Реши выражение: Реши выражение срочно — Школьные Знания.com

Содержание

Порядок действий

В уроке выражения мы узнали, что они бывают числовые и буквенные. Мы рассмотрели несколько числовых и буквенных выражений. Это были самые простейшие выражения.

Настало время сдвинуться с мёртвой точки и рассмотреть более сложные выражения. В данном уроке мы познакомимся с порядком выполнения действий.

Выражения могут состоять из нескольких чисел. Таковыми к примеру являются следующие выражения:

10 − 1 + 2 + 3
(3 + 5) + 2 × 3
5 × 2 + (5 − 3) : 2 + 1

Такие выражения нельзя вычислить сразу, то есть поставить знак равенства и записать значение выражения. Да и выглядят они не так просто, как 2 + 2 или 9 − 3.

Для подобных выражений принято соблюдать так называемый порядок действий. Суть в том, что выражение вычисляется кусочками по определённому порядку.

Когда нам требуется решить подобные примеры, мы сразу должны мысленно прочитать следующее правило:

Сначала вычислить то, что находится в скобках!

Посмотрим на выражение 10 − 1 + 2 + 3. Видим, что в нём нет никаких скобок. Тогда переходим к следующему правилу, которое выглядит так:

Читаем выражение слева направо. Если встретится умножение или деление, то сразу же выполняем эту операцию!

Читаем наше выражение 10 − 1 + 2 + 3 слева направо. Видим, что в нём нет никакого умножения или деления. Тогда переходим к следующему правилу:

Читаем выражение слева направо. Если встретится сложение или вычитание, то сразу же выполняем эту операцию!

Читаем наше выражение 10 − 1 + 2 + 3 слева направо. Встречаем вычитание 10 − 1. Сразу выполняем эту операцию: 10 − 1 = 9. Полученную девятку запишем в главном выражении вместо 10 − 1

Затем снова читаем те, правила, которые мы прочитали выше. Читать их нужно в следующем порядке:

1. Сначала вычислить то, что находится в скобках!

2. Читаем выражение слева направо. Если встретится умножение или деление, то сразу же применяем эту операцию!

3. Читаем выражение слева направо. Если встретится сложение или вычитание, то сразу же применяем эту операцию!

Сейчас у нас имеется выражение 9 + 2 + 3 Читаем его слева направо и встречаем сложение 9 + 2. Выполняем эту операцию: 9 + 2 = 11. Запишем число 11 в главном выражении вместо 9 + 2:

Осталось простейшее выражение 11 + 3, которое вычисляется легко:

11 + 3 = 14

Таким образом, значение выражения 10 − 1 + 2 + 3 равно 14

10 − 1 + 2 + 3 = 14

Иногда удобно расставить порядок действий над самим выражением. Для этого над операцией, которую необходимо выполнить, указывают её очередь. К примеру, в выражении 10 − 1 + 2 + 3 все действия выполняются последовательно слева направо, поэтому для него можно определить следующий порядок:

И далее можно выполнить действия по отдельности, что очень удобно:

1)  10 1 = 9

2)   9 + 2 = 11

3)  11 + 3 = 14

Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий. Например, решение для выражения 10 − 1 + 2 + 3 можно записать следующим образом:

Но если человек не научился быстро считать в уме, то не рекомендуется использовать такой способ.


Пример 2. Найти значение выражения (3 + 5) + 2 × 3

Применим правила порядка действий. Прочитаем правила в порядке их приоритета.

Сначала вычислить то, что находится в скобках!

Посмотрим на выражение (3 + 5) + 2 × 3. Видим, что в нём есть выражение в скобках (3 + 5). Вычислим то, что в этих скобках: 3 + 5 = 8. Запишем полученную восьмёрку в главном выражении вместо выражения в скобках:

8 + 2 × 3

Снова читаем первое правило:

Сначала вычислить то, что находится в скобках!

Видим, что в выражении 8 + 2 × 3 нет никаких скобок. Тогда читаем следующее правило:

Читаем выражение слева направо. Если встретится умножение или деление, то сразу же выполняем эту операцию!

Посмотрим на наше выражение 8 + 2 × 3. Видим, что в нём есть умножение 2 × 3. Выполним эту операцию: 2 × 3 = 6. Запишем полученную шестёрку в главном выражении вместо 2 × 3

8 + 6

Осталось простейшее выражение 8 + 6, которое вычисляется легко:

8 + 6 = 14

Таким образом, значение выражения (3 + 5) + 2 × 3 равно 14

(3 + 5) + 2 × 3 = 14

Также, этот пример можно решить, расставив порядок действий над самим выражением. Действие в скобках будет первым действием, умножение — вторым действием, а сумма — третьим:

И далее можно выполнить действия по отдельности, что очень удобно:

1)  3 + 5 = 8

2)   2 × 3 = 6

3)  8 + 6 = 14

Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий:

Но опять же, используя такой способ, нужно быть очень внимательным.


Пример 3. Найти значение выражения 5 × 2 + (5 − 3) : 2 + 1

Расставим порядок действий над выражением. Действие в скобках будет первым действием, умножение — вторым действием, деление — третьим действием,  четвёртое и пятое действие являются суммами и они будут выполнены в порядке их следования:

1)  5 − 3 = 2

2)  5 × 2 = 10

3)  2 : 2 = 1

4)  10 + 1 = 11

5)  11 + 1 = 12

Также, можно поставить знак равенства и сразу начать вычислять выражение в порядке приоритета действий:

Четвёртое и пятое действие заключалось в том, чтобы вычислить оставшееся простейшее выражение 10 + 1 + 1. Мы не стали тратить время на выполнение каждого из этих действий, а поставили знак равенства и записали ответ 12.


Пример 4. Найти значение выражения (3250 − 2905) : 5

Расставим порядок действий над выражением. Действие в скобках будет первым действием, а деление — вторым

1)  3250 − 2905 = 345

2)  345 : 5 = 69

В скобках могут выполняться два и более действия. Бывает даже так, что в скобках встречаются другие скобки. В таких случаях нужно применять те же правила, которые мы изучили ранее.

Пример 5. Найти значение выражения (6 411 × 8 − 40799) × 6

Расставим порядок действий над выражением. Действие в скобках будет первым действием. При этом в скобках выполняется умножение и вычитание. Согласно порядку действий, умножение выполняется раньше вычитания.

В данном случае сначала нужно 6 411 умножить на 8, и из полученного результата вычесть 40 799. Полученный результат будет значением выражения, содержащегося в скобках. Этот результат будет умножен на 6.

В результате будем иметь следующий порядок:

1)  6 411 × 8 = 51 288

2)  51 288 − 40 799 = 10 489

3)  10 489 × 6 = 62 934


Пример 6. Найти значение выражения: 1 657 974 : 822 × 106 − (50 377 + 20 338)

Расставим порядок действий над выражением. Действие в скобках будет первым действием, деление будет вторым действием, умножение — третьим, вычитание — четвёртым.

1) 50 377 + 20 338 = 70 715

2) 1 657 974 : 822 = 2 017

3) 2 017 × 106 = 213 802

4) 213 802−70 715 = 143 087


Пример 7. Найти значение выражения: 14 026 − (96 : 4 + 3680)

Расставим порядок действий над выражением. Действие в скобках будет первым действием. При этом в скобках выполняется деление и сложение. Согласно порядку действий деление выполняется раньше сложения.

В данном случае сначала нужно 96 разделить на 4, и полученный результат сложить с 3 680. Полученный результат будет значением выражения, содержащегося в скобках. Этот результат нужно вычесть из 14 026. В результате будем иметь следующий порядок:

1) 96 : 4 = 24

2) 24 + 3 680 = 3 704

3) 14026 − 3 704 = 10 322


Задания для самостоятельного решения

Задание 1. Найдите значение выражения:

5 + 2 − 2 − 1

Решение

Задание 2. Найдите значение выражения:

14 + (6 + 2 × 3) − 6

Решение

Задание 3. Найдите значение выражения:

486 : 9 − 288 : 9

Решение

Задание 4. Найдите значение выражения:

756 : 3 : 4 × 28

Решение

Задание 5. Найдите значение выражения:

807 : 3 − (500 − 58 × 4)

Решение


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках



Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Урок 21. решение уравнений — Математика — 4 класс

Математика, 4 класс

Урок 21. Решение уравнений

Перечень вопросов, рассматриваемых в теме:

  1. Что такое уравнение?
  2. Как решить уравнение, где в ответе не число, а числовое выражение.
  3. Что такое корень уравнения?
  4. Как найти неизвестное вычитаемое?

Глоссарий по теме:

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.

Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении.

Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Обязательная и дополнительная литература по теме урока:

1. Моро М. И. Учебник для 4 класса четырехлетней начальной школы. М. «Просвещение» — 2017.С. 62,63

2. Волкова Е. В. математика Всероссийская проверочная работа за курс начальной школы. Издательство «Экзамен» 2018.С.27

3. Петерсон Л. Г. математика 3 класс. Часть 2. Ювента, 2015.-96с.: ил. С.77-78

Теоретический материал для самостоятельного изучения:

 Рассмотрите записи:

376 + 282; (х — у) : 3

Являются ли эти записи уравнениями?

Это не уравнения, так как в уравнении должен быть знак «=». Это выражения.

Уравнение – это равенство с неизвестным числом. Неизвестное число обозначают латинской буквой.

Рассмотрите другие записи:

24 + х = 49; 24 + х = 79 — 30

Это уравнения, так как это равенства, содержащие переменную.

Попробуем их решить.

Что значит решить уравнение?

Решить уравнение – это значит найти значение неизвестного, при котором равенство будет верным.

Вспомните алгоритм решения уравнений.

Алгоритм:

  1. Вспомнить компоненты действия данного уравнения.
  2. Определить неизвестный компонент.
  3. Вспомнить правило нахождения неизвестного компонента.
  4. Применить правило и найти неизвестный компонент.
  5. Записать ответ.
  6. Сделать проверку

Используя алгоритм, решите первое уравнение

24 + х = 49

х = 49 — 24

х = 25

Значение неизвестного х = 25. Это корень уравнения.

Корень уравнения – это значение неизвестного, обозначенного латинской буквой в уравнении. В данном случае – это х.

 Можно ли решить второе уравнение, используя этот же алгоритм?

 Нет.

Такие уравнения не рассматривались. Какова же цель нашего урока?

Цель урока: научиться решать уравнения, в которых в ответе не число, а числовое выражение.

Такие уравнения мы будем называть составные. Поэтому тема урока: «Решение составных уравнений»

Чтобы решить это уравнение, нужно упростить правую часть.

24 + х = 79 — 30, после чего получаем уравнение известного вам вида

24 + х = 49

х = 49 — 24

х = 25

Проверка:

24 + 25 = 79 — 30

49 = 49

Ответ: корень уравнения 25

Составим алгоритм решения составных уравнений.

Алгоритм решения составных уравнений

1. Найти значение числового выражения.

2. Вспомнить компоненты действия данного уравнения.

3. Определить неизвестный компонент.

4. Вспомнить правило нахождения неизвестного компонента.

5. Применить правило и найти неизвестный компонент.

6. Записать ответ.

7. Сделать проверку.

Решим еще одно уравнение:

75 — х = 9 ∙ 7

Применяем алгоритм решения составных уравнений:

  1. Найти значение числового выражения: 75 — х = 9 ∙ 7

75 — х = 63

  1. Вспомнить компоненты действия данного уравнения: 75 — х = 63

3. Определить неизвестный компонент.

Неизвестно – вычитаемое.

4. Вспомнить правило нахождения неизвестного компонента.

5. Применить правило и найти неизвестный компонент.

х = 75 — 63

6. Записать ответ.

х = 12

7. Сделать проверку.

75 — 12 = 9 ∙ 7

63 = 63

Ответ: корень уравнения 12

Вывод: чтобы решить составное уравнение, в которых в ответе не число, а числовое выражение, необходимо упростить правую часть ( т.е решить выражение), после чего получаем уравнение известного вам вида и решаем его, используя алгоритм решения уравнений.

Решим задачу, составив уравнение:

Сумма неизвестного числа и числа 390 равна произведению чисел 70 и 6. Найди это число.

1. Сумма неизвестного числа и числа 390 – обозначим неизвестное число переменной х, тогда получим х + 390

2. Произведение чисел 70 и 6: 70 ∙ 6

3. Получаем уравнение: х + 390 = 70 ∙ 6

Применяя алгоритм решения составных уравнений, решим его:

х + 390 = 70 ∙ 6

х + 390 = 420

х = 420 — 390

х = 30

Проверка:

30 + 390 = 70 ∙ 6

420 = 420

Ответ: неизвестное число — 30

Проверочная работа по математике для 3 класса «Запиши и реши выражения»

Муниципальное общеобразовательное учреждение

«Маардуская гимназия»

г. Маарду, Харьюский уезд,Эстония

Проверочная работа по математике

для 3 класса. Запиши и реши выражения.

подготовила

учитель начальных классов

Гиль Наталья Николаевна

МОУ «Маардуская гимназия»

г. Маарду

2013 год

  Запиши и реши выражения.

Запиши и реши выражения.

Запиши и реши выражение.

  Запиши и реши выражения.

Авторский материал Гиль Н.Н

Вариант №1

1.К произведению чисел 6 и 9 прибавить сумму чисел 14 и 26

2.К частному чисел 81 и 9 прибавить произведение чисел 5 и 6

3.От произведения чисел 6 и 7 отнять частное чисел 49 и 7

4.От суммы чисел 36 и 44 отнять разность чисел 100 и 45

5.К разности чисел 48 и 30 прибавить частное чисел 21 и 3

6.От произведения чисел 7 и 8 отнять частное чисел 64 и 8

7.Сложи произведение чисел 7 и 7 и произведение чисел 4 и 6

8.Вычти из произведения чисел 8 и 7 частное чисел 72 и 9

9. Умножь разность чисел 75 и 70 на разность чисел 100 и 90

10.Подели сумму чисел 36 и 36 на разность чисел 81 и 73

Вариант №2

1.К произведению чисел 4 и 9 прибавить сумму чисел 15 и 35

2.К частному чисел 54 и 9 прибавить произведение чисел 7 и 6

3.От произведения чисел 9 и 7 отнять частное чисел 40 и 8

4.От суммы чисел 56 и 44 отнять разность чисел 70 и 55

5.К разности чисел 45 и 14 прибавить частное чисел 63 и 7

6.От произведения чисел 8 и 8 отнять частное чисел 48 и 8

7.Сложи произведение чисел 4 и 7 и произведение чисел 6 и 6

8. Вычти из произведения чисел 6 и 7 частное чисел 32 и 8

9.Умножь разность чисел 65 и 60 на разность чисел 80 и 70

10.Подели сумму чисел 46 и 17 на разность чисел 45 и 38

Ответы

Вариант №2

1.К произведению чисел 4 и 9 прибавить сумму чисел 15 и 35

86

2.К частному чисел 54 и 9 прибавить произведение чисел 7 и 6

48

3.От произведения чисел 9 и 7 отнять частное чисел 40 и 8

58

4.От суммы чисел 56 и 44 отнять разность чисел 70 и 55

85

5.К разности чисел 45 и 14 прибавить частное чисел 63 и 7

40

6. От произведения чисел 8 и 8 отнять частное чисел 48 и 8

58

7.Сложи произведение чисел 4 и 7 и произведение чисел 6 и 6

64

8.Вычти из произведения чисел 6 и 7 частное чисел 32 и 8

38

9.Умножь разность чисел 65 и 60 на разность чисел 80 и 70

50

10.Подели сумму чисел 46 и 17 на разность чисел 45 и 38

9

Ответы. Вариант №1

1.К произведению чисел 6 и 9 прибавить сумму чисел 14 и 26

94

2.К частному чисел 81 и 9 прибавить произведение чисел 5 и 6

39

3.От произведения чисел 6 и 7 отнять частное чисел 49 и 7

35

4. От суммы чисел 36 и 44 отнять разность чисел 100 и 45

25

5.К разности чисел 48 и 30 прибавить частное чисел 21 и 3

25

6.От произведения чисел 7 и 8 отнять частное чисел 64 и 8

48

7.Сложи произведение чисел 7 и 7 и произведение чисел 4 и 6

73

8.Вычти из произведения чисел 9 и 4 частное чисел 72 и 9

28

9.Умножь разность чисел 75 и 70 на разность чисел 100 и 90

50

10. Подели сумму чисел 36 и 36 на разность чисел 81 и 73

9

Числовые и буквенные выражения. Формула

              Числовые и буквенные выражения.

Формула

Сложение, вычитание, умножение, деление — арифметические действия (или арифметические операции). Этим арифметическим действиям соответствуют знаки арифметических действий:

+ (читаем «плюс«)          —   знак операции сложения,

(читаем «минус«)         —  знак операции вычитания,

(читаем «умножить«)    —  знак операции умножения,

: (читаем «разделить«)   —  знак операции деления.

Запись, состоящая из чисел, связанных между собой знаками арифметических действий, называется числовым выражением. В числовом выражении могут присутствовать также скобки Например, запись 1290 : 2 – (3 + 20 ∙ 15) является числовым выражением.

Результат выполнения действий над числами в числовом выражении называется значением числового выражения. Выполнение этих действий называется вычислением значения числового выражения. Перед записью значения числового выражения ставят знак равенства «=». В таблице 1 приведены примеры числовых выражений и их значений.

Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий называется буквенным выражением. В этой записи могут присутствовать скобки.  Например, запись a + b –  3 ∙ c является буквенным выражением. Вместо букв  в буквенное выражение можно подставлять различные числа. При этом значение букв может изменяться, поэтому буквы в буквенном выражении называют еще переменными.

Подставив в буквенное выражение числа  вместо букв   и  вычислив значение получившегося числового выражения, находят значение буквенного выражения при данных значениях букв (при данных значениях переменных). В таблице 2 приведены примеры буквенных выражений.

Буквенное выражение может не иметь значения,  если при подстановке   значений букв получается  числовое выражение, значение которого для натуральных чисел не может быть найдено.  Такое числовое выражение называется некорректным для натуральных чисел. Говорят также, что значение такого выражения «не определено» для натуральных чисел, а само выражение «не имеет смысла». Например, буквенное выражение a –  b  не имеет значения  при a = 10 и b = 17. Действительно, для натуральных чисел, уменьшаемое не может быть меньше вычитаемого. Например, имея  всего 10 яблок (a = 10),  нельзя отдать из них 17  (b = 17)! 

В таблице 2 (колонка 2) приведён пример буквенного выражения. По аналогии заполните таблицу полностью.

Для натуральных чисел выражение 10 -17 некорректно (не имеет смысла), т.е. разность 10 -17 не может быть выражена натуральным числом. Другой пример: на ноль делить нельзя, поэтому для  любого натурального  числа b, частное b : 0 не определено.

 Математические законы, свойства, некоторые правила и соотношения часто записывают в буквенном виде (т.е. в виде буквенного выражения). В этих случаях буквенное выражение называют формулой. Например, если стороны семиугольника равны  a, b, c, d, e, f, g,  то формула (буквенное выражение) для вычисления его периметра p имеет вид:                           

                                                       
         

p = a + b + c + d + e + f + g

При  a = 1, b = 2, c = 4, d = 5, e = 5, f = 7, g = 9, периметр семиугольника p = a + b + c + d + e + f + g = 1 + 2 + 4 + 5 +5 + 7 + 9 = 33.

При  a = 12, b = 5, c = 20, d = 35, e = 4, f = 40, g = 18, периметр другого  семиугольника  p = a + b + c + d + e + f + g = 12 + 5 + 20 + 35 + 4 + 40 + 18 = 134.

 

 

Блок 1. Словарь

Составьте словарь новых терминов и определений из параграфа.  Для этого в пустые клетки впишите  слова из списка терминов, приведенного ниже. В таблице (в конце блока) укажите номера терминов в соответствии с номерами рамок. Рекомендуется перед заполнением  клеток словаря еще раз внимательно просмотреть параграф.

  1. Операции: сложение, вычитание, умножение, деление.

     

      2.Знаки «+» (плюс), «-» (минус), «∙» (умножить,  «:» (разделить).

    

      3.Запись, состоящая из чисел, которые связанны между собой знаками арифметических действий и в которой могут присутствовать также скобки.   

   

       4.Результат выполнения действий над числами в числовом выражении.

    

       5. Знак, стоящий перед  значением числового выражения.

    

      6. Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий (могут присутствовать также скобки).

    

      7. Общее название букв в буквенном выражении.

    

      8. Значение числового выражения, которое получается при подстановке переменных. в буквенное выражение.

   

     9.Числовое выражение, значение которого для натуральных чисел не может быть найдено.

    

     10. Числовое выражение, значение которого для натуральных чисел может быть найдено.

 

     11. Математические законы, свойства, некоторые правила и соотношения, записанные в буквенном виде.

  

     12. Алфавит, малые буквы которого используются для записи буквенных выражений.

   

 

 

 

Блок 2. Установите соответствие

Установите соответствие между заданием  в левой колонке и решением в правой. Ответ запишите в виде:   1а,   2г,    3б…

 

Блок 3. Фасетный тест. Числовые и буквенные выражения

 Фасетные тесты заменяют сборники задач по математике, но выгодно отличаются от них тем, что  их можно решать на компьютере, проверять решения и  сразу узнавать результат работы. В этом тесте содержится 70 задач. Но  решать задачи можно по выбору, для этого есть оценочная таблица, где указаны простые задачи и посложнее. Ниже приведён тест.

  1. Дан треугольник со сторонами c, d, m, выраженными в см
  2. Дан четырехугольник со сторонами b, c, d, m, выраженными в м
  3. Скорость автомобиля в км/ч равна b, время движения в часах равно d
  4. Расстояние, которое преодолел турист за m часов, составляет с км
  5. Расстояние, которое преодолел турист, двигаясь со скоростью m км/ч, составляет b км
  6. Сумма двух чисел больше второго числа на 15
  7. Разность меньше уменьшаемого на 7
  8. Пассажирский лайнер имеет две палубы с одинаковым количеством пассажирских мест. В каждом  из рядов  палубы m мест, рядов на палубе  на n больше, чем мест в ряду
  9. Пете m лет Маше n лет, а Кате на k лет меньше, чем Пете и Маше вместе
  10. m = 8,  n = 10,   k = 5
  11. m = 6, n = 8,     k = 15
  12.  t = 121,  x = 1458

    

 

ТО:

  1. Значение данного выражения
  2. Буквенное выражение для периметра имеет вид
  3. Периметр, выраженный в сантиметрах
  4. Формула пути s, пройденного автомобилем
  5. Формула скорости v, движения туриста
  6. Формула времени t, движения туриста
  7. Путь, пройденный автомобилем в километрах
  8. Скорость туриста в километрах в час
  9. Время движения туриста в часах
  10. Первое число равно…
  11. Вычитаемое равно….
  12. Выражение для наибольшего количества пассажиров, которое может перевезти лайнер за k рейсов
  13. Наибольшее количество пассажиров, которое может перевезти лайнер за k рейсов
  14. Буквенное выражение для возраста Кати
  15. Возраст Кати
  16. Координата точки В, если координата точки С равна t
  17. Координата точки D, если координата точки С равна t
  18. Координата точки А, если координата точки С равна t
  19. Длина отрезка BD на числовом луче
  20. Длина отрезка CА на числовом луче
  21. Длина отрезка DА на числовом луче

Ответы (равно, имеет вид, не определено):

а)1;  б) s=b ∙d;  в) 9;   г) 40;   д) b + c + d + m;  е) 7;   ж) выражение не имеет смысла (некорректно) для натуральных чисел;   з) 2 ∙ m (m + n) ∙ k;   и) (m + n) – k;   к) 6;   л) 15;       м) 3760;   н) t –  3;  о) фигура не может быть  треугольником;   п) 22;    р) t – 3 ∙ 7;   с) 0;   т) 32;   у) 59600;   ф) 6019;   х) 2880;  ц) 10378;  ч)1440;   ш) на ноль делить нельзя;  щ) 13;   ы) 1800;  э) 496;  ю) 2;   я) 12;   аа) 14;   бб) 5;   вв) 35;    дд)  79200;   ее) 1900;   жж) 118;     зз) 18;   ии) 12800;  кк) 98;   лл) 1458;   мм) v = c : m;   нн) 100;   оо) 19900;   пп) t = b : m; рр) 2520;   сс) c + d + m;   тт) x;   уу) 1579;   фф) t + 2;   хх) 10206;   цц) 135;   чч) t + 2 ∙ 7; шш) 7 ∙ x;   щщ) x – 2;   ыы) 7 ∙ x – 2 ∙ 7;   ээ)  t + x ∙ 7;   юю) 10192;   яя) t + x;   ааа) 123;       ббб) 1456;   ввв) 10327.

 

ПОКАЗАТЕЛИ ТЕСТА. Число задач 70,  время выполнения 2 – 3  часа,  сумма баллов: 1 ∙ 22 + 2 ∙ 24 + 3 ∙ 24 = 142. Для фасетного теста можно использовать  следующую шкалу оценок.

Блок 4. Давайте поиграем

 Блок 5. Обучающая игра «Уроки кота Леопольда»

 

 

Для учителя приводим ответы к блокам параграфа 6

Ответы к игре «Уроки Леопольда»

Западня 1 : 1/2, 1/3, 2/3, 7/8.  Западня 2. 12, 2, 13 5. Западня 3.  6

Западня 4. 15.              Западня 5. 396

 

 Блок 1.  Словарь

 

Блок 2. Установите соответствие.

Вариант 1: 1и, 2з, 3е, 4б, 5м, 6л, 7а, 8ж, 9в, 10д, 11г, 12к, 13т, 14н, 15ф, 16о, 17у, 18с, 19р, 20п

Вариант 2: 1д, 2е, 3к, 4а, 5г, 6з, 7и, 8б, 9ж, 10в

 

Блок 3. Фасетный тест. Числовые и буквенные выражения (ответы под заданиями)

Ответы к игре «Сокровища»

Деревянный – 10250. Оловянный – 21640. Медный – 50400. Серебряный – 191000. Золотой – 289800.

Все онлайн калькуляторы для решения задач · Контрольная Работа РУ · Теперь вы можете задать любой вопрос!

Кусочно-заданная функция

Укажите кусочно-заданную функцию и перейдите к нужному вам сервису, например, к одному из: нахождению интеграла, производной, исследованию и построение графика и др.

Решение уравнений

Это сервис позволяет решать уравнения, в том числе получить подробное решение, а также увидеть решение уравнения на графике.

Решение пределов

Этот сервис позволяет найти предел функции. Также рассматривается подробное решение правилом Лопиталя.

Производная функции

Это сервис, где можно вычислить производную функции, частную производную функции, а также производную неявно заданной функции.

Разложение в ряд

Здесь можно выполнить разложение в ряд Тейлора, Фурье, найти сумму ряда.

Системы уравнений

Позволяет решать системы линейных уравнений
методом Крамера,
методом Гаусса,
а также вообще любые системы уравнений.

Решение неравенств

Решает неравенство, а также изображает решённое неравенство на графике.

Решение интегралов

Это сервис, где можно вычислить определённые, неопредёленные интегралы, а также двойные, несобственные, кратные.

График функции

Это сервис построения графиков на плоскости и в пространстве. Приводится подробное решение на исследование функции.

Решение систем неравенств

Вы можете попробовать решить любую систему неравенств с помощью данного калькулятора систем неравенств.

Порядок выполнения математических действий | интернет проект BeginnerSchool.ru

Сегодня мы поговорим о порядке выполнения математических действий. Какие действия выполнять первыми? Сложение и вычитание, или умножение и деление. Странно, но у наших детей возникают проблемы с решением, казалось бы, элементарных выражений.

Читаем выражение слева направо и выбираем порядок действий по приоритету. Сначала выполняем действия в скобках. Затем умножение и/или деление. Далее складываем и вычитаем.

Если скобки имеют несколько вложений, то есть если внутри скобок есть ещё скобки, то сначала выполняем действия во внутренних скобках. Для простоты понимания, выражение в скобках можно воспринимать как самостоятельное выражение, то есть как отдельный пример, который надо решить. Внутри скобок действия выполняются согласно тому же порядку: Действия в скобках, затем умножение/деление, затем сложение/вычитание.

Умножение и деление не имеет между собой приоритета и выполняются слева направо, также как и сложение с вычитанием.

Рассмотрим пример:

38 – (10 + 6) = 22;

Итак, вспомним о том, что сначала вычисляются выражения в скобках

1) в скобках: 10 + 6 = 16;

2) вычитание: 38 – 16 = 22.

Если в выражение без скобок входит только сложение и вычитание, или только умножение и деление, то действия выполняются по порядку слева направо.

10 ÷ 2 × 4 = 20;

Порядок выполнения действий:

1) слева направо, сначала деление: 10 ÷ 2 = 5;

2) умножение: 5 × 4 = 20;

10 + 4 – 3 = 11, т.е.:

1) 10 + 4 = 14;

2) 14 – 3 = 11.

Если в выражении без скобок есть не только сложение и вычитание, но и умножение или деление, то действия выполняются по порядку слева направо, но преимущество имеет умножение и деление, их выполняют в первую очередь, а за ними и сложение с вычитанием.

18 ÷ 2 – 2 × 3 + 12 ÷ 3 = 7

Порядок выполнения действий:

1) 18 ÷ 2 = 9;

2) 2 × 3 = 6;

3) 12 ÷ 3 = 4;

4) 9 – 6 = 3; т.е. слева направо – результат первого действия минус результат второго;

5) 3 + 4 = 7; т.е. результат четвертого действия плюс результат третьего;

Если в выражении есть скобки, то сначала выполняются выражения в скобках, затем умножение и деление, а уж потом сложение с вычитанием.

30 + 6 × (13 – 9) = 54, т.е.:

1) выражение в скобках: 13 – 9 = 4;

2) умножение: 6 × 4 = 24;

3) сложение: 30 + 24 = 54;

Итак, подведем итоги. Прежде чем приступить к вычислению, надо проанализировать выражение: есть ли в нем скобки и какие действия в нем имеются. После этого приступать к вычислениям в следующем порядке:

1)      действия, заключенные в скобках;

2)      умножение и деление;

3)      сложение и вычитание.

Если вы хотите получать анонсы наших статей подпишитесь на рассылку “Новости сайта“.

Понравилась статья — поделитесь с друзьями:


Оставляйте пожалуйста комментарии в форме ниже

Карточки по математике «Числовые выражения (все действия)» для учащихся 3 класса — Карточки с примерами — Развивайка — Обучение и развитие — ПочемуЧка

Автор: Литвина Надежда Егоровна.
Место работы: МАОУ «СОШ № 71» г. Перми
Должность: учитель начальных классов
Возраст детей: 8-10 лет

Задания — карточки по математике. Материал можно использовать для проверки навыков счёта в пределах 100 (составление программы действий, табличное умножение и деление, сложение и вычитание в пределах 100 с переходом через десяток). Предлагается 13 вариантов. Можно использовать для групповой работы. Дети выполняют задания на карточке.

1. РЕШИ ВЫРАЖЕНИЯ:

35 : 5 + 36 : 4 — 3
26 + 6 х 8 – 45 : 5 24 : 6 + 18 – 2 х 6
9 х 6 – 3 х 6 + 19 – 27 :3

2. РЕШИ ВЫРАЖЕНИЯ:

48 : 8 + 32 – 54 : 6 + 7 х 4
17 + 24 : 3 х 4 – 27 : 3 х 2 6 х 4 : 3 + 54 : 6 : 3 х 6 + 2 х 9
100 – 6 х 2 : 3 х 9 – 39 + 7 х 4

3. РЕШИ ВЫРАЖЕНИЯ:

100 – 27 : 3 х 6 + 7 х 4
2 х 4 + 24 : 3 + 18 : 6 х 9 9 х 3 – 19 + 6 х 7 – 3 х 5
7 х 4 + 35 : 7 х 5 – 16 : 2 : 4 х 3

4. РЕШИ ВЫРАЖЕНИЯ:

32 : 8 х 6 : 3 + 6 х 8 – 17
5 х 8 – 4 х 7 + 13 — 11 24 : 6 + 18 : 2 + 20 – 12 + 6 х 7
21 : 3 – 35 : 7 + 9 х 3 + 9 х 5

5. РЕШИ ВЫРАЖЕНИЯ:

42 : 7 х 3 + 2 + 24 : 3 – 7 + 9 х 3
6 х 6 + 30 : 5 : 2 х 7 — 19 90 — 7 х 5 – 24 : 3 х 5
6 х 5 – 12 : 2 х 3 + 49

6. РЕШИ ВЫРАЖЕНИЯ:

32 : 8 х 7 + 54 : 6 : 3 х 5
50 – 45 : 5 х 3 + 16 : 2 х 5 8 х 6 + 23 – 24 : 4 х 3 + 17
48 : 6 х 4 + 6 х 9 – 26 + 13

7. РЕШИ ВЫРАЖЕНИЯ:

42 : 6 + (19 + 6) : 5 – 6 х 2
60 – (13 + 22) : 5 – 6 х 4 + 25 (27 – 19) х 4 + 18 : 3 + (8 + 27) :5 -17
(82 – 74) : 2 х 7 + 7 х 4 — (63 – 27): 4
8. РЕШИ ВЫРАЖЕНИЯ:

90 – ( 40 – 24 : 3) : 4 х 6 + 3 х 5
3 х 4 + 9 х 6 – ( 27 + 9 ) : 4 х 5
(50 – 23) : 3 + 8 х 5 – 6 х 5 + ( 26 + 16) : 6
(5 х 6 – 3 х 4 + 48 : 6) +(82 – 78) х 7 – 13
54 : 9 + ( 8 + 19) : 3 – 32 : 4 – 21 : 7 + (42 – 14) : 4 – (44 14) : 5

9. РЕШИ ВЫРАЖЕНИЯ:

9 х 6 – 6 х 4 : (33 – 25) х 7
3 х (12 – 8) : 2 + 6 х 9 — 33 (5 х 9 — 25) : 4 х 8 – 4 х 7 + 13
9 х (2 х 3) – 48 : 8 х 3 + 7 х 6 — 34

10. РЕШИ ВЫРАЖЕНИЯ:

(8 х 6 – 36 : 6) : 6 х 3 + 5 х 9
7 х 6 + 9 х 4 – (2 х 7 + 54 : 6 х 5) (76 – (27 + 9) + 8) : 6 х 4
(7 х 4 + 33) – 3 х 6 :2

11. РЕШИ ВЫРАЖЕНИЯ:

(37 + 7 х 4 – 17) : 6 + 7 х 5 + 33 + 9 х 3 – (85 – 67) : 2 х 5
5 х 7 + (18 + 14) : 4 – (26 – 8) : 3 х 2 – 28 : 4 + 27 : 3 – (17 + 31) : 6

12. РЕШИ ВЫРАЖЕНИЯ:

(58 – 31) : 3 – 2 + (58 – 16) : 6 + 8 х 5 – (60 – 42) : 3 + 9 х 2
(9 х 7 + 56 : 7) – (2 х 6 – 4) х 3 + 54 : 9

13. РЕШИ ВЫРАЖЕНИЯ:

(8 х 5 + 28 : 7) + 12 : 2 – 6 х 5 + (13 – 5) х 4 + 5 х 4
(7 х 8 – 14 : 7) + (7 х 4 + 12 : 6) – 10 : 5 + 63 : 9

2 + 1 (пример графика),
4x + 2 = 2 (x + 6) (пример решения)


Калькулятор алгебры — это калькулятор, который дает пошаговую помощь по задачам алгебры.

Посмотреть другие примеры »

Заявление об отказе от ответственности:
Этот калькулятор не идеален. Пожалуйста, используйте на свой страх и риск и сообщите нам, если что-то не работает. Спасибо.


Как пользоваться калькулятором

Введите задачу по алгебре в текстовое поле.

Например, введите 3x + 2 = 14 в текстовое поле, чтобы получить пошаговое объяснение того, как решить 3x + 2 = 14.

Попробуйте этот пример прямо сейчас! »


Другие примеры

Примеряем примеры на
Примеры
страница — это самый быстрый способ научиться пользоваться калькулятором.
Примеры калькуляторов

»


Математические символы

Если вы хотите создать свои собственные математические выражения, вот некоторые символы, которые понимает калькулятор:

+
(Дополнение)


(вычитание)

*
(умножение)

/
(Отдел)

^
(экспонента: «в степень»)

sqrt (квадратный корень) (пример: sqrt (9))

Другие математические символы


Учебное пособие

Прочтите полное руководство, чтобы узнать, как построить графики уравнений и проверить свое домашнее задание по алгебре.Учебное пособие по калькулятору

»


Мобильное приложение

Загрузите мобильное приложение MathPapa! Работает офлайн!


Обратная связь
(Для студентов 13+)

Пожалуйста, используйте эту форму обратной связи, чтобы отправить свой отзыв. Спасибо!

Нужно больше практических задач?
Попробуйте MathPapa
Математическая практика

Решайте уравнения и упрощайте выражения (Алгебра 2, Уравнения и неравенства) — Mathplanet

В алгебре 1 нас учат, что два правила решения уравнений — это правило сложения и правило умножения / деления.
Правило сложения для уравнений говорит нам, что одна и та же величина может быть добавлена ​​к обеим сторонам уравнения без изменения набора решений уравнения.


Пример

$$ \ begin {array} {lcl} 4x-12 & = & 0 \\ 4x-12 + 12 & = & 0 + 12 \\ 4x & = & 12 \\ \ end {array} $$

Добавление 12 к каждой стороне уравнения в первой строке примера — это первый шаг в решении уравнения. Мы не меняли решение, добавляя по 12 с каждой стороны, поскольку и второе, и третье уравнения имеют одно и то же решение.Уравнения, которые имеют одинаковые наборы решений, называются эквивалентными уравнениями.

Правило умножения / деления для уравнений говорит нам, что каждый член в обеих частях уравнения может быть умножен или разделен на один и тот же член (кроме нуля) без изменения набора решений уравнения.


Пример

$$ \ begin {array} {lcl} 4x-12 & = & 0 \\ 4x-12 + 12 & = & 0 + 12 \\ 4x & = & 12 \\ \ frac {4x} {4} & = & \ frac {12} {4} \\ x & = & 3 \\ \ end {array} $$

Когда мы упрощаем выражение, мы действуем в следующем порядке:

  1. Упростите выражения внутри скобок, скобок, фигурных скобок и дробей.{2} -2)} {\ sqrt {2}} $$

    Сначала мы упрощаем выражение в круглых скобках, вычисляя степени, а затем выполняем вычитание внутри него.

    $$ \ frac {(4-2)} {\ sqrt {2}} $$

    $$ \ frac {(2)} {\ sqrt {2}} $$

    Затем мы убираем скобки и умножаем знаменатель и числитель на √2.

    $$ \ frac {2 \ cdot \ sqrt {2}} {\ sqrt {2} \ cdot \ sqrt {2}} $$

    В качестве последнего шага мы делаем все умножения и деления слева направо.

    $$ \ frac {2 \ cdot \ sqrt {2}} {2} $$

    $$ \ sqrt {2} $$


    Видеоурок

    Решите данное уравнение

    $$ 12 (\ frac {3b-b} {4a}) = 36 $$

    Решатель математических уравнений

    Использование калькулятора

    Решайте математические задачи, используя порядок операций, такой как PEMDAS, BEDMAS и BODMAS.(Предупреждение PEMDAS) Этот калькулятор решает математические уравнения, которые складывают, вычитают, умножают и делят положительные и отрицательные числа и экспоненциальные числа. 5 равно 2 в степени 5)

    r Корней (2r3 — это 3-й корень из 2)

    () [] {} Кронштейны

    Вы можете попытаться скопировать уравнения из других печатных источников и вставить их сюда, и, если они используют ÷ для деления и × для умножения, этот калькулятор уравнений попытается преобразовать их в / и * соответственно, но в некоторых случаях вам может потребоваться повторно ввести скопированные и вставленные символы или даже полные уравнения.(2/3) 5 повышается до 2/3

  2. 5r (1/4) — корень 1/4 из 5, который равен 5 в четвертой степени
  3. Ввод дробей

    Если вы хотите, чтобы такая запись, как 1/2, рассматривалась как дробь, введите ее как (1/2). Например, в уравнении 4, деленном на ½, вы должны ввести его как 4 / (1/2). Тогда сначала выполняется деление 1/2 = 0,5, а последним — 4 / 0,5 = 8. Если вы неправильно введете его как 4/1/2, то сначала решается 4/1 = 4, а затем 4/2 = 2.2 — неправильный ответ. 8 был правильным ответом.

    Математический порядок операций — PEMDAS, BEDMAS, BODMAS

    PEMDAS — это аббревиатура, которая может помочь вам запомнить порядок операций при решении математических уравнений. PEMDAS обычно расширяется до фразы: «Прошу прощения, моя дорогая тетя Салли». Первая буква каждого слова во фразе образует аббревиатуру PEMDAS. Решайте математические задачи в стандартном математическом порядке операций слева направо:

    1. Круглые скобки — работая слева направо в уравнении, сначала найдите и решите выражения в скобках; если у вас есть вложенные круглые скобки, работайте от самого внутреннего к самому внешнему
    2. Экспоненты и корни — работая слева направо в уравнении, вычислите все экспоненциальные и корневые выражения второй
    3. Умножение и деление — затем решите оба выражения умножения И деления одновременно, работая слева направо в уравнении.
    4. Сложение и вычитание — затем решите оба выражения сложения И вычитания одновременно, работая слева направо в уравнении

    Предупреждение PEMDAS

    Умножение НЕ всегда выполняется перед Делением. Умножение и деление происходят одновременно слева направо.

    Сложение НЕ всегда выполняется перед вычитанием. Сложение и вычитание выполняются одновременно слева направо.

    Порядок «MD» (DM в BEDMAS) иногда путают, когда он означает, что умножение происходит до деления (или наоборот). Однако умножение и деление имеют одинаковый приоритет. Другими словами, умножение и деление выполняются на одном и том же шаге слева направо. Например, 4/2 * 2 = 4 и 4/2 * 2 не равно 1.

    Такая же путаница может произойти и с «AS», однако сложение и вычитание также имеют одинаковый приоритет и выполняются на одном и том же шаге слева направо.Например, 5-3 + 2 = 4 и 5-3 + 2 не равно 0.

    Чтобы запомнить это, можно записать PEMDAS как PE (MD) (AS) или BEDMAS как BE (DM) (AS).

    Порядок операций Сокращения

    Аббревиатуры, обозначающие порядок операций, означают, что вы должны решать уравнения в этом порядке, всегда работая слева направо в вашем уравнении.

    PEMDAS означает « P arentheses, E xponents,
    M ultiplication и D ivision, A ddition
    и S убирание «

    Вы также можете увидеть BEDMAS и BODMAS в качестве сокращений порядка операций.В этих акронимах «квадратные скобки» совпадают с круглыми скобками, а «порядок» совпадает с показателями степени.

    BEDMAS означает «ракетки B , компоненты E ,
    D ivision и M ultiplication, A ddition
    и S убирание «

    BEDMAS похож на BODMAS.

    BODMAS означает « B ракетки, O rder,
    D ivision и M ultiplication, A ddition
    и S убирание «

    Ассоциативность операторов

    Умножение, деление, сложение и вычитание левоассоциативны.Это означает, что при решении выражений умножения и деления вы переходите от левой части уравнения к правой. Точно так же, когда вы решаете выражения сложения и вычитания, вы действуете слева направо.

    Примеры левоассоциативности:

    • a / b * c = (a / b) * c
    • а + б — с = (а + б) — с

    Показатели и корни или радикалы правоассоциативны и решаются справа налево.(4/5)

    Для вложенных круглых скобок или скобок сначала решите самые внутренние круглые скобки или выражения скобок и двигайтесь к самым внешним скобкам. Для каждого выражения в круглых скобках следуйте остальной части порядка PEMDAS: сначала вычислите экспоненты и радикалы, затем умножение и деление и, наконец, сложение и вычитание.

    Вы можете решить умножение и деление на одном и том же этапе математической задачи: после решения скобок, степеней и радикалов и перед сложением и вычитанием.Для умножения и деления действуйте слева направо. Решение сложения и вычитания следует после скобок, показателей степени, корней и умножения / деления. Снова действуйте слева направо для добавления и вычитания.

    Сложение, вычитание, умножение и деление положительных и отрицательных чисел

    Этот калькулятор следует стандартным правилам для решения уравнений.

    Правила сложения (+)

    Если знаки одинаковые, оставьте знак и складывайте числа.

    -21 + -9 = — 30

    (+7) + (+13) = (+20)

    Если знаки разные, вычтите меньшее число из большего числа и сохраните знак большего числа.

    (-13) + (+5) = (-8)

    (-7) + (+9) = (+2)

    Правила для операций вычитания (-)

    Сохраните знак первого числа.Замените все следующие знаки вычитания на знаки сложения. Измените знак каждого следующего числа так, чтобы положительное стало отрицательным, а отрицательное стало положительным, затем следуйте правилам для задач сложения.

    (-15) — (-7) =

    (-5) — (+6) =

    (+4) — (-3) =

    (-15) + (+7) = (-8)

    (-5) + (-6) = (-11)

    (+4) + (+3) = (+7)

    Правила операций умножения (* или ×)

    Умножение отрицательного на отрицательное или положительного на положительное дает положительный результат.Умножение положительного на отрицательное или отрицательного на положительное дает отрицательный результат.

    -10 * -2 = 20

    10 * 2 = 20

    10 * -2 = -20

    -10 * 2 = -20

    -10 × -2 = 20

    10 × 2 = 20

    10 × -2 = -20

    -10 × 2 = -20

    Правила для операций дивизии (/ или ÷)

    Подобно умножению, деление отрицательного на отрицательное или положительного на положительное дает положительный результат.Разделение положительного на отрицательный или отрицательного на положительное дает отрицательный результат.

    -10 / -2 = 5

    10/2 = 5

    10 / -2 = -5

    -10 / 2 = -5

    -10 ÷ -2 = 5

    10 ÷ 2 = 5

    10 ÷ -2 = -5

    -10 ÷ 2 = -5

    Простой онлайн-калькулятор алгебраических выражений и уравнений

     MINIMATH - это веб-приложение алгебры для решения уравнений и упрощения
     выражения одночленов, многомерных многочленов и рациональных дробей
     (с целыми или рациональными коэффициентами), показывая все шаги.3) можно набрать следующим образом: 1 / 2x2cb3
     
     Для переменных можно использовать только следующие символы:
     
                     АБВГДЕЖЗИЙКЛМНОПРСТУФХЦЧШЩЫЭЮЯ
    
     Во избежание двусмысленности переменные верхнего регистра будут преобразованы в нижний регистр.)
     - деление / дробь (/), деление (:), умножение (*)
     - сложение (+), вычитание (-)
     - квадратный корень из m (sqrt (m)), только если m - полный квадрат
     - корень n из m (root (n) (m)), только если n - целое число, а m - совершенная степень
    
     Наибольший общий делитель - НОД ($) и наименьшее общее кратное - операторы НОК (&)
     можно использовать для вычисления одного из полиномов, принадлежащих НОД и НОК
     наборы заданной пары многочленов.ПРИМЕР = (x4-9x2-4x + 12) $ (x3 + 5x2 + 2x-8) => вычисляет один наибольший общий делитель
     РЕЗУЛЬТАТ = x2 + x-2 => полиномиальный НОД определяется только вверх
                                               умножению на обратимый
                                               постоянный
    
     Наибольший общий делитель также называется наибольшим общим делителем (ОКФ).
     
     ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: приложение MINIMATH предоставляется «как есть», без каких-либо гарантий.
     Вы несете риск его использования.Авторы не могут считаться ответственными за
     любые последствия из-за использования приложения.
    

    Алгебраическое выражение — объяснения и примеры

    Алгебра — интересный и увлекательный раздел математики, в котором числа, фигуры и буквы используются для выражения задач. Независимо от того, изучаете ли вы алгебру в школе или сдаете какой-то тест, вы заметите, что почти все математические задачи представлены словами.

    Следовательно, необходимость переводить письменные текстовые задачи в алгебраические выражения возникает тогда, когда нам нужно их решить.

    Большинство алгебраических задач со словами состоят из рассказов или примеров из реальной жизни. Другие — простые фразы, такие как описание математической задачи. Из этой статьи вы узнаете, как написать алгебраических выражений из простых текстовых задач, а затем перейти к слегка сложным текстовым задачам.

    Что такое алгебраическое выражение?

    Многие люди попеременно используют алгебраические выражения и алгебраические уравнения, не подозревая, что это совершенно разные термины.

    Алгебраика — это математическая фраза, в которой две стороны фразы соединены знаком равенства (=). Например, 3x + 5 = 20 — это алгебраическое уравнение, где 20 представляет собой правую часть (RHS), а 3x +5 представляет собой левую часть (LHS) уравнения.

    С другой стороны, алгебраическое выражение — это математическая фраза, в которой переменные и константы объединяются с помощью операционных символов (+, -, × & ÷). В алгебраическом символе отсутствует знак равенства (=). Например, 10x + 63 и 5x — 3 являются примерами алгебраических выражений.

    Давайте рассмотрим терминологию, используемую в алгебраическом выражении:

    • Переменная — это буква, значение которой нам неизвестно. Например, x — это наша переменная в выражении: 10x + 63.
    • Коэффициент — это числовое значение, используемое вместе с переменной. Например, 10 — это переменная в выражении 10x + 63.
    • Константа — это термин, который имеет определенное значение. В этом случае 63 — это константа в алгебраическом выражении 10x + 63.

    Существует несколько типов алгебраических выражений, но основной тип включает:

    • Мономиальное алгебраическое выражение

    Этот тип выражения имеет только один член, например, 2x, 5x 2 , 3xy и т. Д. .

    Алгебраическое выражение, содержащее два, в отличие от членов, например, 5y + 8, y + 5, 6y 3 + 4 и т. Д.

    Это алгебраическое выражение с более чем одним членом и с ненулевыми показателями. переменных.Пример полиномиального выражения: ab + bc + ca и т. Д.

    Другие типы алгебраических выражений:

    Числовое выражение состоит только из чисел и операторов. В числовое выражение переменная не добавляется. Примеры числовых выражений: 2 + 4, 5-1, 400 + 600 и т. Д.

    Это выражение содержит переменные вместе с числами, например, 6x + y, 7xy + 6 и т. Д.

    Как решить алгебраическое выражение?

    Цель решения алгебраического выражения в уравнении — найти неизвестную переменную.Когда два выражения приравниваются, они образуют уравнение, и поэтому становится легче найти неизвестные члены.

    Чтобы решить уравнение, поместите переменные с одной стороны, а константы — с другой. Вы можете изолировать переменные, применяя арифметические операции, такие как сложение, вычитание, умножение, деление, квадратный корень, кубический корень и т. Д.

    Алгебраические выражения всегда взаимозаменяемы. Это означает, что вы можете переписать уравнение, поменяв местами LHS и RHS.

    Пример 1

    Вычислите значение x в следующем уравнении

    5x + 10 = 50

    Решение

    Учитывая уравнение как 5x + 10 = 50

      Изолируйте переменные и константы;
    • Вы можете сохранить переменную на левой стороне, а константы на правой.

    5x = 50-10

    5x = 40

    Разделим обе части на коэффициент переменной;

    x = 40/5 = 8

    Следовательно, значение x равно 8.

    Пример 2

    Найдите значение y, когда 5y + 45 = 100

    Решение

    Изолировать переменные от констант;

    5y = 100 -45

    5y = 55

    Разделим обе части на коэффициент;

    y = 55/5

    y = 11

    Пример 3

    Определите значение переменной в следующем уравнении:

    2x + 40 = 30

    Решение

    Разделите переменные из константы;

    2x = 30-40

    2x = -10

    Разделите обе стороны на 2;

    x = -5

    Пример 4

    Найдите t, когда 6t + 5 = 3

    Решение

    Отделите константы от переменной,

    6t 3

    6t = -2

    Разделим обе части на коэффициент,

    t = -2/6

    Упростим дробь,

    t = -1/3

    Практические вопросы

    1.Если x = 4 и y = 2, найдите следующие выражения:

    a. 2г + 4

    б. 10х + 40л;

    г. 15л — 5х

    д. 5x + 7

    e. 11y + 6

    ф. 6x — 2

    г. 8лет — 5

    ч. 60 — 5x — 2y

    2. Сэм кормит свою рыбу одинаковым количеством корма (пусть равным x ) трижды в день. Сколько еды он накормит рыбок в неделю?

    3. Нина испекла по 3 кекса для сестры и по 2 кекса для каждой подруги (пусть равно x ).Сколько всего кексов она испекла?

    4. У Джонса на ферме 12 коров. Большинство коров дают 30 литров молока в день (пусть равно х ). Сколько коров не дают 30 литров молока в день?

    Предыдущий урок | Главная страница | Следующий урок

    Упростите любые алгебраические выражения — WebMath

    Быстро! Мне нужна помощь с:
    Выберите пункт справки по математике…Calculus, DerivativesCalculus, IntegrationCalculus, Quotient RuleCoins, CountingCombrations, Finding allComplex Numbers, Adding ofComplex Numbers, Calculating withComplex Numbers, MultiplyingComplex Numbers, Powers ofComplex NumberConversion, SubtractingConversion, TemperatureConversion, FindConversion, MassConversion, Mass анализ AverageData, поиск стандартного отклонения, анализ данных, гистограммы, десятичные дроби, преобразование в дробь, электричество, стоимость факторинга, IntegerFactors, Greatest CommonFactors, Least CommonFractions, AddingFractions, ComparingFractions, ConvertingFractions, Convert to a decimalFractions, DividingFractions, MultiplyingFractions, SubplicationFractions are, SubplicationFractions , BoxesGeometry, CirclesGeometry, CylindersGeometry, RectanglesGeometry, Right TrianglesGeometry, SpheresGeometry, SquaresGraphing, LinesGraphing, Любая функцияGraphing, CirclesGraphing, EllipsesGraphing, HyperbolasGraphing, InequalitiesGraphing, Polar PlotGraphing, (x, y) pointInequalities, GraphingInequalities, SolvingInterest, CompoundInterest, SimpleLines, The Equation from point and slopeLines, The Equation from slope and y-intLines, The Equation from two pointsLodsottery Практика многочленов Математика, Практика основ , Факторинг разности квадратов многочленов, факторинг триномов многочленов, разложение на множители с GCF Полиномы, умножение многочленов, возведение в степень ns, Решить с помощью факторинга Радикалы, Другие корни Радикалы, Отношения квадратного корня, Что они собой представляют, Выведение на пенсию, Экономия на продажной цене, РасчетНаучная нотация, ПреобразованиеНаучной нотации, ДелениеНаучная нотация, Умножение форм, ПрямоугольникиУпрощение, Все, что угодноУпрощение, Образцы, Образцы, Упрощение, Упрощение, Упрощение, Пример Правые треугольники, Ветер, рисунок

    Решайте уравнения, упрощайте выражения с помощью программы «Пошаговое решение математических задач»

    Алгебра

    Раздел алгебры QuickMath позволяет вам манипулировать математическими выражениями всевозможными полезными способами.На данный момент QuickMath может расширять, разлагать на множители или упрощать практически любое выражение, отменять общие множители в дробях, разбивать дроби на более мелкие («частичные») дроби и объединять две или более дроби в единую дробь. На подходе более специализированные команды.

    Что такое алгебра?

    Термин «алгебра» используется для обозначения многих вещей в математике, но в этом разделе мы будем говорить только о том типе алгебры, с которым вы сталкиваетесь в старшей школе.

    Алгебра — это раздел элементарной математики, в котором символы используются для обозначения неизвестных величин.В более общем смысле он состоит из решения уравнений или манипулирования выражениями, которые содержат символы (обычно буквы, такие как x, y или z), а также числа и функции. Хотя решение уравнений на самом деле является частью алгебры, это настолько большая область, что для нее есть отдельный раздел в QuickMath.

    Эта часть QuickMath имеет дело только с алгебраическими выражениями. Это математические утверждения, которые содержат буквы, числа и функции, но не содержат знаков равенства. Вот несколько примеров простых алгебраических выражений:

    х 2 -1

    х 2 -2x + 1

    ab 2 + 3a 3 b-5ab

    х 3 +1

    Развернуть

    Команда расширения используется в основном для перезаписи многочленов с умножением всех скобок и целых числовых степеней, а также всех подобных терминов, собранных вместе.В расширенном разделе у вас также есть возможность развернуть тригонометрические функции, развернуть по модулю любого целого числа и оставить нетронутыми определенные части выражения, а остальные развернуть.

    Перейти на страницу «Развернуть»

    Фактор

    Команда factor попытается переписать выражение как произведение меньших выражений. Он заботится о таких вещах, как вычитание общих множителей, факторизация по парам, квадратичные трехчлены, разности двух квадратов, суммы и разности двух кубов и многое другое.Расширенный раздел включает в себя варианты факторизации тригонометрических функций, факторизации по модулю любого целого числа, факторизации по полю гауссовских целых чисел (как раз то, что нужно для этих сложных сумм квадратов) и даже расширения поля, по которому факторизация происходит с вашими собственными расширениями.

    Перейти
    на страницу Фактора

    Упростить

    Упрощение, пожалуй, самая сложная из всех команд для описания. Способ выполнения упрощения в QuickMath заключается в рассмотрении множества различных комбинаций преобразований выражения и выборе того, которое имеет наименьшее количество частей.Помимо прочего, команда «Упростить» позаботится об отмене общих множителей сверху и снизу дроби и сборе похожих терминов. Расширенные параметры позволяют упростить тригонометрические функции или указать QuickMath усерднее пытаться найти упрощенное выражение.

    Перейти
    на страницу упрощения

    Отмена

    Команда отмены позволяет исключить общие множители в знаменателе и числителе любой дроби, встречающейся в выражении.Эта команда отменяет наибольший общий делитель знаменателя и числителя.

    Перейти
    на страницу отмены

    Неполные дроби

    Команда частичных дробей позволяет разбить рациональную функцию на сумму или разность дробей. Рациональная функция — это просто частное двух многочленов. Любую рациональную функцию можно записать в виде суммы дробей, где знаменатели дробей являются степенями множителей знаменателя исходного выражения.Эта команда особенно полезна, если вам нужно интегрировать рациональную функцию. Разделив его сначала на частичные фракции, часто можно значительно упростить интеграцию.

    Перейти
    на страницу с неполными дробями

    Объединить дроби

    Команда объединения дробей по существу выполняет обратную операцию по сравнению с командой частичных дробей. Он перепишет ряд дробей, которые будут добавлены или вычтены как одна дробь. Знаменателем этой единственной дроби обычно будет наименьшее общее кратное знаменателей всех добавляемых или вычитаемых дробей.Все общие множители в числителе и знаменателе ответа автоматически исключаются.

    Перейти на страницу Объединить фракции

    Понятие корреспонденции часто встречается в повседневной жизни. Для
    Например, каждой книге в библиотеке соответствует количество страниц в
    книга. Другой пример: каждому человеку соответствует дата рождения. К
    приведите третий пример, если температура воздуха регистрируется на протяжении всего
    день, то в каждый момент времени есть соответствующая температура.

    Приведенные нами примеры соответствий включают два множества X и Y. В
    В нашем первом примере X обозначает набор книг в библиотеке, а Y — набор
    положительные целые числа. Каждой книге x в X соответствует натуральное число y,
    а именно количество страниц в книге. Во втором примере, если мы положим X
    обозначить множество всех людей и Y множество всех возможных дат, затем
    каждому человеку x в X соответствует дата рождения y.

    Иногда мы представляем соответствия диаграммами типа, показанного на
    Фигура 1.17, где множества X и Y представлены точками внутри областей в
    самолет. Изогнутая стрелка указывает, что элемент y из Y соответствует
    элемент x из X. Мы изобразили X и Y как разные множества. Однако X и Y могут
    имеют общие элементы. Фактически, мы часто имеем X = Y.

    Наши примеры показывают, что каждому x в X соответствует один и только один
    у в Y; то есть y уникален для данного x. Однако тот же элемент Y может
    соответствуют различным элементам X.Например, две разные книги могут иметь
    одинаковое количество страниц, два разных человека могут иметь один и тот же день рождения, и
    скоро.

    В большей части нашей работы X и Y будут наборами действительных чисел. Для иллюстрации пусть X
    и Y оба обозначают множество R действительных чисел, и для каждого действительного числа x обозначим
    присвоить его квадрату x 2 . Таким образом, к 3 мы присваиваем 9, к — 5 мы назначаем 25, и
    скоро. Это дает нам соответствие от R до R. Все примеры
    Приведенные нами соответствия являются функциями, как определено ниже.

    Определение

    Функция f из множества X в множество Y является соответствием, которое присваивается каждому
    element x of X уникальный элемент y из Y. Элемент y называется изображением x.
    под f и обозначается f (x). Множество X называется областью определения функции.
    Диапазон функции состоит из всех изображений элементов X.

    Ранее мы ввели обозначение f (x) для элемента Y, который
    соответствует x. Обычно это читается как «е из х». Мы также называем f (x) значением
    f в x.С точки зрения графического представления, данного ранее, теперь мы можем
    набросайте диаграмму, как на рисунке 1.18. Изогнутые стрелки указывают на то, что элементы
    f (x), f (w), f (z) и f (a) из Y соответствуют элементам x, y, z и a из X.
    Повторим тот важный факт, что каждому x из X соответствует ровно
    одно изображение f (x) в Y; однако различные элементы X, такие как w и z на рисунке
    1.18 может иметь такое же изображение в Y.

    Начинающих студентов иногда путают символы f и f (x).Помнить
    что f используется для представления функции. Его нет ни в X, ни в Y. Однако
    f (x) — это элемент Y, а именно элемент, который f присваивает x. Две функции
    Говорят, что f и g от X до Y равны, записывается

    для каждого x в X.

    Пример 1 Пусть f будет функцией с областью определения R, такой что f (x) = x 2
    для каждого x в R. Найдите f (-6) и f (a), где a — любое действительное число. Что это
    диапазон f?

    Решение Значения f (или изображения под f) можно найти, заменив x в
    уравнение f (x) = x 2 .Таким образом:

    Если T обозначает отключенный диапазон, то по предыдущему определению T состоит из всех
    числа вида f (a), где a находится в R . Следовательно, T — это множество всех
    квадраты a 2 , где a — действительное число. Поскольку квадрат любого реального
    число неотрицательно. T содержится во множестве всех неотрицательных действительных
    числа. Более того, каждое неотрицательное действительное число c является изображением под символом f, так как
    . Следовательно, диапазон f — это набор всех неотрицательных действительных чисел.

    Если функция определена, как в предыдущем примере, символ, используемый для
    переменная несущественна; то есть такие выражения, как:

    и так далее, все определяют одну и ту же функцию.Это правда, потому что если a есть
    число в домене f, то получается такое же изображение a 2 no
    имеет значение, какое выражение используется.

    Пример 2 Пусть X обозначает множество неотрицательных действительных чисел и пусть f будет
    функция от X до R определяется
    для каждого x из X. Найдите f (4)
    и f (пи). Если b и c находятся в X, найдите f (b + c) и f (b) + f (c).

    Решение Как и в примере 1, поиск изображений под f — это просто вопрос
    подставив соответствующее число вместо x в выражение для f (x).Таким образом:

    Многие формулы, встречающиеся в математике и естественных науках, определяют
    функции. В качестве иллюстрации формула A = pi * r 2 для площади A
    круга радиуса r присваивает каждому положительному действительному числу r уникальное значение
    A. Это определяет функцию f, где f (r) = pi * r 2 , и мы можем написать
    А = f (r). Буква r, обозначающая произвольное число из выключенного домена,
    часто называют независимой переменной. Буква А, обозначающая число
    из диапазона off, называется зависимой переменной, так как ее значение зависит от
    номер, присвоенный tor.Когда две переменные r и A связаны таким образом,
    принято использовать фразу A — это функция от r. Приведу еще один пример:
    если автомобиль едет со скоростью 50 миль в час, то
    расстояние d (мили), пройденное за время t (часы), определяется как d = 50t и, следовательно,
    расстояние d зависит от времени t.

Добавить комментарий

Ваш адрес email не будет опубликован.