точку А, общую для обеих окружностей, далее будет пересекать только одну из них. Предельными положениями нашей прямой (с параметром а) будут касательные к окружностям в точке А. Нам понадобятся не сами уравнения касательных, но их угловые коэффициенты. Как мы их получим?

6) Радиус О1А, проведенный в точку касания будет перпендикулярен касательной.  Угловые коэффициенты k1 и k2  двух взаимно перпендикулярных прямых   y = k1x+b1 и y = k2x+b2 подчиняются закону: k1 k2 = -1. Составим уравнения прямой О1А и прямой О2А, определим угловой коэффициент каждой прямой, а затем найдем угловые коэффициенты касательных, являющихся предельными положениями прямой у = а(х-5) + 2. Промежуток между найденными значениями параметра а и будет ответом задачи.

Используем формулу уравнения прямой, проходящей через две данные точки    (х1; у1) и (х2; у2). Эта формула имеет вид:

Составим уравнение прямой, проходящей через точки О1(-2; -2) и А(5; 2).  У нас х1 = -2, у1 = -2,  х2 = 5, у2 = 2. Подставляем эти значения в формулу:

Дальше можно не продолжать – понятно, что угловой коэффициент прямой О1А  равен 4/7.   Тогда угловой коэффициент прямой, перпендикулярной прямой О1А, равен —7/4.

   Итак, уравнение касательной в точке А к окружности с центром в точке О1 имеет вид:

Аналогично, составляем уравнение прямой О2А.

О2(-3; 3) и А(5; 2). У нас х1 = -3, у1 = 3,  х2 = 5, у2 = 2. Подставляем эти значения в формулу  ( ** ) и получаем:

Угловой коэффициент прямой О2А  равен —1/8 . Тогда угловой коэффициент прямой, перпендикулярной прямой О2А, равен -1 : (- 1/8 ) = 8.

Итак, уравнение касательной в точке А к окружности с центром в точке О2 имеет вид: у = 8(х-5) + 2.

Таким образом, если угловой коэффициент а прямой у = а(х-5) + 2 будет принимать значения от   —7/4 до 8 включительно, то прямая у = а(х-5) + 2, проходящая через точку А, в которой пересекаются две окружности, будет только  еще один раз пересекать одну из окружностей.

Данная система уравнений будет иметь только два решения при а∈ [- 7/4 ; 8].

Ответ:  —7/4 ≤ а ≤ 8.

 

 

Сервер Fujitsu PRIMERGY RX4770 M6 : Fujitsu Russia






























Набор микросхем
Intel® C621A
Тип материнской платы
D3892
Тип продукта
Четырехпроцессорный стоечный сервер
Процессор
Процессоры Intel® Xeon® Gold 53xxH, Процессоры Intel® Xeon® Gold 63xxH, Процессоры Intel® Xeon® Platinum 83xxH, Процессоры Intel® Xeon® Platinum 83xxHL

2 или 4
Оперативная память
16 ГБ — 15 ТБ, DIMM (DDR4 RDIMM, LRDIMM и энергонезависимая память Intel® Optane™)
Разъемы памяти
48 (12 модулей DIMM на процессор, 6 каналов с 2 разъемами на канал)
Защита памяти
ECC, Технология Memory Scrubbing, SDDC, ADDDC (Adaptive Double DRAM Device Correction — Адаптивная двойная коррекция устройства DRAM), Поддержка зеркалирования памяти
Дисковые устройства (дополнительно)
DVD supermulti, ultraslim, SATA I
PCI-Express 3. 0 x16
11 x при этом 4 полновысотных и 7 низкопрофильных
Дополнительные доступные устройства
1 отсек размером 5,25 дюйма/9,5 мм для привода DVD-RW/Blu-ray

Все возможные варианты описаны в соответствующем системном конфигураторе.
Отсеки для устройств хранения данных
2,5-дюймовый жесткий диск SAS/SATA/PCIe с возможностью горячей замены
2 разъема M.2

8 x 2,5-дюймовый жесткий диск SAS/SATA/PCIe с возможностью горячей замены

16 x 2,5-дюймовый жесткий диск SAS/SATA/PCIe с возможностью горячей замены

24 x 2,5-дюймовый жесткий диск SAS/SATA/PCIe с возможностью горячей замены
Контроллер сетевого интерфейса
Разъем Dynamic LoM через OCP; поддержка OCPv3, Дополнительные адаптеры OCP:, 2 порта Ethernet 10 Гбит/c (RJ45), 2 порта SFP+ 10 Гбит/c, 4 порта SFP+ 10 Гбит/c, 2 порта QSFP28 25 Гбит/с, 2 порта QSFP28 100 Гбит/с
Дистанционное управление
Встроенный контроллер дистанционного управления (iRMC S5, 512 МБ подключенной памяти, включая графический контроллер), Совместим с IPMI 2. 0
Порты USB
5 x USB 3.0 (2 на передней панели, 2 на задней, 1 внутренний)
Графическая плата
2 x VGA (1 спереди, 1 сзади)
LAN управления (RJ45)
1 выделенный порт управления LAN для iRMC S5 (10/100/1000 Мбит/с)
Доверенный платформенный модуль (TPM)
Infineon / модуль TPM 2.0; совместимость с TCG (дополнительно)
Конфигурация блоков питания
2 блока питания с возможностью горячей замены (стандартная комплектация)
Фактическая мощность (макс. конфигурация)
2,518 Вт
Вес
макс. 40 кг
Стойка (Ш x Г x В)
482,7 мм (лицевая панель) / 435 мм (корпус) x 800 x 129.4 мм
Монтажная глубина в стойке
830.7 мм
Управление инфраструктурой DC
Infrastructure Manager (ISM)
Основные элементы
Дополнительные элементы
Управление сервером
Infrastructure Manager (ISM)
Основные элементы
Дополнительные элементы, Пакет ServerView
Операционная система
http://docs. ts.fujitsu.com/dl.aspx?id=e4813edf-4a27-461a-8184-983092c12dbe
Гарантийный срок
3 года
Тип гарантии
Гарантия, включающая выезд к заказчику
Жизненный цикл обслуживания
5 лет после окончания срока службы
Ссылка на веб-сайт обслуживания
http://www.fujitsu.com/emeia/products/product-support-services/

Задача 1042 — по математике 5 класс решебник гдз

 

  Задача 1042
1042. Решите уравнение:

Виленкин Жохов Математика 5 класс

Глава II. ДРОБНЫЕ ЧИСЛА.

Параграф 5 — Обыкновенные дроби.

Тема 26 — Сложение и вычитание дробей с одинаковыми знаменателями

Другой наш проект Сказки Хитрого Кота

Контактный Email:
avcevceru @ g m a i l . c o m

Контент опубликованный на сайте vcevce.ru защищен законом об авторском праве.
Любое частичное или полное копирование опубликованной информации запрещено. ©

Арбитр Михаил Вилков отстранен от судейства: почему это ошибка?

Почему глава судейского комитета допустил ошибку?

Ашот Хачатурянц личным решением отстранил Михаила Вилкова от
работы в РПЛ, ФНЛ и ПФЛ. Однако формулировка отстранения «в связи с утратой
доверия» очень уж странная. Не удивительно, что сам судья разозлился такому
решению.

«О своем отстранении я узнал из Интернета. После этого
позвонил в приемную Ашота Хачатурянца и записался к нему на прием. Дата и время
нашей встречи пока неизвестна. Официально о своем отстранении я ничего не
слышал. Хочу пообщаться с руководителем лично – откровенно и по-мужски. Разговаривал
с Виктором Кашшаи, он никаких решений не принимал. Посоветовал мне
контактировать непосредственно с Ашотом, – цитирует Вилкова «Чемпионат.com».

С одной стороны, Ашот Хачатурянц своими жесткими решениями
вызывает поощрение со стороны болельщиков. Он представляет собой уверенного
человека, который не боится решать дела. С другой стороны, решения Хачатурянца
кажутся недостаточно обдуманными и совсем не аргументированными.

Разберем момент с отстранением в октябре 2020-го Владислава
Безбородова. Как и в этот раз, решение об отстранении Хачатурянц принял еще до
того, как прошло заседание экспертно-судейской комиссии РФС. Можно сказать, что
глава судейского комитета публично заявил, что Безбородов допустил грубые ошибки.
Неужели в такой ситуации ЭСК могла вынести решение в пользу лучшего арбитра РПЛ
прошлого сезона?

Как удалось выяснить «Спорту День за Днем», Безбородова
пытался защитить глава департамента судейства Виктор Кашшаи. Но Ашот Хачатурянц
был непреклонен. Кстати, как и в ситуации с Вилковым, Безбородову никто не
сообщил об отстранении. Вся информация – только из прессы. Ненормально.

Галицкий надавил на РФС. Почему Безбородов и Левников «отстранены»?

В разговоре не для записи один из бывших арбитров РПЛ сказал
мне, что Безбородов не допустил явных ошибок. Гол «Спартака» вполне можно было
засчитать, а эпизод с отменой гола «Краснодара» вообще не такой однозначный,
как кажется. Если присмотреться, то Безбородов свистит нарушение правил со
стороны Александра Мартыновича в момент, когда не видит мяча. То есть судья не
мог понять, что «Краснодар» близок к тому, чтобы забить. То есть он не мог
продолжить игру, как это требует протокол работы с VAR.

Впоследствии Ашоту Хачатурянцу рассказали об этом. Глава
судейского комитета был в шоке от того, что судейство такая сложная работа. Он даже
не подумал, что Безбородов не мог действовать по-другому в ситуации с отменой
гола «Краснодара». Но зато теперь Хачатурянц никаких претензий к опытному
арбитру не имеет.

В этом контексте положение Михаила Вилкова было более
шатким. Нижегородский рефери получил отстранение на девять матчей в первой
половине сезона. Уже тогда впервые прозвучала формулировка «утрата доверия». Ашот
Хачатурянц отчитал Вилкова, но позволил вернуться к работе. Однако первая же
взрывоопасная ситуация стала для арбитра последней.

Хачатурянц признал, что игра «Локомотив» – «Ростов» «стала
последней каплей». Да только ошибки Вилкова в этом матче не столь очевидны.
Опять-таки Хачатурянц не дождался разбора от экспертно-судейской комиссии.
Единственное, чем в обоих случаях (с Безбородовым и Вилковым) руководствовался
глава судейского комитета – это негативная огласка в СМИ и социальных сетях.
Опять никаких обвинений, никаких аргументов, да еще под странной формулировкой «утрата
доверия».

«Локомотив» вынес «Ростов», но победу сделал Сухина. Михаил Вилков попал в скандал

Болельщики, уверенные, что Михаил Вилков – это зенитовский
судья, готовы купать Хачатурянц в лучах славы. На деле же глава судейского
комитета ходит по тонкому льду, принимая решения, основанные исключительно на
эмоциях болельщиков.

Читайте также

Экс арбитр Федотов нашел коррупционную составляющую при назначении пенальти в матче «Локомотив» – «Ростов»

Оцените материал:

Решайте неравенства с помощью программы «Пошаговое решение математических задач»

В этой главе мы разработаем определенные методы, которые помогут решить проблемы, сформулированные на словах. Эти методы включают переписывание задач в виде символов. Например, заявленная проблема

«Найдите число, которое при добавлении к 3 дает 7»

можно записать как:

3+? = 7, 3 + n = 7, 3 + x = 1

и так далее, где символы?, N и x представляют число, которое мы хотим найти. Мы называем такие сокращенные версии поставленных задач уравнениями или символическими предложениями. Такие уравнения, как x + 3 = 7, являются уравнениями первой степени, поскольку переменная имеет показатель степени 1. Члены слева от знака равенства составляют левую часть уравнения; те, что справа, составляют правую часть. Таким образом, в уравнении x + 3 = 7 левый член равен x + 3, а правый член равен 7.

РЕШЕНИЕ УРАВНЕНИЙ

Уравнения могут быть истинными или ложными, так же как словесные предложения могут быть истинными или ложными.Уравнение:

3 + х = 7

будет ложным, если вместо переменной подставлено любое число, кроме 4. Значение переменной, для которой верно уравнение (4 в этом примере), называется решением уравнения. Мы можем определить, является ли данное число решением данного уравнения, подставив число вместо переменной и определив истинность или ложность результата.

Пример 1 Определите, является ли значение 3 решением уравнения

4x — 2 = 3x + 1

Решение Мы подставляем значение 3 вместо x в уравнение и смотрим, равен ли левый член правому.

4 (3) — 2 = 3 (3) + 1

12 — 2 = 9 + 1

10 = 10

Отв. 3 — это решение.

Уравнения первой степени, которые мы рассматриваем в этой главе, имеют не более одного решения. Решения многих таких уравнений можно определить путем осмотра.

Пример 2 Найдите решение каждого уравнения путем осмотра.

а. х + 5 = 12
б. 4 · х = -20

Решения а. 7 — решение, так как 7 + 5 = 12.
b. -5 — это решение, поскольку 4 (-5) = -20.

РЕШЕНИЕ УРАВНЕНИЙ С ИСПОЛЬЗОВАНИЕМ СВОЙСТВ СЛОЖЕНИЯ И ВЫЧИТАНИЯ

В разделе 3.1 мы решили несколько простых уравнений первой степени путем проверки. Однако решения большинства уравнений не сразу видны при осмотре. Следовательно, нам нужны некоторые математические «инструменты» для решения уравнений.

ЭКВИВАЛЕНТНЫЕ УРАВНЕНИЯ

Эквивалентные уравнения — это уравнения, которые имеют идентичные решения. Таким образом,

3x + 3 = x + 13, 3x = x + 10, 2x = 10 и x = 5

— эквивалентные уравнения, потому что 5 — единственное решение каждого из них. Обратите внимание, что в уравнении 3x + 3 = x + 13 решение 5 не очевидно при осмотре, но в уравнении x = 5 решение 5 очевидно при осмотре. Решая любое уравнение, мы преобразуем данное уравнение, решение которого может быть неочевидным, в эквивалентное уравнение, решение которого легко заметить.

Следующее свойство, иногда называемое свойством сложения-вычитания , является одним из способов создания эквивалентных уравнений.

Если одно и то же количество добавляется или вычитается из обоих элементов
уравнения, полученное уравнение эквивалентно исходному
уравнение.

в символах,

a — b, a + c = b + c и a — c = b — c

— эквивалентные уравнения.

Пример 1 Напишите уравнение, эквивалентное

х + 3 = 7

путем вычитания 3 из каждого члена.

Решение Если вычесть 3 из каждого члена, получится

х + 3 — 3 = 7 — 3

или

х = 4

Обратите внимание, что x + 3 = 7 и x = 4 — эквивалентные уравнения, поскольку решение одинаково для обоих, а именно 4. В следующем примере показано, как мы можем генерировать эквивалентные уравнения, сначала упростив один или оба члена уравнения.

Пример 2 Напишите уравнение, эквивалентное

4x- 2-3x = 4 + 6

, объединив одинаковые термины, а затем добавив по 2 к каждому члену.

Объединение одинаковых терминов дает

х — 2 = 10

Добавление 2 к каждому члену дает

х-2 + 2 = 10 + 2

х = 12

Чтобы решить уравнение, мы используем свойство сложения-вычитания, чтобы преобразовать данное уравнение в эквивалентное уравнение вида x = a, из которого мы можем найти решение путем проверки.

Пример 3 Решить 2x + 1 = x — 2.

Мы хотим получить эквивалентное уравнение, в котором все члены, содержащие x, находятся в одном члене, а все члены, не содержащие x, — в другом. Если мы сначала прибавим -1 к каждому члену (или вычтем 1 из него), мы получим

.

2x + 1-1 = x — 2-1

2x = х — 3

Если мы теперь прибавим -x к каждому члену (или вычтем x из него), мы получим

2х-х = х — 3 — х

х = -3

, где решение -3 очевидно.

Решением исходного уравнения является число -3; однако ответ часто отображается в виде уравнения x = -3.

Поскольку каждое уравнение, полученное в процессе, эквивалентно исходному уравнению, -3 также является решением 2x + 1 = x — 2. В приведенном выше примере мы можем проверить решение, подставив — 3 вместо x в исходном уравнении.

2 (-3) + 1 = (-3) — 2

-5 = -5

Симметричное свойство равенства также помогает при решении уравнений. В этом объекте указано

Если a = b, то b = a

Это позволяет нам менять местами члены уравнения в любое время, не беспокоясь о каких-либо изменениях знака.Таким образом,

Если 4 = x + 2, то x + 2 = 4

Если x + 3 = 2x — 5, то 2x — 5 = x + 3

Если d = rt, то rt = d

Может быть несколько разных способов применить свойство сложения, указанное выше. Иногда один метод лучше другого, а в некоторых случаях также полезно симметричное свойство равенства.

Пример 4 Решите 2x = 3x — 9. (1)

Решение Если мы сначала добавим -3x к каждому члену, мы получим

2x — 3x = 3x — 9 — 3x

-x = -9

, где переменная имеет отрицательный коэффициент.Хотя при осмотре мы можем видеть, что решением является 9, поскольку — (9) = -9, мы можем избежать отрицательного коэффициента, добавив -2x и +9 к каждому члену уравнения (1). В этом случае получаем

2x-2x + 9 = 3x- 9-2x + 9

9 = х

, из которого решение 9 очевидно. При желании последнее уравнение можно записать как x = 9 по симметричному свойству равенства.

РЕШЕНИЕ УРАВНЕНИЙ С СВОЙСТВОМ DIVISION

Рассмотрим уравнение

3x = 12

Решение этого уравнения — 4.Также обратите внимание, что если мы разделим каждый член уравнения на 3, мы получим уравнения

, решение которого также равно 4. В общем, мы имеем следующее свойство, которое иногда называют свойством деления.

Если оба члена уравнения делятся на одно и то же (ненулевое)
количество, полученное уравнение эквивалентно исходному уравнению.

в символах,

— эквивалентные уравнения.

Пример 1 Напишите уравнение, эквивалентное

-4x = 12

, разделив каждый член на -4.

Решение Разделив оба элемента на -4, получим

При решении уравнений мы используем указанное выше свойство для создания эквивалентных уравнений, в которых переменная имеет коэффициент 1.

Пример 2 Решите 3y + 2y = 20.

Сначала мы объединяем одинаковые термины, чтобы получить

5лет = 20

Тогда, разделив каждый член на 5, получим

В следующем примере мы используем свойство сложения-вычитания и свойство деления для решения уравнения.

Пример 3 Решить 4x + 7 = x — 2.

Решение

Сначала мы добавляем -x и -7 к каждому члену, чтобы получить

4x + 7 — x — 7 = x — 2 — x — 1

Далее, объединяя одинаковые термины, получаем

3x = -9

Наконец, мы разделим каждый член на 3, чтобы получить

РЕШЕНИЕ УРАВНЕНИЙ С СВОЙСТВОМ УМНОЖЕНИЯ

Рассмотрим уравнение

Решение этого уравнения — 12. Также обратите внимание, что если мы умножим каждый член уравнения на 4, мы получим уравнения

, решение которого также равно 12.В общем, мы имеем следующее свойство, которое иногда называют свойством умножения.

Если оба члена уравнения умножаются на одну и ту же ненулевую величину, полученное уравнение эквивалентно исходному уравнению.

в символах,

a = b и a · c = b · c (c ≠ 0)

— эквивалентные уравнения.

Пример 1 Напишите уравнение, эквивалентное

путем умножения каждого члена на 6.

Решение Умножение каждого члена на 6 дает

При решении уравнений мы используем указанное выше свойство для создания эквивалентных уравнений, не содержащих дробей.

Пример 2 Решить

Решение Во-первых, умножьте каждый член на 5, чтобы получить

Теперь разделите каждый член на 3,

Пример 3 Решить.

Решение Во-первых, упростите над дробной чертой, чтобы получить

Затем умножьте каждый член на 3, чтобы получить

Наконец, разделив каждого члена на 5, получим

ДАЛЬНЕЙШИЕ РЕШЕНИЯ УРАВНЕНИЙ

Теперь мы знаем все методы, необходимые для решения большинства уравнений первой степени. Не существует определенного порядка, в котором следует применять свойства. Может оказаться подходящим любой один или несколько из следующих шагов, перечисленных на странице 102.

Шаги по решению уравнений первой степени:

  1. Объедините одинаковые члены в каждом члене уравнения.
  2. Используя свойство сложения или вычитания, запишите уравнение со всеми членами, содержащими неизвестное в одном члене, и всеми членами, не содержащими неизвестное в другом.
  3. Объедините одинаковые термины в каждом элементе.
  4. Используйте свойство умножения для удаления дробей.
  5. Используйте свойство деления, чтобы получить коэффициент 1 для переменной.

Пример 1 Решите 5x — 7 = 2x — 4x + 14.

Решение Во-первых, мы объединяем одинаковые члены, 2x — 4x, чтобы получить

5x — 7 = -2x + 14

Затем мы добавляем + 2x и +7 к каждому члену и объединяем одинаковые термины, чтобы получить

5x — 7 + 2x + 7 = -2x + 14 + 2x + 1

7x = 21

Наконец, мы разделим каждый член на 7, чтобы получить

В следующем примере мы упрощаем над дробной чертой перед применением свойств, которые мы изучали.

Пример 2 Решить

Решение Сначала мы объединяем одинаковые термины, 4x — 2x, чтобы получить

Затем мы добавляем -3 к каждому члену и упрощаем

Затем мы умножаем каждый член на 3, чтобы получить

Наконец, мы делим каждый член на 2, чтобы получить

РЕШЕНИЕ ФОРМУЛ

Уравнения, в которых используются переменные для измерения двух или более физических величин, называются формулами. Мы можем найти любую из переменных в формуле, если известны значения других переменных.Мы подставляем известные значения в формулу и решаем неизвестную переменную методами, которые мы использовали в предыдущих разделах.

Пример 1 В формуле d = rt найти t, если d = 24 и r = 3.

Решение Мы можем найти t, заменив 24 на d и 3 на r. То есть

d = rt

(24) = (3) т

8 = т

Часто бывает необходимо решить формулы или уравнения, в которых есть более одной переменной для одной из переменных в терминах других. Мы используем те же методы, которые продемонстрированы в предыдущих разделах.

Пример 2 В формуле d = rt найдите t через r и d.

Решение Мы можем решить для t в терминах r и d, разделив оба члена на r, чтобы получить

из которых по закону симметрии

В приведенном выше примере мы решили для t, применив свойство деления для создания эквивалентного уравнения. Иногда необходимо применить более одного такого свойства.

Пример 3 В уравнении ax + b = c найдите x через a, b и c.

Решение Мы можем решить для x, сначала добавив -b к каждому члену, чтобы получить

, затем разделив каждый член на a, мы получим

Алгебраическое решение уравнений

Алгебраическое решение уравнений


Содержание: Эта страница соответствует § 2.4
(с. 200)
текста.

Предлагаемые задачи из текста:

с.212 # 7, 8, 11, 15, 17, 18, 23, 26, 35, 38, 41, 43, 46, 47, 51, 54, 57, 60, 63, 66, 71, 72, 75, 76, 81, 87,
88, 95, 97

Квадратные уравнения

Уравнения с участием радикалов

Полиномиальные уравнения высшей степени

Уравнения, содержащие дробные выражения или абсолютные значения


Квадратные уравнения

Квадратное уравнение имеет вид ax 2 + bx + c = 0, где a, b и c — числа, а a —
не равно 0.

Факторинг

Этот подход к решению уравнений основан на том факте, что если произведение двух величин равно нулю, то
хотя бы одна из величин должна быть равна нулю. Другими словами, если a * b = 0, то либо a = 0, либо b = 0, либо и то, и другое.
Для получения дополнительной информации о факторизации многочленов см. Обзорный раздел P.3 (p.26) текста.

Пример 1.

2x 2 — 5x — 12 = 0.

(2x + 3) (x — 4) = 0.

2x + 3 = 0 или x — 4 = 0.

x = -3/2, или x = 4.

Принцип квадратного корня

Если x 2 = k, то x = ± sqrt (k).

Пример 2.

x 2 — 9 = 0.

x 2 = 9.

x = 3 или x = -3.


Пример 3.


Пример 4.

x 2 + 7 = 0.

х 2 = -7.

х = ±.

Обратите внимание, что = =,
так что решения

x = ±, два комплексных числа.

Завершение квадрата

Идея завершения квадрата состоит в том, чтобы переписать уравнение в форме, которая позволяет нам применять квадрат
корневой принцип.

Пример 5.

x 2 + 6x — 1 = 0.

x 2 + 6x = 1.

x 2 + 6x + 9 = 1 + 9.

9, добавленная к обеим сторонам, получена из возведения в квадрат половины коэффициента при x, (6/2) 2 = 9. Причина
выбор этого значения заключается в том, что теперь левая часть уравнения представляет собой квадрат бинома (полином с двумя членами).
Поэтому эта процедура называется завершением квадрата .[Заинтересованный читатель может видеть, что это
истина, учитывая (x + a) 2 = x 2 + 2ax + a 2 . Чтобы получить «а» нужно всего лишь
разделите коэффициент x на 2. Таким образом, чтобы построить квадрат для x 2 + 2ax, нужно добавить 2 .]

(x + 3) 2 = 10.

Теперь мы можем применить принцип квадратного корня и затем решить относительно x.

x = -3 ± sqrt (10).


Пример 6.

2x 2 + 6x — 5 = 0.

2x 2 + 6x = 5.

Метод завершения квадрата, продемонстрированный в предыдущем примере, работает, только если старший коэффициент
(коэффициент x 2 ) равен 1. В этом примере старший коэффициент равен 2, но мы можем изменить это, разделив
обе части уравнения на 2.

x 2 + 3x = 5/2.

Теперь, когда старший коэффициент равен 1, мы берем коэффициент при x, который теперь равен 3, делим его на 2 и возводим в квадрат,
(3/2) 2 = 9/4. Это постоянная, которую мы добавляем к обеим сторонам, чтобы завершить квадрат.

x 2 + 3x + 9/4 = 5/2 + 9/4.

Левая часть — квадрат (x + 3/2). [Проверьте это!]

(х + 3/2) 2 = 19/4.

Теперь мы используем принцип квадратного корня и решаем относительно x.

x + 3/2 = ± sqrt (19/4) = ± sqrt (19) / 2.

x = -3/2 ± sqrt (19) / 2 = (-3 ± sqrt (19)) / 2

До сих пор мы обсуждали три метода решения квадратных уравнений. Что лучше? Это зависит от
проблема и ваши личные предпочтения. Уравнение в правильной форме для применения принципа квадратного корня
могут быть перегруппированы и решены путем факторинга, как мы видим в следующем примере.

Пример 7.

x 2 = 16.

x 2 — 16 = 0.

(x + 4) (x — 4) = 0.

x = -4 или x = 4.

В некоторых случаях уравнение может быть решено путем факторизации, но факторизация не очевидна.

Метод завершения квадрата всегда будет работать, даже если решения являются комплексными числами, и в этом случае
мы извлечем квадратный корень из отрицательного числа.Кроме того, шаги, необходимые для завершения квадрата, следующие:
всегда одинаковы, поэтому их можно применить к общему квадратному уравнению

топор 2 + bx + c = 0.

Результатом квадрата этого общего уравнения является формула для решений уравнения
называется квадратной формулой.

Квадратичная формула

Решения уравнения ax 2 + bx + c = 0 равны

Мы говорим, что завершение квадрата всегда работает, и мы завершили квадрат в общем случае,
где у нас есть a, b и c вместо чисел.Итак, чтобы найти решения для любого квадратного уравнения, запишем его
в стандартной форме, чтобы найти значения a, b и c, затем подставьте эти значения в квадратную формулу.

Одним из следствий этого является то, что вам никогда не придется заполнять квадрат, чтобы найти решения квадратного уравнения.
Однако процесс завершения квадрата важен по другим причинам, поэтому вам все равно нужно знать, как
сделай это!

Примеры использования квадратичной формулы:

Пример 8.

2x 2 + 6x — 5 = 0.

В данном случае a = 2, b = 6, c = -5. Подставляя эти значения в квадратичную формулу, получаем

Обратите внимание, что мы решили это уравнение ранее, заполнив квадрат.

Примечание : Есть два реальных решения. Что касается графиков, есть два пересечения для графика
функции f (x) = 2x 2 + 6x — 5.


Пример 9.

4x 2 + 4x + 1 = 0

В этом примере a = 4, b = 4 и c = 1.

В этом примере следует обратить внимание на две вещи.

  • Есть только одно решение. С точки зрения графиков это означает, что существует только один пересечение по оси x.

  • Решение упрощено, так что квадратный корень не используется. Это означает, что уравнение могло быть
    решается факторингом. (Все квадратные уравнения могут быть решены путем разложения на множители ! Я имею в виду, что это могло быть
    решено легко факторингом.)

4x 2 + 4x + 1 = 0.

(2x + 1) 2 = 0.

х = -1/2.


Пример 10.

х 2 + х + 1 = 0

а = 1, б = 1, с = 1

Примечание: Реальных решений нет. Что касается графиков, то для графика нет перехватов.
функции f (x) = x 2 + x + 1. Таким образом, решения сложны, поскольку график y = x 2
+ x + 1 не имеет пересечений по x.

Выражение под радикалом в квадратичной формуле, b 2 — 4ac, называется дискриминантом
уравнение.Последние три примера иллюстрируют три возможности для квадратных уравнений.

1. Дискриминант> 0. Два реальных решения.

2. Дискриминант = 0. Одно реальное решение.

3. Дискриминант <0. Два сложных решения.

Примечания к проверке решений

Ни один из методов, представленных до сих пор в этом разделе, не может вводить посторонние решения.(См. Пример
3 из раздела Линейные уравнения и моделирование.) Тем не менее, рекомендуется проверить свои решения,
потому что при решении уравнений очень легко сделать невнимательные ошибки.

Алгебраический метод, который состоит из обратной подстановки числа в уравнение и проверки того, что
полученное утверждение верно, хорошо работает, когда решение «простое», но не очень практично, когда
решение предполагает радикальное.

Например, в нашем предпоследнем примере 4x 2 + 4x + 1 = 0 мы нашли одно решение x = -1/2.

Алгебраическая проверка выглядит как

4 (-1/2) 2 +4 (-1/2) + 1 = 0.

4 (1/4) — 2 + 1 = 0.

1-2 + 1 = 0.

0 = 0. Решение проверяет.

В предыдущем примере, 2x 2 + 6x — 5 = 0, мы нашли два реальных решения, x = (-3 ± sqrt (19)) / 2.
Конечно, можно проверить это алгебраически, но это не очень просто. В этом случае либо графический
проверить или использовать калькулятор для алгебраической проверки быстрее.

Сначала найдите десятичные приближения для двух предложенных решений.

(-3 + sqrt (19)) / 2 = 0,679449.

(-3 — sqrt (19)) / 2 = -3,679449.

Теперь используйте графическую утилиту, чтобы построить график y = 2x 2 + 6x — 5, и проследите график, чтобы приблизительно определить, где
х-точки пересечения. Если они близки к указанным выше значениям, вы можете быть уверены, что у вас есть правильные решения.
Вы также можете вставить приближенное решение в уравнение, чтобы увидеть, дают ли обе части уравнения примерно
те же значения.Однако вам все равно нужно быть осторожным в заявлении о том, что ваше решение является правильным, поскольку оно
не точное решение.

Обратите внимание, что если вы начали с уравнения 2x 2 + 6x — 5 = 0 и сразу перешли к графику
утилиту для ее решения, то вы не получите точных решений, потому что они иррациональны. Однако, найдя
(алгебраически) два числа, которые, по вашему мнению, являются решениями, если графическая утилита показывает, что перехваты очень
близко к найденным вами числам, то вы, наверное, правы!

Упражнение 1:

Решите следующие квадратные уравнения.

(а) 3x 2 -5x — 2 = 0. Ответ

(б) (x + 1) 2 = 3. Ответ

(в) x 2 = 3x + 2. Ответ

Вернуться к содержанию

Уравнения с участием радикалов

Уравнения с радикалами часто можно упростить, возведя в соответствующую степень и возведя в квадрат, если радикал
является квадратным корнем, кубическим корнем и т. д. Эта операция может вводить посторонние корни, поэтому все решения
необходимо проверить.

Если в уравнении только один радикал, то перед возведением в степень вы должны договориться, чтобы
радикальный член сам по себе на одной стороне уравнения.

Пример 11.

Теперь, когда мы изолировали радикальный член в правой части, возводим обе части в квадрат и решаем полученное уравнение
для x.

Чек:

х = 0

Когда мы подставляем x = 0 в исходное уравнение, мы получаем утверждение 0 = 2, что неверно!

Итак, x = 0 не является решением .

х = 3

Когда мы подставляем x = 3 в исходное уравнение, мы получаем утверждение 3 = 3. Это верно, поэтому x = 3 равно
раствор
.

Решение : x = 3.

Примечание: Решением является координата x точки пересечения графиков y = x и
у = sqrt (х + 1) +1.

Посмотрите, что бы произошло, если бы мы возвести в квадрат обе части уравнения до , выделив радикал
срок.

Это хуже того, с чего мы начали!

Если в уравнении более одного радикального члена, то, как правило, мы не можем исключить все радикалы с помощью
возведение в степень один раз. Однако мы можем на уменьшить количество радикальных членов на , возведя их в степень.

Если уравнение включает более одного радикального члена, мы все равно хотим изолировать один радикал с одной стороны и
возвести в степень. Затем мы повторяем этот процесс.

Пример 12.

Теперь возведите обе части уравнения в квадрат.

В этом уравнении есть только один радикальный член, поэтому мы добились прогресса! Теперь выделите радикальный член, а затем возведите в квадрат
снова обе стороны.

Чек:

Подставляя x = 5/4 в исходное уравнение, получаем

sqrt (9/4) + sqrt (1/4) = 2.

3/2 + 1/2 = 2.

Это утверждение верно, поэтому x = 5/4 является решением.

Примечание по проверке решений:

В этом случае выполнить алгебраическую проверку было несложно. Однако графическая проверка имеет то преимущество, что показывает, что
нет решений, которые мы не нашли бы, по крайней мере, в рамках прямоугольника просмотра. Решение
— координата x точки пересечения графиков y = 2 и y = sqrt (x + 1) + sqrt (x-1).

Упражнение 2:

Решите уравнение sqrt (x + 2) + 2 = 2x. Ответ

Вернуться к содержанию

Полиномиальные уравнения высшей степени

Мы видели, что любое полиномиальное уравнение второй степени (квадратное уравнение) от одной переменной может быть решено с помощью
Квадратичная формула. Полиномиальные уравнения степени больше двух сложнее.Когда мы встречаемся
такая проблема, то либо многочлен имеет особую форму, которая позволяет нам разложить его на множители, либо мы должны аппроксимировать
решения с графической утилитой.

Нулевая постоянная

Один частый частный случай — отсутствие постоянного члена. В этом случае мы можем исключить одну или несколько полномочий
x, чтобы начать задачу.

Пример 13.

2x 3 + 3x 2 -5x = 0.

x (2x 2 + 3x -5) = 0.

Теперь у нас есть произведение x и квадратного многочлена, равного 0, так что у нас есть два более простых уравнения.

x = 0 или 2x 2 + 3x -5 = 0.

Первое уравнение решить несложно. x = 0 — единственное решение. Второе уравнение может быть решено факторингом.
Примечание: Если бы мы не смогли разложить квадратичную во втором уравнении, мы могли бы прибегнуть к
к использованию квадратичной формулы.[Убедитесь, что вы получили те же результаты, что и ниже.]

x = 0 или (2x + 5) (x — 1) = 0.

Итак, есть три решения: x = 0, x = -5/2, x = 1.

Примечание: Решение находится при пересечении графиков f (x) = 2x 3
+ 3x 2 -5x.

Фактор по группировке

Пример 14.

x 3 -2x 2 -9x +18 = 0.

Коэффициент при x 2 в 2 раза больше, чем при x 3 , и такое же соотношение существует между
коэффициенты при третьем и четвертом членах. Группа термины один и два, а также термины третий и четвертый.

x 2 (x — 2) — 9 (x — 2) = 0.

Эти группы имеют общий множитель (x — 2), поэтому мы можем разложить левую часть уравнения на множители.

(x — 2) (x 2 — 9) = 0.

Всякий раз, когда мы находим продукт, равный нулю, мы получаем два более простых уравнения.

x — 2 = 0 или x 2 — 9 = 0.

x = 2 или (x + 3) (x — 3) = 0.

Итак, есть три решения: x = 2, x = -3, x = 3.

Примечание: Эти решения находятся на пересечении графика f (x) = x 3
-2x 2 -9x +18.

Квадратичная форма

Пример 15.

x 4 — x 2 — 12 = 0.

Этот многочлен неквадратичный, он имеет четвертую степень. Однако его можно рассматривать как квадратичный по x 2 .

(x 2 ) 2 — (x 2 ) — 12 = 0.

Это может помочь вам фактически заменить z на x 2 .

z 2 — z — 12 = 0 Это квадратное уравнение относительно z.

(z — 4) (z + 3) = 0.

z = 4 или z = -3.

Мы еще не закончили, потому что нам нужно найти значения x, которые делают исходное уравнение истинным.Теперь заменим z на
x 2 и решите полученные уравнения.

x 2 = 4.

х = 2, х = -2.

х 2 = -3.

x = i , или x = — i.

Итак, есть четыре решения: два реальных и два комплексных.

Примечание: Эти решения находятся на пересечении графика f (x) = x 4
— х 2 — 12.

График f (x) = x 4 — x 2 -12 и увеличение, показывающее его локальное
экстремумы.

Упражнение 3:

Решите уравнение x 4 — 5x 2 + 4 = 0. Ответ

Вернуться к содержанию

Уравнения, содержащие дробные выражения или абсолютные значения

Пример 16.

Наименьший общий знаменатель равен x (x + 2), поэтому мы умножаем обе части на это произведение.

Это уравнение квадратичное. Квадратичная формула дает решения

Проверка необходима, потому что мы умножили обе части на переменное выражение. Используя графическую утилиту, мы
убедитесь, что оба этих решения проверяют. Решением является координата x точки пересечения графиков.
из y = 1 и y = 2 / x-1 / (x + 2).

Пример 17.

5 | х — 1 | = х + 11.

Ключ к решению уравнения с абсолютными значениями — помнить, что величина внутри абсолютного значения
столбцы могут быть положительными или отрицательными. У нас будет два отдельных уравнения, представляющих разные возможности,
и все решения должны быть проверены.

Корпус 1 . Предположим, что x — 1> = 0.Тогда | х — 1 | = x — 1, поэтому мы имеем уравнение

5 (x — 1) = x + 11.

5x — 5 = x + 11.

4x = 16.

x = 4, и это решение проверяет, потому что 5 * 3 = 4 + 11.

Случай 2. Предположим, что x — 1 <0. Тогда x - 1 отрицательно, поэтому | х - 1 | = - (х - 1). Этот точка часто сбивает студентов с толку, потому что это выглядит так, как будто мы говорим, что абсолютное значение выражения отрицательно, но это не так.Выражение (x - 1) уже отрицательное, поэтому - (x - 1) положительное.

Теперь наше уравнение принимает вид

.

-5 (x — 1) = x + 11.

-5x + 5 = x + 11.

-6x = 6.

x = -1, и это решение проверяет, потому что 5 * 2 = -1 + 11.

Если вы используете Java Grapher для графической проверки, обратите внимание, что abs () является абсолютным значением, поэтому вы должны построить график

5 * abs (x — 1) — x — 11 и посмотрите на пересечения по x, или вы можете найти решение как x-координаты
точки пересечения графиков y = x + 11 и y = 5 * abs (x-1).

Упражнение 4:

(а) Решите уравнение. Ответ

.

(b) Решите уравнение | х — 2 | = 2 — x / 3 Ответ

Вернуться к содержанию


Решение квадратных уравнений

Решение квадратных уравнений

Квадратичное уравнение — это уравнение, которое можно записать как

топор 2 + bx + c = 0

, когда a 0.

Существует три основных метода решения квадратных уравнений: факторизация, использование формулы квадратичного уравнения и завершение квадрата.

Факторинг

Чтобы решить квадратное уравнение множителем,

  1. Поместите все члены с одной стороны от знака равенства, оставив ноль с другой стороны.

  2. Коэффициент

    .

  3. Установите каждый коэффициент равным нулю.

  4. Решите каждое из этих уравнений.

  5. Проверьте, подставив свой ответ в исходное уравнение.

Пример 1

Решить x 2 — 6 x = 16.

Следуя инструкциям,

x 2 — 6 x = 16 становится x 2 — 6 x — 16 = 0

Коэффициент

.

( x — 8) ( x + 2) = 0

Установка каждого коэффициента на ноль,

Затем проверить,

Оба значения, 8 и –2, являются решениями исходного уравнения.

Пример 2

Решить y 2 = — 6 y — 5.

Устанавливая все члены равными нулю,

y 2 + 6 y + 5 = 0

Коэффициент

.

( y + 5) ( y + 1) = 0

Установка каждого коэффициента на 0,

Для проверки, y 2 = –6 y — 5

Квадратичный с отсутствующим членом называется неполным квадратичным (если не пропущен член ax 2 ).

Пример 3

Решить x 2 — 16 = 0.

Коэффициент

.

Для проверки, x 2 — 16 = 0

Пример 4

Решить x 2 + 6 x = 0.

Коэффициент

.

Чтобы проверить, x 2 + 6 x = 0

Пример 5

Решить 2 x 2 + 2 x — 1 = x 2 + 6 x — 5.

Во-первых, упростите, поместив все термины в одну сторону и комбинируя похожие термины.

Теперь фактор.

Для проверки, 2 x 2 + 2 x — 1 = x 2 + 6 x — 5

Квадратичная формула

Многие квадратные уравнения не могут быть решены факторизацией. Обычно это верно, когда корни или ответы не являются рациональными числами. Второй метод решения квадратных уравнений включает использование следующей формулы:

a, b, и c взяты из квадратного уравнения, записанного в его общей форме

топор 2 + bx + c = 0

, где a — это цифра перед x 2 , b — это цифра перед x , а c — это цифра без переменной рядом с ней (a .k.a., «постоянная»).

При использовании формулы квадратного уравнения вы должны знать о трех возможностях. Эти три возможности различаются частью формулы, называемой дискриминантом. Дискриминант — это значение под знаком корня, b 2 -4 ac . Квадратное уравнение с действительными числами в качестве коэффициентов может иметь следующее:

  1. Два разных действительных корня, если дискриминант b 2 -4 ac является положительным числом.

  2. Один действительный корень, если дискриминант b 2 — 4 ac равен 0.

  3. Нет действительного корня, если дискриминант b 2 -4 ac является отрицательным числом.

Пример 6

Решите относительно x : x 2 — 5 x = –6.

Установка всех членов равными 0,

x 2 -5 x + 6 = 0

Затем замените 1 (который, как предполагается, стоит перед x 2 ), –5 и 6 вместо a , b и c, соответственно в формуле квадратного уравнения и упростите.

Поскольку дискриминант b 2 -4 ac положительный, вы получаете два разных действительных корня.

Пример
производит рациональные корни. В примере
, квадратная формула используется для решения уравнения, корни которого нерациональны.

Пример 7

Решить относительно y : y 2 = –2y + 2.

Установка всех членов равными 0,

y 2 + 2 y — 2 = 0

Затем замените 1, 2 и –2 на a , b и c, соответственно в формуле корней квадратного уравнения и упростите.

Обратите внимание, что два корня иррациональны.

Пример 8

Решить относительно x : x 2 + 2 x + 1 = 0.

Подставляя в формулу корней квадратного уравнения,

Поскольку дискриминант b 2 -4 ac равен 0, уравнение имеет один корень.

Квадратичная формула также может использоваться для решения квадратных уравнений, корни которых являются мнимыми числами, то есть они не имеют решения в действительной системе счисления.

Пример 9

Решите относительно x : x ( x + 2) + 2 = 0 или x 2 + 2 x + 2 = 0.

Подставляя в формулу корней квадратного уравнения,

Поскольку дискриминант b 2 — 4 ac отрицателен, это уравнение не имеет решения в действительной системе счисления.

Но если бы вы выразили решение с помощью мнимых чисел, решения были бы такими.

Завершение квадрата

Третий метод решения квадратных уравнений, который работает как с действительными, так и с мнимыми корнями, называется завершением квадрата.

  1. Запишите уравнение в виде ax 2 + bx = — c .

  2. Убедитесь, что a = 1 (если a ≠ 1, умножьте уравнение на, прежде чем продолжить).

  3. Используя значение b из этого нового уравнения, сложите обе части уравнения, чтобы получить полный квадрат в левой части уравнения.

  4. Найдите квадратный корень из обеих частей уравнения.

  5. Решите полученное уравнение.

Пример 10

Решить относительно x : x 2 — 6 x + 5 = 0.

Оформить в виде

Поскольку a = 1, прибавьте или 9 к обеим сторонам, чтобы завершить квадрат.

Извлеките квадратный корень из обеих частей.

x — 3 = ± 2

Решить.

Пример 11

Решить относительно y : y 2 + 2 y — 4 = 0.

Оформить в виде

Поскольку a = 1, прибавьте или 1 к обеим сторонам, чтобы завершить квадрат.

Извлеките квадратный корень из обеих частей.

Решить.

Пример 12

Решите относительно x : 2 x 2 + 3 x + 2 = 0.

Оформить в виде

Поскольку a ≠ 1, умножаем уравнение на.

Добавьте или с обеих сторон.

Извлеките квадратный корень из обеих частей.

В действительной системе счисления нет решения. Вам может быть интересно узнать, что завершение квадратного процесса для решения квадратных уравнений использовалось в уравнении ax 2 + bx + c = 0 для вывода формулы квадратов.

Как найти решение Набор

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает одно
или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

уравнений абсолютных значений

уравнений абсолютных значений

Уравнения абсолютных значений

Выполните следующие действия, чтобы найти равенство абсолютных значений.
который содержит одно абсолютное значение:

  1. Выделите абсолютное значение на одной стороне уравнения.
  2. Число на другой стороне уравнения отрицательное?
    Если вы ответили утвердительно, то уравнение не имеет решения. Если вы ответили
    нет, переходите к шагу 3.
  3. Напишите два уравнения без абсолютных значений. Первое уравнение
    установит количество внутри столбцов, равное количеству на другом
    сторона знака равенства; второе уравнение установит количество внутри
    столбцы равны противоположному числу на другой стороне.
  4. Решите два уравнения.

Выполните следующие действия, чтобы найти равенство абсолютного значения.
который содержит два абсолютных значения (по одному с каждой стороны уравнения):

  1. Напишите два уравнения без абсолютных значений. Первое
    уравнение установит количество внутри столбцов с левой стороны равным
    количество внутри полос с правой стороны. Второе уравнение
    установит количество внутри столбцов с левой стороны равным противоположному
    количества внутри полос с правой стороны.
  2. Решите два уравнения.

Давайте рассмотрим несколько примеров.

Пример 1: Решить | 2x — 1 | + 3 = 6

Шаг 1: Изолировать
абсолютное значение
| 2x — 1 | + 3 = 6

| 2x — 1 | = 3

Шаг 2: Is
число на другой стороне уравнения отрицательное?
Нет, это положительное число, 3, так что продолжайте
шаг 3
Шаг 3: Запись
два уравнения без столбцов абсолютных значений
2x — 1 = 3 2х — 1 = -3
Шаг 4: Решить
оба уравнения
2x — 1 = 3

2x = 4

х = 2

2х — 1 = -3

2x = -2

х = -1

Пример 2: Решить | 3x — 6 | — 9 = -3

Шаг 1: Изолировать
абсолютное значение
| 3х — 6 | — 9 = -3

| 3x — 6 | = 6

Шаг 2: Is
число на другой стороне уравнения отрицательное?
Нет, это положительное число, 6, так что продолжайте
шаг 3
Шаг 3: Запись
два уравнения без столбцов абсолютных значений
3х — 6 = 6 3х — 6 = -6
Шаг 4: Решить
оба уравнения
3x — 6 = 6

3x = 12

х = 4

3х — 6 = -6

3x = 0

х = 0

Пример 3: Решить | 5x + 4 | + 10 = 2

Шаг 1: Изолировать
абсолютное значение
| 5x + 4 | + 10 = 2

| 5x + 4 | = -8

Шаг 2: Is
число на другой стороне уравнения отрицательное?
Да, это отрицательное число, -8.Нет решения
к этой проблеме.

Пример 4: Решить | x — 7 | = | 2x — 2 |

Шаг 1: Запись
два уравнения без столбцов абсолютных значений
х — 7 = 2х — 2 х — 7 = — (2х — 2)
Шаг 4: Решить
оба уравнения
х — 7 = 2х — 2

-x — 7 = -2

-x = 5

х = -5

х — 7 = -2x + 2

3x — 7 = 2

3x = 9

х = 3

Пример 5: Решить | x — 3 | = | x + 2 |

Шаг 1: Запись
два уравнения без столбцов абсолютных значений
х — 3 = х + 2 х — 3 = — (х + 2)
Шаг 4: Решить
оба уравнения
х — 3 = х + 2

— 3 = -2

ложное заявление

Нет решения из этого уравнения

х — 3 = -x — 2

2x — 3 = -2

2x = 1

х = 1/2

Итак, единственное решение этой проблемы — x = 1/2

Пример 6: Решить | x — 3 | = | 3 — x |

Шаг 1: Запись
два уравнения без столбцов абсолютных значений
х — 3 = 3 — х х — 3 = — (3 — х)
Шаг 4: Решить
оба уравнения
х — 3 = 3 — х

2x — 3 = 3

2x = 6

х = 3

х — 3 = — (3 — х)

х — 3 = -3 + х

-3 = -3

Все действительные числа являются решениями этого уравнения

Поскольку 3 входит в набор действительных чисел,
мы просто скажем, что решение этого уравнения — все действительные числа

Извлечение квадратного корня

Извлечение квадратного корня

Напомним, что квадратное уравнение имеет стандартную форму Любое квадратное уравнение в форме ax2 + bx + c = 0, где a , b и c — действительные числа и a 0.если он равен 0:

, где a , b и c — действительные числа и a 0. Решение такого уравнения называется корневым решением квадратного уравнения в стандартной форме. Квадратные уравнения могут иметь два действительных решения, одно действительное решение или не иметь реального решения. Если квадратное выражение слева множители, то мы можем решить его путем факторизации. Обзор шагов, используемых для решения путем факторинга, следующий:

Шаг 1: Выразите квадратное уравнение в стандартной форме.

Шаг 2: Разложите квадратное выражение на множители.

Шаг 3: Примените свойство нулевого произведения и установите каждый переменный коэффициент равным 0.

Шаг 4: Решите полученные линейные уравнения.

Например, мы можем решить x2−4 = 0, разложив на множители следующим образом:

Двумя решениями являются −2 и 2. Цель этого раздела — разработать альтернативный метод, который можно использовать для простого решения уравнений, в которых b = 0, что дает форму

Уравнение x2−4 = 0 находится в этой форме и может быть решено путем выделения x2 вначале.

Если извлечь квадратный корень из обеих частей этого уравнения, мы получим следующее:

Здесь мы видим, что x = −2 и x = 2 являются решениями полученного уравнения. В общем, это описывает свойство квадратного корня для любого действительного числа k , если x2 = k, то x = ± k .; для любого действительного числа к ,

Обозначение «±» читается как «плюс или минус» и используется как компактное обозначение, обозначающее два решения.Следовательно, утверждение x = ± k указывает, что x = −k или x = k. Применение свойства квадратного корня как средства решения квадратного уравнения называется извлечением корней Применение свойства квадратного корня как средства решения квадратного уравнения.

Пример 1: Решите: x2−25 = 0.

Решение: Начните с выделения квадрата.

Затем примените свойство квадратного корня.

Ответ: Решения — 5 и 5.Чек предоставляется читателю.

Конечно, предыдущий пример можно было бы так же легко решить с помощью факторинга. Тем не менее, он демонстрирует метод, который можно использовать для решения уравнений в этой форме, которые не учитывают факторы.

Пример 2: Решить: x2−5 = 0.

Решение: Обратите внимание, что квадратичное выражение слева не множится. Мы можем извлечь корни, если сначала выделим главный член x2.

Примените свойство квадратного корня.

Для полноты проверьте, что эти два действительных решения решают исходное квадратное уравнение. Как правило, проверка не является обязательной.

Ответ: Решения — 5 и 5.

Пример 3: Решить: 4×2-45 = 0.

Решение: Начните с изоляции x2.

Примените свойство квадратного корня, а затем упростите.

Ответ: Решения — 352 и 352.

Иногда квадратные уравнения не имеют реального решения.

Пример 4: Решить: x2 + 9 = 0.

Решение: Начните с изоляции x2.

После применения свойства квадратного корня у нас остается квадратный корень из отрицательного числа. Следовательно, у этого уравнения нет реального решения.

Ответ: Реального решения нет

Обратитесь к этому процессу, чтобы найти уравнения с заданными решениями вида ± k .

Пример 5: Найдите уравнение с решениями −23 и 23.

Решение: Начните с возведения в квадрат обеих частей следующего уравнения:

Наконец, вычтите 12 из обеих частей и представьте уравнение в стандартной форме.

Ответ: x2−12 = 0

Попробуй! Решите: 9×2−8 = 0.

Ответ: x = −223 или x = 223

Рассмотрите возможность решения следующего уравнения:

Чтобы решить это уравнение путем факторизации, сначала возведите в квадрат x + 2, а затем представьте его в стандартной форме, равной нулю, путем вычитания 25 из обеих частей.

Коэффициент

, а затем применить свойство нулевого продукта.

Два решения: −7 и 3.

Когда уравнение имеет такую ​​форму, мы можем получить решения за меньшее количество шагов, извлекая корни.

Пример 6: Решите: (x + 2) 2 = 25.

Решение: Решите, извлекая корни.

На этом этапе разделите «плюс или минус» на два уравнения и упростите каждое по отдельности.

Ответ: Решения −7 и 3.

В дополнение к меньшему количеству шагов этот метод позволяет нам решать уравнения, которые не учитывают множители.

Пример 7: Решите: (3x + 3) 2−27 = 0.

Решение: Начните с выделения квадрата.

Затем извлеките корни и упростите.

Решите относительно x .

Ответ: Решения: −1−3 и −1 + 3.

Пример 8: Решить: 9 (2x − 1) 2−8 = 0.

Решение: Начните с выделения квадратного множителя.

Примените свойство квадратного корня и решите.

Ответ: Решения 3−226 и 3 + 226.

Попробуй! Решите: 3 (x − 5) 2−2 = 0.

Ответ: 15 ± 63

Пример 9: Длина прямоугольника вдвое больше его ширины. Если диагональ составляет 2 фута, найдите размеры прямоугольника.

Решение:

Диагональ любого прямоугольника образует два прямоугольных треугольника. Таким образом, применима теорема Пифагора. Сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы:

Решить.

Здесь мы получаем два решения, w = −25 и w = 25. Поскольку в задаче требовалась длина прямоугольника, мы игнорируем отрицательный ответ. Кроме того, мы рационализируем знаменатель и представим наши решения без каких-либо радикалов в знаменателе.

Обратно подставить, чтобы найти длину.

Ответ: Длина прямоугольника составляет 455 футов, а ширина — 255 футов.

Основные выводы

  • Решите уравнения вида ax2 + c = 0, извлекая корни.
  • Извлечение корней включает выделение квадрата и последующее применение свойства квадратного корня. После применения свойства квадратного корня у вас есть два линейных уравнения, каждое из которых можно решить. Обязательно упростите все радикальные выражения и при необходимости рационализируйте знаменатель.

Тематические упражнения

Часть A: извлечение квадратного корня

Решите с помощью факторизации, а затем извлеките корни.Проверить ответы.

1. x2−36 = 0

2. x2−81 = 0

3. 4y2−9 = 0

4. 9y2−25 = 0

5. (x − 2) 2−1 = 0

6. (x + 1) 2−4 = 0

7. 4 (y − 2) 2−9 = 0

8. 9 (y + 1) 2−4 = 0

9. −3 (t − 1) 2 + 12 = 0

10. −2 (t + 1) 2 + 8 = 0

11. (x − 5) 2−25 = 0

12. (x + 2) 2−4 = 0

Решите, извлекая корни.

13. x2 = 16

14. x2 = 1

15. y2 = 9

16. y2 = 64

17. x2 = 14

18. x2 = 19

19. y2 = 0,25

20. y2 = 0,04

21. x2 = 12

22. x2 = 18

23. 16×2 = 9

24. 4×2 = 25

25. 2t2 = 1

26.3t2 = 2

27. x2−100 = 0

28. x2−121 = 0

29. y2 + 4 = 0

30. y2 + 1 = 0

31. x2−49 = 0

32. x2−925 = 0

33. y2−0.09 = 0

34. y2−0,81 = 0

35. x2−7 = 0

36. x2−2 = 0

37. x2−8 = 0

38. t2−18 = 0

39. x2 + 8 = 0

40.х2 + 125 = 0

41. 16×2−27 = 0

42. 9×2-8 = 0

43. 2y2−3 = 0

44. 5y2−2 = 0

45. 3×2−1 = 0

46. 6×2−3 = 0

47. (x + 7) 2−4 = 0

48. (x + 9) 2−36 = 0

49. (2y − 3) 2−81 = 0

50. (2у + 1) 2−25 = 0

51. (x − 5) 2−20 = 0

52. (x + 1) 2−28 = 0

53.(3t + 2) 2−6 = 0

54. (3т − 5) 2−10 = 0

55,4 (y + 2) 2−3 = 0

56. 9 (y − 7) 2−5 = 0

57,4 (3x + 1) 2−27 = 0

58. 9 (2x − 3) 2−8 = 0

59. 2 (3x − 1) 2 + 3 = 0

60,5 (2x − 1) 2−3 = 0

61,3 (y − 23) 2−32 = 0

62. 2 (3y − 13) 2−52 = 0

Найдите квадратное уравнение стандартной формы со следующими решениями.

63. ± 7

64. ± 13

65. ± 7

66. ± 3

67. ± 35

68. ± 52

69. 1 ± 2

70,2 ± 3

Решите и округлите решения до сотых.

71. 9x (x + 2) = 18x + 1

72. x2 = 10 (x2−2) −5

73. (x + 3) (x − 7) = 11−4x

74.(x − 4) (x − 3) = 66−7x

75. (x − 2) 2 = 67−4x

76. (x + 3) 2 = 6x + 59

77. (2x + 1) (x + 3) — (x + 7) = (x + 3) 2

78. (3x − 1) (x + 4) = 2x (x + 6) — (x − 3)

Составьте алгебраическое уравнение и используйте его для решения следующих задач.

79. Если 9 вычесть из четырех квадратов числа, то результат будет 3. Найдите число.

80. Если из квадрата числа вычесть 20, то получится 4.Найдите номер.

81. Если 1 прибавить к троекратному квадрату числа, то получится 2. Найдите число.

82. Если 3 прибавить к двукратному квадрату числа, получится 12. Найдите число.

83. Если квадрат имеет площадь 8 квадратных сантиметров, найдите длину каждой стороны.

84. Если круг имеет площадь 32π квадратных сантиметра, найдите длину радиуса.

85.Объем правого кругового конуса составляет 36π кубических сантиметров при высоте 6 сантиметров. Найдите радиус конуса. (Объем правого кругового конуса равен V = 13πr2h.)

86. Площадь поверхности сферы составляет 75π квадратных сантиметров. Найдите радиус сферы. (Площадь поверхности сферы определяется как SA = 4πr2.)

87. Длина прямоугольника в 6 раз больше его ширины. Если площадь составляет 96 квадратных дюймов, найдите размеры прямоугольника.

88. Основание треугольника вдвое больше его высоты. Если площадь составляет 16 квадратных сантиметров, то найдите длину его основания.

89. Квадрат имеет площадь 36 квадратных единиц. На какую равную величину необходимо увеличить стороны, чтобы получить квадрат с удвоенной заданной площадью?

90. Круг имеет площадь 25π квадратных единиц. На какую величину нужно увеличить радиус, чтобы создать круг с удвоенной заданной площадью?

91.Если стороны квадрата равны 1 единице, то найдите длину диагонали.

92. Если стороны квадрата равны 2 единицам, найдите длину диагонали.

93. Диагональ квадрата составляет 5 дюймов. Найдите длину каждой стороны.

94. Диагональ квадрата составляет 3 дюйма. Найдите длину каждой стороны.

95. Длина прямоугольника вдвое больше его ширины. Если диагональ составляет 10 футов, найдите размеры прямоугольника.

96. Длина прямоугольника вдвое больше его ширины. Если диагональ составляет 8 футов, найдите размеры прямоугольника.

97. Длина прямоугольника в 3 раза больше его ширины. Если диагональ 5 метров, то найдите размеры прямоугольника.

98. Длина прямоугольника в 3 раза больше его ширины. Если диагональ составляет 2 фута, найдите размеры прямоугольника.

99. Высота в футах объекта, падающего с 9-футовой лестницы, определяется выражением h (t) = — 16t2 + 9, где t представляет время в секундах после падения объекта.Сколько времени нужно, чтобы объект упал на землю? (Подсказка: когда объект ударяется о землю, высота равна 0.)

100. Высота в футах объекта, падающего с 20-футовой платформы, определяется выражением h (t) = — 16t2 + 20, где t представляет время в секундах после падения объекта. Сколько времени нужно, чтобы объект упал на землю?

101. Высота в футах объекта, падающего с вершины 144-футового здания, определяется выражением h (t) = — 16t2 + 144, где t измеряется в секундах.

а. Сколько времени потребуется, чтобы достичь половины расстояния до земли, 72 фута?

г. Сколько времени потребуется, чтобы добраться до земли?

Округлите до сотых долей секунды.

102. Высота в футах объекта, сброшенного с самолета на высоте 1600 футов, определяется выражением h (t) = — 16t2 + 1,600, где t — секунды.

а. Сколько времени потребуется, чтобы добраться до земли на половину расстояния?

г.Сколько времени потребуется, чтобы добраться до земли?

Округлить до сотых долей секунды .

Часть B: Обсуждение

103. Создайте собственное уравнение, которое можно решить, извлекая корень. Поделитесь им вместе с решением на доске обсуждений.

104. Объясните, почему метод извлечения корней значительно расширяет наши возможности решать квадратные уравнения.

105. Объясните своими словами, как решить, извлекая корни.

106. Выведите формулу диагонали квадрата через его стороны.

ответов

1: −6, 6

3: −3/2, 3/2

5: 1, 3

7: 1/2, 7/2

9: -1, 3

11: 0, 10

13: ± 4

15: ± 3

17: ± 1/2

19: ± 0.5

21: ± 23

23: ± 3/4

25: ± 22

27: ± 10

29: Реального решения нет

31: ± 2/3

33: ± 0,3

35: ± 7

37: ± 22

39: Реального решения нет

41: ± 334

43: ± 62

45: ± 33

47: −9, −5

49: −3, 6

51: 5 ± 25

53: −2 ± 63

55: −4 ± 32

57: −2 ± 336

59: Реального решения нет

61: 4 ± 326

63: x2−49 = 0

65: x2−7 = 0

67: x2-45 = 0

69: x2−2x − 1 = 0

71: ± 0.33

73: ± 5,66

75: ± 7,94

77: ± 3.61

79: −3 или 3

81: −33 или 33

83:22 сантиметра

85:32 сантиметра

87: Длина: 24 дюйма; ширина: 4 дюйма

89: −6 + 62≈2,49 ед.

91: 2 шт.

93: 522 дюйма

95: Длина: 45 футов; ширина: 25 футов

97: Длина: 3102 метра; ширина: 102 метра

99: 3/4 секунды

101: а.2,12 секунды; б. 0,88 секунды

Решение уравнения абсолютных значений

Далее мы узнаем, как решить уравнение абсолютного значения . Чтобы решить такое уравнение, как [latex] | 2x — 6 | = 8 [/ latex], мы замечаем, что абсолютное значение будет равно 8, если количество внутри столбцов абсолютного значения равно [latex] 8 [/ latex] или [латекс] -8 [/ латекс]. Это приводит к двум различным уравнениям, которые мы можем решить независимо.

[латекс] \ begin {array} {lll} 2x — 6 = 8 \ hfill & \ text {или} \ hfill & 2x — 6 = -8 \ hfill \\ 2x = 14 \ hfill & \ hfill & 2x = — 2 \ hfill \\ x = 7 \ hfill & \ hfill & x = -1 \ hfill \ end {array} [/ latex]

Полезно знать, как решать проблемы, связанные с функциями абсолютного значения.Например, нам может потребоваться определить числа или точки на линии, которые находятся на заданном расстоянии от заданной контрольной точки.

Общее примечание: уравнения абсолютных значений

Абсолютное значение x записывается как [latex] | x | [/ latex]. Он имеет следующие свойства:

[латекс] \ begin {array} {l} \ text {If} x \ ge 0, \ text {then} | x | = x. \ Hfill \\ \ text {If} x <0, \ text {тогда } | x | = -x. \ hfill \ end {array} [/ latex]

Для действительных чисел [латекс] A [/ латекс] и [латекс] B [/ латекс], уравнение вида [латекс] | A | = B [/ латекс] с [латексом] B \ ge 0 [/ latex], будут решения, когда [latex] A = B [/ latex] или [latex] A = -B [/ latex].Если [latex] B <0 [/ latex], уравнение [latex] | A | = B [/ latex] не имеет решения.

Уравнение абсолютного значения в форме [latex] | ax + b | = c [/ latex] имеет следующие свойства:

[латекс] \ begin {array} {l} \ text {If} c <0, | ax + b | = c \ text {не имеет решения}. \ Hfill \\ \ text {If} c = 0, | ax + b | = c \ text {имеет одно решение}. \ hfill \\ \ text {If} c> 0, | ax + b | = c \ text {имеет два решения}. \ hfill \ end {array} [ / латекс]

Как: решить уравнение абсолютного значения.

  1. Изолировать выражение абсолютного значения по одну сторону от знака равенства.
  2. Если [latex] c> 0 [/ latex], запишите и решите два уравнения: [latex] ax + b = c [/ latex] и [latex] ax + b = -c [/ latex].

Пример 8: Решение уравнений абсолютных значений

Решите следующие уравнения абсолютных значений:

а. [латекс] | 6x + 4 | = 8 [/ латекс]
б. [латекс] | 3x + 4 | = -9 [/ латекс]
c. [латекс] | 3x — 5 | -4 = 6 [/ латекс]
г. [латекс] | -5x + 10 | = 0 [/ латекс]

Решение

а. [латекс] | 6x + 4 | = 8 [/ латекс]

Напишите два уравнения и решите каждое:

[латекс] \ begin {array} {ll} 6x + 4 \ hfill & = 8 \ hfill & 6x + 4 \ hfill & = — 8 \ hfill \\ 6x \ hfill & = 4 \ hfill & 6x \ hfill & = — 12 \ hfill \\ x \ hfill & = \ frac {2} {3} \ hfill & x \ hfill & = — 2 \ hfill \ end {array} [/ latex]

Два решения: [латекс] x = \ frac {2} {3} [/ latex], [latex] x = -2 [/ latex].

г. [латекс] | 3x + 4 | = -9 [/ латекс]

Нет решения, поскольку абсолютное значение не может быть отрицательным.

г. [латекс] | 3x — 5 | -4 = 6 [/ латекс]

Выделите выражение абсолютного значения и запишите два уравнения.

[латекс] \ begin {array} {lll} \ hfill & | 3x — 5 | -4 = 6 \ hfill & \ hfill \\ \ hfill & | 3x — 5 | = 10 \ hfill & \ hfill \\ \ hfill & \ hfill & \ hfill \\ 3x — 5 = 10 \ hfill & \ hfill & 3x — 5 = -10 \ hfill \\ 3x = 15 \ hfill & \ hfill & 3x = -5 \ hfill \\ x = 5 \ hfill & \ hfill & x = — \ frac {5} {3} \ hfill \ end {array} [/ latex]

Есть два решения: [латекс] x = 5 [/ latex], [latex] x = — \ frac {5} {3} [/ latex].

Добавить комментарий

Ваш адрес email не будет опубликован.