Решение уравнений онлайн через дискриминант: Онлайн калькулятор. Решение квадратных уравнений.

Содержание

Решение квадратных уравнений онлайн

С помощю этого онлайн калькулятора можно найти решение (корни) квадратного уравнения. Дается подробное решение с пояснениями. Для нахождения решений квадратного уравнения введите коэффициенты уравнения и нажмите на кнопку «Решить». Теоретическую часть и численные примеры смотрите ниже.

Очистить все ячейки?

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

 

Корни квадратного уравнения − теория примеры и решения

Квадратным уравнением называется уравнение следующего вида:

где x−переменная, а a, b, c некоторые числа (a≠0). Числа a, b, c называются коэффициентами квадратного уравнения. Коэффицинт c называется свободным членом.

Если a=1, то квадратное уравнение называется приведенным. Заметим, что любое квадратное уравнение можно привести к приведенному виду, разделив обе части уравнения на a. Действительно:

Если в квадратном уравнении (1) один из коэффициентов b, c равен нулю или оба коэффициента b, c равны нулю, то квадратное уравнение называется неполным.

Рассмотрим разные виды неполных квадратных уравнений.

1. При b=0 имеем:

Для решения этого уравнения свободный член перенесем в правую часть уравнения:

Решая последнее уравнение относительно x получим корни квадратного уравнения (3):

Если , то квадратное уравнение не имеет действительных корней.

2. При c=0 имеем:

Разложим левую часть последнего уравнения на множители:

Из (4) следует x=0 или ax+b=0. Следовательно имеем следующие решения:

3. При b=0, c=0 имеем:

и, следовательно

Рассмотрим, далее, алгоритм решения квадратных уравнений общего вида (1). Разделим обе части уравнения на a:

Сделаем эквивалентные преобразования уравнения (5):

Легко догадаться, что первые три слагаемые уравнения (6) образуют квадрат следующей суммы:

Тогда

Обозначим

D− называется дискриминантом квадратного уравнения (1). Так как a≠0, то 4a2>0. Знак правой части уравнения (7) определяется знаком дискриминанта D.

Учитывая (8) запишем (7) в следующем виде:

При решении последнего уравнения возможны следующие варианты:

1. При D>0, имеем

Таким образом, при D>0, квадратное уравнение (1) имеет две корни:

2.При D=0, имеем

То есть, при D=0 квадратное уравнение (1) имеет единственный корень:

3. При D<0, правая часть уравнения (9) отрицательна, а так как квадрат числа не может быть отрицательным числом, то квадратное уравнение (1) не имеет корней.

Пример 1. Решить квадратное уравнение

. (10)

Решение. Запишем коэффициенты квадратного уравнения (10):

Вычислим дискриминант квадратного уравнения:

.

Дискриминант положительное число. Следовательно квадратное уравнение (10) имеет два решения.

Найдем решение квадратного уравнения используя следующую формулу:

. (11)

Подставляя значения коэффициентов a, b, c, D в (11), получим:

,
.

Ответ:

Пример 2. Решить следующее квадратное уравнение:

. (12)

Решение. Запишем коэффициенты квадратного уравнения (12):

Вычислим дискриминант квадратного уравнения:

.

Дискриминант равен нулю. Следовательно квадратное уравнение (12) имеет единственное решение. Найдем решение квадратного уравнения используя следующую формулу:

. (13)

Подставляя значения коэффициентов a, b, c, D в (13), получим:

,

Ответ:

.

Пример 3. Решить следующее квадратное уравнение:

. (14)

Решение. Запишем коэффициенты квадратного уравнения (14):

Вычислим дискриминант квадратного уравнения:

.

Дискриминант отрицательное число. Следовательно квадратное уравнение (14) не имеет действительных корней.

Ответ: Квадратное уравнение не имеет действительных корней.

Решение квадратных уравнений по формуле корней

Решение квадратных уравнений
по формуле корней онлайн

Квадратные уравнения бывают следующих видов:

— неполное уравнение вида ax2 = 0;

— неполное уравнение вида ax2 + bx = 0;

— неполное уравнение вида ax2 + с = 0;

— полное квадратное уравнение ax2 + bx + с = 0.

Решать полные уравнения по готовой формуле корней – самый простой способ (нужно просто запомнить формулу).

Сначала можно выписать коэффициенты a, b, c квадратного уравнения (хотя впоследствии, если «набить руку», этого делать не обязательно).

Затем необходимо найти дискриминант уравнения (обозначается буквой D). Дискриминант находится по формуле D = b2 – 4ac.

Если дискриминант получается отрицательный, то решение уравнения на этом этапе окончено. Оно не будет иметь действительных корней.

Если дискриминант получается положительный, уравнение имеет два корня, которые вычисляются по формулам

Если дискриминант равен нулю, то уравнение имеет один корень х =

Решение неполных квадратных уравнений

1) Уравнение вида ax2 = 0 всегда имеет единственный корень 0.

2) Чтобы решить уравнение вида ax2 + bx = 0, нужно вынести х за скобки. Получится уравнение

х(ax + b) = 0.

Оно будет иметь два корня:

3) Чтобы решить уравнение вида ax2 + с = 0, необходимо перенести c в правую часть. Получится уравнение

ax2 = –с, откуда

Здесь число корней зависит от знака выражения –с/а: если оно отрицательное, то корней не существует. Если же оно положительное, то уравнение будет иметь два корня.

Онлайн калькулятор

для решения квадратных уравнений

Вы можете получить объяснение решения любого квадратного уравнения (полного либо неполного), просто введя его коэффициенты в форму вверху страницы (в качестве коэффициентов можно вводить целые числа и десятичные дроби).

Тренажер на квадратные уравнения с ответами онлайн от skills4u

Для учеников 8-классов, а также для тех, кому нужно быстро подготовиться к контрольной работе или экзамену по алгебре, мы подготовили эффективный тренажер на квадратные уравнения. Он создан на базе интеллектуальной образовательной платформы Skills4u и учитывает уровень подготовки каждого ученика.

Первичный тест на квадратные уравнения можно пройти бесплатно. Выбирайте одну из тем и приступайте к выполнению заданий. Вам предстоит найти решение квадратных уравнений онлайн, указав верный ответ из нескольких вариантов, предложенных на экране. Не потребуется ничего писать, но тетрадь может понадобиться для вычислений. Если ответ верный, загорается зеленый свет, а ошибка подсвечивается красным. Мы предлагаем тренажер на квадратные уравнения с ответами, и это очень важно, потому что вы сразу увидите правильный ответ и сможете исправить свою ошибку.

Система подбирает примеры квадратных уравнений, учитывая реальный уровень подготовки конкретного ученика. Это индивидуальный подход, который позволяет быстро добиться прогресса. Если решение некоторых задач вызывает у вас затруднения, вам будет предложена подобная задача, и так до тех пор, пока не будет найден правильный ответ.

По итогам тестирования система формирует рейтинг и дает рекомендации по дальнейшему обучению. Для формирования устойчивого учебного навыка необходимо снова решить квадратное уравнение онлайн примерно через час после первой попытки, а затем повторять тестирование в течение последующих четырех дней без перерыва. Доказано, что за это время навык решения уравнений успевает сформироваться. Материал хорошо усваивается, и вы готовы к контрольным работам или итоговым испытаниям.

Для того чтобы получить свободный доступ к тренажеру, необходимо зарегистрироваться на сайте и внести оплату за месяц занятий, полгода или целый учебный год. Выбор зависит от уровня вашей подготовки и поставленных целей. Для ускоренной подготовки к контрольной работе по алгебре достаточно месяца, а для того, чтобы подтянуть успеваемость и избежать пробелов в знаниях, желательно решать квадратные уравнения в течение всего года.

Присоединяйтесь к нам – регистрируйтесь на сайте и прокачивайте знания и навыки вместе с нами. Надеемся, что уже очень скоро решение квадратных уравнений станет для вас легкой задачей, а оценки порадуют не только учеников, но и их родителей.

Решение высшей математики онлайн

‹— Назад В разделе «Решение квадратных уравнений с вещественными коэффициентами» мы видели, что в поле комплексных чисел любой квадратный трехчлен с вещественными коэффициентами имеет корни, этих корней два, если дискриминант отличен от нуля, и один в противном случае. Теперь, когда мы имеем возможность извлекать корни из комплексных чисел, мы можем найти корни квадратного трехчлена с комплексными коэффициентами, то есть решить уравнение где , ,  — комплексные числа, .

Выполняя те же действия, что и в разделе «Решение квадратных уравнений с вещественными коэффициентами», приходим к уравнению

Обозначив , , получим уравнение , где . Такое уравнение мы умеем решать. В результате получатся два корня, если , и один, если . Так как тогда и только тогда, когда дискриминант равен нулю, то количество корней определяется тем же условием: равен дискриминант нулю или нет. Кроме того, заметим, что если , то и . Поэтому корни уравнения можно записать в виде

(17.16)


где означает одно из решений (любое!) уравнения . Отметим, что формулы (17.5) также можно записать в виде (17.16), так как при вещественном выполнено .

Оказывается, что в поле комплексных чисел корни всегда существуют не только у квадратного трехчлена, но и у любого многочлена.

        Теорема 17. 1   Любой многочлен ненулевой степени с коэффициентами из поля комплексных чисел имеет в этом поле хотя бы один корень.    

Данная теорема по традиции называется основной теоремой алгебры. Доказательство ее достаточно сложное и поэтому здесь оно не приводится.

Интересно выяснить, сколько корней имеет многочлен степени . Мы уже знаем, что если , то корень один, если , то, как учили в школе, корней два. Кроме того, мы уже выяснили, что многочлен имеет ровно различных корней, если .

        Теорема 17.2   Для любого многочлена ненулевой степени в поле комплексных чисел справедливо разложение на множители:

(17.17)


    

Доказательство пропускаем. Читатель может найти его в [5].

Очевидно, что в указанном разложении числа , ,. .., являются корнями многочлена и других корней у него быть не может. Однако среди чисел могут быть и одинаковые. Поэтому корней может быть меньше, чем . Число одинаковых скобок в разложении (17.17) называется кратностью соответствующего корня. Например, если

то  — корень кратности 2, и  — корни кратности 1 или, иначе, простые корни.

Из предыдущей теоремы легко получить теорему, дающую ответ на вопрос о числе корней многочлена.

        Теорема 17.3   В поле комплексных чисел любой многочлен ненулевой степени имеет ровно корней, если каждый корень считать столько раз, какова его кратность.     

По вопросу практического нахождения корней стоит отметить следующее. Для нахождения корней многочленов третьей и четвертой степеней существуют формулы, позволяющие выразить корни многочлена через его коэффициенты. Для многочлена третьей степени — это формула Кардано. Нахождение корней многочлена четвертой степени сводится к нахождению корней многочлена третьей степени методом, принадлежащим Феррари. Для многочленов выше четвертой степени доказано, что их корни нельзя выразить через их коэффициенты с помощью радикалов.

Однако, даже для многочленов третьей и четвертой степени, как правило, корни находят без использования указанных выше формул, так как те дают очень громоздкие выражения. Обычно корни находят приближенно, с помощью различных вычислительных алгоритмов (см. главу 9).

Математика, вышка, высшая математика, математика онлайн, вышка онлайн, онлайн математика, онлайн решение математики, ход решения, процес решения, решение, задачи, задачи по математике, математические задачи, решение математики онлайн, решение математики online, online решение математики, решение высшей математики, решение высшей математики онлайн, матрицы, решение матриц онлайн, векторная алгебра онлайн, решение векторов онлайн, система линейных уравнений, метод Крамера, метод Гаусса, метод обратной матрицы, уравнения, системы уравнений, производные, пределы, интегралы, функция, неопределенный интеграл, определенный интеграл, решение интегралов, вычисление интегралов, решение производных, интегралы онлайн, производные онлайн, пределы онлайн, предел функции, предел последовательности, высшие производные, производная неявной функции

Как решать квадратные уравнения? Формулы и Примеры

Понятие квадратного уравнения

Уравнения — это математическое равенство, в котором неизвестна одна или несколько величин. Значения неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать выражение 3 + x = 7, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Чтобы запомнить месторасположение коэффициентов, давайте потренируемся определять их.

Есть три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b2 − 4ac. А вот свойства дискриминанта:

  • если D < 0, корней нет;
  • если D = 0, есть один корень;
  • если D > 0, есть два различных корня.

С этим разобрались. А сейчас посмотрим подробнее на различные виды квадратных уравнений.

Вникать во все тонкости математической вселенной комфортнее с внимательным наставником. Наши учителя объяснят сложную тему, ответят на неловкие вопросы и вдохновят ребенка учиться. А красочная платформа с увлекательными заданиями поможет заниматься современно и в удовольствие. Запишите ребенка на бесплатный вводный урок в онлайн-школе Skysmart и попробуйте сами!

Приведенные и неприведенные квадратные уравнения

Квадратное уравнение может быть приведенным или неприведенным — все зависит от от значения первого коэффициента.

Приведенное квадратное уравнение — это уравнение, где старший коэффициент, тот который стоит при одночлене высшей степени, равен единице.

Неприведенным называют квадратное уравнение, где старший коэффициент может быть любым.

Давайте-ка на примерах — вот у нас есть два уравнения:

  • x2 — 2x + 6 = 0
  • x2 — x — 1/4 = 0

В каждом из них старший коэффициент равен единице (которую мы мысленно представляем при x2 ), а значит уравнение называется приведенным.

  • 2x2 − 4x — 12 = 0 — первый коэффициент отличен от единицы (2), значит это неприведенное квадратное уравнение.

Каждое неприведенное квадратное уравнение можно преобразовать в приведенное, если произвести равносильное преобразование — разделить обе его части на первый коэффициент.

Запоминаем!

У преобразованного уравнения те же корни, что и у первоначального. Ну или вообще нет корней.

Пример 1. Превратим неприведенное уравнение: 8x2 + 20x — 9 = 0 — в приведенное.

Для этого разделим обе части исходного уравнения на старший коэффициент 8:

Ответ: равносильное данному приведенное уравнение x2 + 2,5x — 1,125 = 0.

Полные и неполные квадратные уравнения

В определении квадратного уравнения есть условие: a ≠ 0. Оно нужно, чтобы уравнение ax2 + bx + c = 0 было именно квадратным. Если a = 0, то уравнение обретет вид линейного: bx + c = 0.

Что касается коэффициентов b и c, то они могут быть равны нулю, как по отдельности, так и вместе. В таком случае квадратное уравнение принято назвать неполным.

Неполное квадратное уравнение —— это квадратное уравнение вида ax2 + bx + c = 0, где оба или хотя бы один из коэффициентов b и c равен нулю.

Полное квадратное уравнение — это уравнение, у которого все коэффициенты отличны от нуля.

Для самых любопытных объясняем откуда появились такие названия:
  • Если b = 0, то квадратное уравнение принимает вид ax2 + 0x+c=0 и оно равносильно ax2 + c = 0.
  • Если c = 0, то квадратное уравнение выглядит так ax2 + bx + 0 = 0, иначе его можно написать как ax2 + bx = 0.
  • Если b = 0 и c = 0, то квадратное уравнение выглядит так ax2 = 0.

Такие уравнения отличны от полного квадратного тем, что их левые части не содержат либо слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.

Решение неполных квадратных уравнений

Как мы уже знаем, есть три вида неполных квадратных уравнений:

  • ax2 = 0, ему отвечают коэффициенты b = 0 и c = 0;
  • ax2 + c = 0, при b = 0;
  • ax2 + bx = 0, при c = 0.

Давайте рассмотрим по шагам, как решать неполные квадратные уравнения по видам.

Как решить уравнение ax

2 = 0

Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax2 = 0.

Уравнение ax2 = 0 равносильно x2 = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x2 = 0 является нуль, так как 02 = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.

Таким образом, неполное квадратное уравнение ax2 = 0 имеет единственный корень x = 0.

Пример 1. Решить −6x2 = 0.

Как решаем:

  1. Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
  2. По шагам решение выглядит так:

    −6x2 = 0

    x2 = 0

    x = √0

    x = 0

Ответ: 0.

Как решить уравнение ax

2 + с = 0

Обратим внимание на неполные квадратные уравнения вида ax2 + c = 0, в которых b = 0, c ≠ 0. Мы давно знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.

Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. Ну есть одно и то же, только с другими цифрами.

Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax2 + c = 0:

  • перенесем c в правую часть: ax2 = — c,
  • разделим обе части на a: x2 = — c/а.

Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.

Если — c/а < 0, то уравнение x2 = — c/а не имеет корней. Все потому, что квадрат любого числа всегда равен неотрицательному числу. Из этого следует, что при — c/а < 0 ни для какого числа p равенство р2 = — c/а не является верным.

Если — c/а > 0, то корни уравнения x2 = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)2 = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)2 = — c/а. Ура, больше у этого уравнения нет корней.

В двух словах

Неполное квадратное уравнение ax2 + c = 0 равносильно уравнению ax2 + c = 0, которое:

  • не имеет корней при — c/а < 0;
  • имеет два корня х = √- c/а и х = -√- c/а при — c/а > 0.

Пример 1. Найти решение уравнения 8x2 + 5 = 0.

Как решать:

  1. Перенесем свободный член в правую часть:

    8x2 = — 5

  2. Разделим обе части на 8:

    x2 = — 5/8

  3. В правой части осталось число со знаком минус, значит у данного уравнения нет корней.

Ответ: уравнение 8x2 + 5 = 0 не имеет корней.

Как решить уравнение ax

2 + bx = 0

Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.

Неполное квадратное уравнение ax2 + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x. Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.

Таким образом, неполное квадратное уравнение ax2 + bx = 0 имеет два корня:

Пример 1. Решить уравнение 0,5x2 + 0,125x = 0

Как решать:

  1. Вынести х за скобки

    х(0,5x + 0,125) = 0

  2. Это уравнение равносильно х = 0 и 0,5x + 0,125 = 0.
  3. Решить линейное уравнение:

    0,5x = 0,125,
    х = 0,125/0,5

  4. Разделить:

    х = 0,25

  5. Значит корни исходного уравнения — 0 и 0,25.

Ответ: х = 0 и х = 0,25.

Формула Виета


Если в школьной геометрии чаще всего используется теорема Пифагора, то в школьной алгебре ведущую роль занимают формулы Виета. Теорема звучит так: 

Теорема Виета

Сумма корней x2 + bx + c = 0 равна второму коэффициенту с противоположным знаком, а произведение корней равняется свободному члену.

Если дано x2 + bx + c = 0, где x₁ и x₂ являются корнями, то справедливы два равенства:

 

Знак системы, который принято обозначать фигурной скобкой, означает, что значения x₁ и x₂ удовлетворяют обоим равенствам.

Рассмотрим теорему Виета на примере: x2 + 4x + 3 = 0.

Пока неизвестно, какие корни имеет данное уравнение. Но в соответствии с теоремой можно записать, что сумма этих корней равна второму коэффициенту с противоположным знаком. Он равен четырем, значит будем использовать минус четыре:

Произведение корней по теореме соответствует свободному члену. В данном случае свободным членом является число три. Значит:

Необходимо проверить равна ли сумма корней −4, а произведение 3. Для этого найдем корни уравнения x2 + 4x + 3 = 0. Воспользуемся формулами для чётного второго коэффициента:

Получилось, что корнями уравнения являются числа −1 и −3. Их сумма равняется второму коэффициенту с противоположным знаком, а значит решение верное.

Произведение корней −1 и −3 по теореме Виета должно равняться свободному члену, то есть числу 3. Это условие также выполняется:

Результат проделанных вычислений в том, что мы убедились в справедливости выражения:

Когда дана сумма и произведение корней квадратного уравнения, принято начинать подбор подходящих корней. Теорема, обратная теореме Виета, при таких условиях может быть главным помощником. Вот она:

Обратная теорема Виета

Если числа x1 и x2 таковы, что их сумма равна второму коэффициенту уравнения x2 + bx + c = 0, взятому с противоположным знаком, а их произведение равно свободному члену, то эти числа и есть корни x2 + bx + c = 0.

Обычно вся суть обратных теорем в том самом выводе, которое дает первая теорема. Так, при доказательстве теоремы Виета стало понятно, что сумма x1 и x2 равна −b, а их произведение равно c. В обратной теореме это и есть утверждение.

Пример 1. Решить при помощи теоремы Пифагора: x2 − 6x + 8 = 0.

Как решаем:

  1. Для начала запишем сумму и произведение корней уравнения. Сумма будет равна 6, так как второй коэффициент равен −6. А произведение корней равно 8.

  2. Когда у нас есть эти два равенства, можно подобрать подходящие корни, которые будут удовлетворять обоим равенствам системы.

    Чтобы проще подобрать корни, нужно их перемножить. Число 8 можно получить путем перемножения чисел 4 и 2 либо 1 и 8. Но значения x1 и x2 надо подбирать так, чтобы они удовлетворяли и второму равенству тоже.

    Можно сделать вывод, что значения 1 и 8 не подходят, так как они не удовлетворяют равенству x1 + x2 = 6. А значения 4 и 2 подходят обоим равенствам:

  3. Значит числа 4 и 2 — корни уравнения x2 − 6x + 8 = 0. p>

     

Дискриминант: формула корней квадратного уравнения

Чтобы найти результат квадратного уравнения, придумали формулу корней. Выглядит она так:

где D = b2 − 4ac — дискриминант квадратного уравнения.

Эта запись означает:

Чтобы легко применять эту формулу, нужно понять, как она получилась. Давайте разбираться.

Выводим формулу корней квадратного уравнения

Продолжим изучать формулу корней квадратного уравнения.

Пусть перед нами есть задача решить квадратное уравнение ax2 + bx + c = 0. Выполним ряд равносильных преобразований:

Так, мы пришли к уравнению , которое полностью равносильно исходному ax2 + bx + c = 0.

Отсюда выводы про корни уравнения :

И еще один вывод: есть у уравнения корень или нет, зависит от знака выражения в правой части. При этом важно помнить, что знак этого выражения задается знаком числителя. Потому выражение принято называть дискриминантом квадратного уравнения и обозначается буквой D.

По значению и знаку дискриминанта можно сделать вывод, есть ли действительные корни у квадратного уравнения, и сколько.

Повторим:

Алгоритм решения квадратных уравнений по формулам корней

Теперь мы знаем, что при решении квадратных уравнения можно использовать универсальную формулу корней — это помогает находить комплексные корни.

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный, и только после этого вычислять значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

  • вычислить его значение дискриминанта по формуле D = b2−4ac;
  • если дискриминант отрицательный, зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю, вычислить единственный корень уравнения по формуле х = — b2/2a;
  • если дискриминант положительный, найти два действительных корня квадратного уравнения по формуле корней

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, давайте тренироваться!

Примеры решения квадратных уравнений

Как решать квадратные уравнения мы уже знаем, осталось закрепить знания на практике.

Пример 1. Решить уравнение −4x2 + 28x — 49 = 0.

Как решаем:

  1. Найдем дискриминант: D = 282 — 4(-4)(-49) = 784 — 784 = 0
  2. Так как дискриминант равен нулю, значит это квадратное уравнение имеет единственный корень
  3. Найдем корень

    х = — 28/2(-4)

    х = 3,5

Ответ: единственный корень 3,5.

Пример 2. Решить уравнение 54 — 6x2 = 0.

Как решаем:

  1. Произведем равносильные преобразования. Умножим обе части на −1

    54 — 6x2 = 0 | *(-1)

    6x2 — 54 = 0

  2. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    6x2 = 54

    х2 = 9

    х = ±√9

    х1 = 3, х2 = — 3

Ответ: два корня 3 и — 3.

Пример 3. Решить уравнение x2— х = 0.

Как решаем:

  1. Преобразуем уравнение так, чтобы появились множители

    х(х — 1) = 0

    х₁ = 0, х₂ = 1

Ответ: два корня 0 и 1.

Пример 4. Решить уравнение x2— 10 = 39.

Как решаем:

  1. Оставим неизвестное в одной части, остальное перенесем с противоположным знаком в другую

    x2— 10 = 39

    x2= 39 + 10

    x2= 49

    х = ±√49

    х₁ = 7, х₂ = −7

Ответ: два корня 7 и −7.

Пример 5. Решить уравнение 3x2— 4x+94 = 0.

Как решаем:

  1. Найдем дискриминант по формуле

    D = (-4)2 — 4 * 3 * 94 = 16 — 1128 = −1112

  2. Дискриминант отрицательный, поэтому корней нет.

Ответ: корней нет.

В школьной программе за 8 класс нет обязательного требования искать комплексные корни, но такой подход может ускорить ход решения. Если дискриминант отрицательный — сразу пишем ответ, что действительных корней нет и не мучаемся.

Приходите решать примеры на бытовых ситуациях, с красочными героями и в интерактивном формате.

Запишите вашего ребенка на бесплатный пробный урок в онлайн-школу Skysmart: познакомимся, покажем, как все устроено на платформе и наметим вдохновляющую программу обучения.

Формула корней для четных вторых коэффициентов

Рассмотрим частный случай. Формула решения корней квадратного уравнения , где D = b2 — 4ac, помогает получить еще одну формулу, более компактную, при помощи которой можно решать квадратные уравнения с четным коэффициентом при x. Рассмотрим, как появилась эта формула.

Например, нам нужно решить квадратное уравнение ax2 + 2nx + c = 0. Сначала найдем его корни по известной нам формуле. Вычислим дискриминант D = (2n)2— 4ac = 4n2 — 4ac = 4(n2— ac) и подставим в формулу корней:

Для удобства вычислений обозначим выражение n2 -ac как D1. Тогда формула корней квадратного уравнения со вторым коэффициентом 2·n примет вид:

где D1 = n2— ac.

Самые внимательные уже заметили, что D = 4D1, или D1= D/4. Проще говоря, D1 — это четверть дискриминанта. И получается, что знак D1 является индикатором наличия или отсутствия корней квадратного уравнения.

Сформулируем правило. Чтобы найти решение квадратного уравнения со вторым коэффициентом 2n, нужно:

  • вычислить D1= n2— ac;
  • если D1< 0, значит действительных корней нет;
  • если D1= 0, значит можно вычислить единственный корень уравнения по формуле;
  • если же D1> 0, значит можно найти два действительных корня по формуле

Упрощаем вид квадратных уравнений

Если мы ходили в школу всегда одной тропинкой, а потом вдруг обнаружили путь короче — это значит теперь у нас есть выбор: упростить себе задачу и сократить время на дорогу или прогуляться по привычному маршруту.

Так же и при вычислении корней квадратного уравнения. Ведь проще посчитать уравнение 11x2 — 4 x — 6 = 0, чем 1100x2 — 400x — 600 = 0.

Часто упрощение вида квадратного уравнения можно получить через умножение или деление обеих частей на некоторое число. Например, в предыдущем абзаце мы упростили уравнение 1100x2 — 400x — 600 = 0, просто разделив обе части на 100.

Такое преобразование возможно, когда коэффициенты не являются взаимно простыми числами. Тогда принято делить обе части уравнения на наибольший общий делитель абсолютных величин его коэффициентов.

Покажем, как это работает на примере 12x2— 42x + 48 = 0. Найдем наибольший общий делитель абсолютных величин его коэффициентов: НОД (12, 42, 48) = 6. Разделим обе части исходного квадратного уравнения на 6, и придем к равносильному уравнению 2x2 — 7x + 8 = 0. Вот так просто.

А умножение обеих частей квадратного уравнения отлично помогает избавиться от дробных коэффициентов. Умножать в данном случае лучше на наименьшее общее кратное знаменателей его коэффициентов. Например, если обе части квадратного уравнения

умножить на НОК (6, 3, 1) = 6, то оно примет более простой вид x2 + 4x — 18 = 0.

Также для удобства вычислений можно избавиться от минуса при старшем коэффициенте квадратного уравнения — для этого умножим или разделим обе части на −1. Например, удобно от квадратного уравнения −2x2— 3x + 7 = 0 перейти к решению 2x2 + 3x — 7 = 0.

Связь между корнями и коэффициентами

Мы уже запомнили, что формула корней квадратного уравнения выражает корни уравнения через его коэффициенты:

Из этой формулы, можно получить другие зависимости между корнями и коэффициентами.

Например, можно применить формулы из теоремы Виета:

  • x₁ + x₂ = — b/a,
  • x₁* x₂ = c/a.

Для приведенного квадратного уравнения сумма корней равна второму коэффициенту с противоположным знаком, а произведение корней — свободному члену. Например, по виду уравнения 3x2— 7x + 22 = 0 можно сразу сказать, что сумма его корней равна 7/3, а произведение корней равно 22/3.

Можно активно использовать уже записанные формулы и с их помощью получить ряд других связей между корнями и коэффициентами квадратного уравнения. Таким образом можно выразить сумму квадратов корней квадратного уравнения через его коэффициенты:

А еще найти корни квадратного уравнения можно с помощью онлайн-калькулятора. Пользуйтесь им, если уже разобрались с темой и щелкаете задачки легко и без помощников:

Корни квадратного уравнения в Python 3 — Пример простой программы по решению уравнений

Программа, позволяющая находить корни квадратного уравнения, – это один из примеров простых программ, которые можно написать на Python 3. Она хорошо подойдет для начинающих изучать этот язык программирования.

Постановка задачи

Уравнение, которое будем решать, выглядит следующим образом: a·x²+b·x+c=0. Пользователю предлагается ввести значения a, b и с в терминале. После этого программа посчитает дискриминант. На его основе найдем решения уравнения – значения x, для которых будет выполняться равенство.

Вот пример работы программы, которая будет написана.

Программа

Для решения квадратных уравнений на Python 3 напишем код, приведенный ниже. Разберем некоторые моменты, которые мы использовали в этой простой программе:

  • print — эта функция выводит на экран информацию.
  • input — выводит информацию и предлагает пользователю ввести данные.
  • b**2 — это возведение в степень, в данном случае переменная b возводится в квадрат.
  • str — эта функция приводит данные к строковому виду.
  • if-elif-else — это условные операторы в языке Python. Исходя из значения discriminant мы определяем количество корней квадратного уравнения.
  • discriminant ** 0.5 — с помощью такого способа извлекаем квадратный корень. В Python есть несколько способов извлечения корней, например, с помощью функции sqrt из библиотеки math. Про способы извлечения корней в Python описано в отдельной статье.
print('Решаем уравнение a•x²+b•x+c=0')
a = input('Введите значение a: ')
b = input('Введите значение b: ')
c = input('Введите значение c: ')
a = float(a)
b = float(b)
c = float(c)
discriminant = b**2 - 4*a*c
print('Дискриминант = ' + str(discriminant))
if discriminant < 0:
    print('Корней нет')
elif discriminant == 0:
    x = -b / (2 * a)
    print('x = ' + str(x))
else:
    x1 = (-b + discriminant ** 0.5) / (2 * a)
    x2 = (-b - discriminant ** 0.5) / (2 * a)
    print('x₁ = ' + str(x1))
    print('x₂ = ' + str(x2))

Запустим программу и введём нужные коэффициенты.

Решаем уравнение a•x²+b•x+c=0
Введите значение a: -4
Введите значение b: -231
Введите значение c: 34
Дискриминант = 53905.0
x₁ = -57.89681291718352
x₂ = 0.1468129171835173

Все посчитано, найдены два корня, которые будут являться решением квадратного уравнения.

Дополнительно

Хотелось бы уделить внимание ещё одному моменту. Если дискриминант отрицательный, то действительных корней нет. Но будут комплексные корни. Если мы хотим их обрабатывать, то следует изменить конструкцию условных операторов следующим образом:

if discriminant == 0:
    x = -b / (2 * a)
    print('x = ' + str(x))
else:
    x1 = (-b + discriminant ** 0.5) / (2 * a)
    x2 = (-b - discriminant ** 0.5) / (2 * a)
    print('x₁ = ' + str(x1))
    print('x₂ = ' + str(x2))

Тогда пример решения уравнения будет выглядеть следующим образом:

Решаем уравнение a•x²+b•x+c=0
Введите значение a: 4
Введите значение b: 1
Введите значение c: 2
Дискриминант = -31.0
x₁ = (-0.12499999999999996+0.6959705453537527j)
x₂ = (-0.12500000000000006-0.6959705453537527j)

Как видим, получили два комплексных корня.

Этот простой код написанный на Python 3 можно для обучения программированию немного усложнить:

  • Предлагать запрос в конце программы «Решить ещё одно уравнение (y/n): ». И если пользователь введет «y», то заново запросить коэффициенты. Это нужно делать в цикле. Подробнее о циклах в Python можно прочитать здесь.
  • Сделать проверку корректности ввода. Ведь пользователь вместо числа может ввести какую-нибудь строку, которая не будет корректно обработана. Про проверку на число описано в отдельной статье.

 

X2 0 решение. Уравнения онлайн. Тождественные преобразования уравнений

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не
    знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики,
    воспитание графической культуры через построение графиков уравнений.

Тип урока
: комбинированный.

Оборудование:
графопроектор.

Наглядность:
таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + … + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 —
2 х 3 — 23х 2 — 12 х + 36 = 0
(это уравнение решает потом 2 группа на доске)

Решение

. Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 — х 3
— 7х 2 + х + 6 = 0
(это уравнение решает потом на доске 4 группа)

Решение.

Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 — 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 +
4х 3 – 5х 2 – 36х -36 = 0
(это уравнение решает потом 5 группа на доске)

Решение.

Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4
+ 10х 3 + 35х 2 + 50х + 24 = 0
(это уравнение решает потом 6группа на доске)

Решение

. Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 — 7х 3
— 13х 2 + 43
x
— 24 = 0
(это уравнение решает потом 1 группа на доске)

Решение

. Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x — 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх — 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х — 15 = 0; -1+3+13-15=0

По условию х 1 = — 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3.n} \)

7) a n > 1, если a > 1, n > 0

8) a n 1, n
9) a n > a m , если 0

В практике часто используются функции вида y = a x , где a — заданное положительное число, x — переменная.
Такие функции называют показательными
. Это название объясняется тем, что аргументом показательной функции является
показатель степени, а основанием степени — заданное число.

Определение.
Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \(a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \(a \neq 1\), не имеет корней,
если \(b \leq 0\), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и
убывающей, если 0
Это следует из свойств степени (8) и (9)

Построим графики показательных функций у = a x при a > 0 и при 0 Использовав рассмотренные свойства отметим, что график функции у = a x при a > 0 проходит через точку (0; 1) и
расположен выше оси Oх.
Если х 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0
Если х > 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является
горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени.
Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \(a \neq 1\),
х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \(a \neq 1\) равны
тогда и только тогда, когда равны их показатели.{x-2} = 1 \)
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|

Так как 3 > 0, \(3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax
2 + bx
+ c
= 0, где коэффициенты a
, b
и c
— произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант
.

Дискриминант

Пусть дано квадратное уравнение ax
2 + bx
+ c
= 0. Тогда дискриминант — это просто число D
= b
2 − 4ac
.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D
  2. Если D
    = 0, есть ровно один корень;
  3. Если D
    > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x
    2 − 8x
    + 12 = 0;
  2. 5x
    2 + 3x
    + 7 = 0;
  3. x
    2 − 6x
    + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a
= 1, b
= −8, c
= 12;
D
= (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a
= 5; b
= 3; c
= 7;
D
= 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a
= 1; b
= −6; c
= 9;
D
= (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D
> 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D
= 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D

  1. x
    2 − 2x
    − 3 = 0;
  2. 15 − 2x
    − x
    2 = 0;
  3. x
    2 + 12x
    + 36 = 0.

Первое уравнение:
x
2 − 2x
− 3 = 0 ⇒ a
= 1; b
= −2; c
= −3;
D
= (−2) 2 − 4 · 1 · (−3) = 16.

D
> 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x
− x
2 = 0 ⇒ a
= −1; b
= −2; c
= 15;
D
= (−2) 2 − 4 · (−1) · 15 = 64.

D
> 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x
2 + 12x
+ 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x
    2 + 9x
    = 0;
  2. x
    2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax
2 + bx
+ c
= 0 называется неполным квадратным уравнением, если b
= 0 или c
= 0, т.е. коэффициент при переменной x
или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b
= c
= 0. В этом случае уравнение принимает вид ax
2 = 0. Очевидно, такое уравнение имеет единственный корень: x
= 0.

Рассмотрим остальные случаи. Пусть b
= 0, тогда получим неполное квадратное уравнение вида ax
2 + c
= 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c
/a
) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax
    2 + c
    = 0 выполнено неравенство (−c
    /a
    ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c
    /a
    )

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c
/a
) ≥ 0. Достаточно выразить величину x
2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax
2 + bx
= 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x
    2 − 7x
    = 0;
  2. 5x
    2 + 30 = 0;
  3. 4x
    2 − 9 = 0.

x
2 − 7x
= 0 ⇒ x
· (x
− 7) = 0 ⇒ x
1 = 0; x
2 = −(−7)/1 = 7.

5x
2 + 30 = 0 ⇒ 5x
2 = −30 ⇒ x
2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x
2 − 9 = 0 ⇒ 4x
2 = 9 ⇒ x
2 = 9/4 ⇒ x
1 = 3/2 = 1,5; x
2 = −1,5.

I. Линейные уравнения

II. Квадратные уравнения

ax
2 + bx
+ c
= 0, a


0, иначе уравнение становится линейным

Корни квадратного уравнения можно вычислять различными способами, например:

Мы хорошо умеем решать квадратные уравнения. Многие уравнения более высоких
степеней можно привести к квадратным.

III.
Уравнения, приводимые к квадратным.

замена переменной: а) биквадратное уравнение ax
2n
+ bx
n + c
= 0, a

≠ 0, n
≥ 2

2) симметрическое уравнение 3 степени – уравнение
вида

3) симметрическое уравнение 4 степени – уравнение
вида

ax
4 + bx
3 + cx
2
+ bx
+ a
= 0, a

0, коэффициенты a b c b a


или

ax
4 + bx
3 + cx
2
bx
+ a
= 0, a

0, коэффициенты a b c (–b) a

Т.к. x
= 0 не
является корнем уравнения, то возможно деление обеих частей уравнения на x
2 , тогда получаем:
.

Произведя замену
решаем квадратное уравнение a
(t
2 –
2) + bt
+ c
= 0

Например, решим уравнение x
4 –
2x
3 – x
2 – 2x

+ 1 = 0, делим обе части на x
2 ,

,
после замены
получаем уравнение t
2 – 2t
– 3 = 0

– уравнение не имеет корней.

4) Уравнение вида (x – a
)(x – b
)(x – c
)(x
– d
) = Ax
2 , коэффициенты ab =
cd

Например, (x + 2
)(x +3
)(x + 8
)(x +
12
) = 4x
2 . Перемножив 1–4
и 2–3 скобки, получим (x
2 + 14x
+ 24)(x
2
+11x
+ 24) = 4x
2 , разделим обе части уравнения
на x
2 , получим:

Имеем (t
+ 14)(t
+ 11) = 4.

5) Однородное уравнение 2 степени – уравнение вида
Р(х,у) = 0, где Р(х,у) –
многочлен, каждое слагаемое которого имеет степень 2.

Ответ: -2; -0,5; 0

IV. Все приведенные уравнения узнаваемы и типичны,
а как быть с уравнениями произвольного вида?

Пусть дан многочлен P
n (x
) = a
n x
n
+ a
n-1 x
n-1 + …+a
1 x +
a
0 , где a
n

0

Рассмотрим метод понижения степени уравнения.

Известно, что, если коэффициенты a
являются
целыми числами и a
n = 1 , то целые
корни уравнения P
n (x
) = 0
находятся среди делителей свободного члена a
0 .
Например, x
4 + 2x
3 – 2x
2
– 6x
+ 5 = 0, делителями числа 5 являются числа 5;
–5; 1; –1. Тогда
P
4 (1) = 0, т.е.

x
= 1 является корнем уравнения. Понизим
степень уравнения P
4 (x
) = 0 с
помощью деления “уголком” многочлена на множитель х –1,
получаем

P
4 (x
) = (x
– 1)(x
3
+ 3x
2 + x
– 5).

Аналогично, P
3 (1) = 0, тогда
P
4 (x
) = (x
– 1)(x

1)(x
2 + 4x
+5), т.е. уравнение
P
4 (x) = 0 имеет корни

x
1 = x
2 = 1.
Покажем более короткое решение этого уравнения (с помощью схемы Горнера).

1 2 –2 –6 5
1 1 3 1 –5 0
1 1 4 5 0

значит, x
1 = 1 значит,
x
2 = 1.

Итак, (x
– 1) 2 (x
2 + 4x
+ 5) = 0

Что мы делали? Понижали степень уравнения.

V. Рассмотрим симметрические уравнения 3 и 5
степени.

а)
ax
3 + bx
2 +
bx
+ a
= 0, очевидно, x
= –1
корень уравнения, далее понижаем степень уравнения до двух.

б) ax
5 + bx
4 + cx
3
+ cx
2 + bx
+ a
= 0, очевидно,
x
= –1 корень уравнения, далее понижаем степень
уравнения до двух.

Например, покажем решение уравнения 2x
5
+ 3x
4 – 5x
3 – 5x
2 + 3x

+ = 0

2 3 –5 –5 3 2
–1 2 1 –6 1 2 0
1 2 3 –3 –2 0
1 2 5 2 0

x
= –1

Получаем (x
– 1) 2 (x
+ 1)(2x
2
+ 5x
+ 2) = 0. Значит, корни уравнения: 1; 1; –1;
–2; –0,5.

VI. Приведем список различных уравнений для решения
в классе и дома.

Предлагаю читателю самому решить уравнения 1–7 и получить ответы…

для решения математики. Быстро найти решение математического уравнения
в режиме онлайн
. Сайт www.сайт позволяет решить уравнение
почти любого заданного алгебраического
, тригонометрического
или трансцендентного уравнения онлайн
. При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн
. Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн
займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн
— это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн
, тригонометрические уравнения онлайн
, трансцендентные уравнения онлайн
, а также уравнения
с неизвестными параметрами в режиме онлайн
. Уравнения
служат мощным математическим аппаратом решения
практических задач. C помощью математических уравнений
можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений
можно найти, сформулировав задачу на математическом
языке в виде уравнений
и решить
полученную задачу в режиме онлайн
на сайте www.сайт. Любое алгебраическое уравнение
, тригонометрическое уравнение
или уравнения
содержащие трансцендентные
функции Вы легко решите
онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений
. При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн
. Поэтому для решения математических уравнений онлайн
мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн
, тригонометрических уравнений онлайн
, а также трансцендентных уравнений онлайн
или уравнений
с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений
ресурса www.. Решая уравнения онлайн
самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений
на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение
, после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн
и сравнить ответы. Это поможет Вам избежать ошибок в решении
и вовремя скорректировать ответ при решении уравнений онлайн
будь то алгебраическое
, тригонометрическое
, трансцендентное
или уравнение
с неизвестными параметрами.

Дискриминанты — Алгебра II

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или другие ваши авторские права, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту. Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права. Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Решите квадратные уравнения по квадратичной формуле — элементарная алгебра

Цели обучения

К концу этого раздела вы сможете:

  • Решите квадратные уравнения, используя формулу корней квадратного уравнения
  • Используйте дискриминант, чтобы предсказать количество решений квадратного уравнения
  • Определите наиболее подходящий метод решения квадратного уравнения

Прежде чем начать, пройдите тест на готовность.

  1. Упростить:.
    Если вы пропустили эту проблему, просмотрите (рисунок).
  2. Упростить:.
    Если вы пропустили эту проблему, просмотрите (рисунок).
  3. Упростить:.
    Если вы пропустили эту проблему, просмотрите (рисунок).

Когда мы решали квадратные уравнения в последнем разделе, завершая квадрат, мы каждый раз предпринимали одни и те же шаги. К концу набора упражнений вы, возможно, задавались вопросом: «А нет ли более простого способа сделать это?» Ответ — «да». В этом разделе мы выведем и воспользуемся формулой, чтобы найти решение проблемы. квадратное уровненеие.

Мы уже видели, как решить формулу для конкретной переменной «в целом», чтобы мы проделали алгебраические шаги только один раз, а затем использовали новую формулу, чтобы найти значение конкретной переменной. Теперь мы рассмотрим этапы завершения квадрата в целом, чтобы решить квадратное уравнение для x . Возможно, будет полезно взглянуть на один из примеров в конце последнего раздела, где мы решали уравнение формы, когда вы читаете алгебраические шаги ниже, поэтому вы видите их как с числами, так и со словом «в целом».’

Последнее уравнение — квадратичная формула.

Квадратичная формула

Решения квадратного уравнения вида даются формулой:

Чтобы использовать квадратичную формулу, мы подставляем значения в выражение в правой части формулы. Затем мы делаем все математические вычисления, чтобы упростить выражение. Результат дает решение (я) квадратного уравнения.

Как решить квадратное уравнение с помощью квадратной формулы

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Если вы произносите формулу во время написания каждой задачи, вы быстро запомните ее. И помните, квадратная формула — это уравнение. Обязательно начинайте с «».

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Когда мы решали квадратные уравнения с помощью свойства квадратного корня, мы иногда получали ответы с радикалами. То же самое может случиться и при использовании квадратичной формулы. Если в качестве решения мы получаем радикал, окончательный ответ должен иметь радикал в его упрощенной форме.

Решите, используя дискриминант.

Решение

Мы можем использовать квадратичную формулу, чтобы найти переменную в квадратном уравнении, независимо от того, называется ли оно « x ».

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Мы не можем извлечь квадратный корень из отрицательного числа. Итак, когда мы подставляем, и в квадратную формулу, если величина внутри радикала отрицательна, квадратное уравнение не имеет реального решения.Мы увидим это в следующем примере.

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Все квадратные уравнения, которые мы решили до сих пор в этом разделе, были записаны в стандартной форме,. Иногда нам нужно сделать некоторую алгебру, чтобы привести уравнение в стандартную форму, прежде чем мы сможем использовать квадратичную формулу.

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Когда мы решали линейные уравнения, если в уравнении было слишком много дробей, мы «очищали дроби», умножая обе части уравнения на ЖК-дисплей. Это дало нам возможность решить эквивалентное уравнение — без дробей. Мы можем использовать ту же стратегию с квадратными уравнениями.

Решите, используя дискриминант.

Решите, используя дискриминант.

Решите, используя дискриминант.

Подумайте об уравнении. Мы знаем из принципа нулевого произведения, что это уравнение имеет только одно решение:.

В следующем примере мы увидим, как использование квадратичной формулы для решения уравнения с полным квадратом также дает только одно решение.

Решите, используя дискриминант.

Решение

Вы узнали, что это идеальный квадрат?

Решите, используя дискриминант.

Решите, используя дискриминант.

Использование дискриминанта для предсказания числа решений квадратного уравнения

Когда мы решали квадратные уравнения в предыдущих примерах, иногда мы получали два решения, иногда одно решение, иногда нет реальных решений. Есть ли способ предсказать количество решений квадратного уравнения, не решая его на самом деле?

Да, количество внутри корня квадратной формулы позволяет нам легко определить количество решений.Эта величина называется дискриминантом.

Дискриминант

В квадратичной формуле величина называется дискриминантом.

Давайте посмотрим на дискриминант уравнений на (Рисунок), (Рисунок) и (Рисунок), а также на количество решений этих квадратных уравнений.

Когда дискриминант положителен , квадратное уравнение имеет два решения .

Когда дискриминант равен нулю , квадратное уравнение имеет одно решение .

Когда дискриминант отрицательный , квадратное уравнение не имеет реальных решений .

Определите количество решений каждого квадратного уравнения:

ⓐⓑⓒⓓ

ⓐ нет реальных решений ⓑ 2 ⓒ 1 ⓓ нет реальных решений

Определите количество решений каждого квадратного уравнения:

ⓐⓑⓒⓓ

ⓐ 2 ⓑ нет реальных решений ⓒ 1 ⓓ 2

Определите наиболее подходящий метод для решения квадратного уравнения

Мы использовали четыре метода для решения квадратных уравнений:

  • Факторинг
  • Свойство квадратного корня
  • Завершение площади
  • Квадратичная формула

Вы можете решить любое квадратное уравнение с помощью квадратной формулы, но это не всегда самый простой метод.

Определите наиболее подходящий метод решения квадратного уравнения.

  1. Попробуйте сначала Факторинг . Если квадратичные множители легко, этот метод очень быстрый.
  2. Далее попробуйте применить свойство квадратного корня . Если уравнение соответствует форме или, его можно легко решить с помощью свойства квадратного корня.
  3. Используйте квадратичную формулу . Любое квадратное уравнение можно решить с помощью квадратной формулы.

А как насчет метода завершения квадрата? Большинство людей считают этот метод громоздким и предпочитают не использовать его.Нам нужно было включить его в эту главу, потому что мы завершили квадрат в целом, чтобы получить квадратную формулу. Вы также будете использовать процесс завершения квадрата в других областях алгебры.

Определите наиболее подходящий метод для решения каждого квадратного уравнения:

ⓐⓑⓒ

Решение

Так как уравнение находится в, наиболее подходящим методом является использование свойства квадратного корня.

Мы понимаем, что левая часть уравнения представляет собой трехчлен полного квадрата, поэтому факторинг будет наиболее подходящим методом.

Приведите уравнение в стандартную форму.

В то время как наша первая мысль может заключаться в том, чтобы попробовать факторинг, размышления обо всех возможностях проб и ошибок приводят нас к выбору квадратичной формулы как наиболее подходящего метода

Определите наиболее подходящий метод для решения каждого квадратного уравнения:

ⓐⓑⓒ

ⓐ коэффициент ⓑ Свойство квадратного корня ⓒ Квадратичная формула

Определите наиболее подходящий метод для решения каждого квадратного уравнения:

ⓐⓑⓒ

ⓐ Квадратичная формула ⓑ факторинг ⓒ Свойство квадратного корня

Практика ведет к совершенству

Решите квадратные уравнения с помощью квадратичной формулы

В следующих упражнениях решите, используя квадратичную формулу.

Использование дискриминанта для прогнозирования числа решений квадратного уравнения

В следующих упражнениях определите количество решений каждого квадратного уравнения.

ⓐ нет реальных решений ⓑ 1
ⓒ 2 ⓓ нет реальных решений

ⓐ 1 ⓑ нет реальных решений
ⓒ 1 ⓓ 2

Определите наиболее подходящий метод для решения квадратного уравнения

В следующих упражнениях определите наиболее подходящий метод (разложение на множители, квадратный корень или квадратная формула) для решения каждого квадратного уравнения. Не решайте.

коэффициент ⓑ квадратный корень
ⓒ квадратная формула

коэффициент ⓑ квадратный корень
ⓒ коэффициент

Повседневная математика

Ракета запускается прямо с корабля в море.Решите уравнение для количества секунд, в течение которых ракета будет находиться на высоте 640 футов.

Архитектор проектирует холл гостиницы. Она хочет иметь треугольное окно, выходящее в атриум, с шириной окна на 6 футов больше высоты. Из-за ограничений по энергопотреблению площадь окна должна составлять 140 квадратных футов. Решите уравнение для высоты окна.

Письменные упражнения

Решите уравнение
ⓐ, заполнив квадрат
ⓑ с помощью квадратичной формулы
ⓒ Какой метод вы предпочитаете? Почему?

ⓐⓑ
ⓒ ответы будут отличаться

Решите уравнение
ⓐ, заполнив квадрат
ⓑ с помощью квадратичной формулы
ⓒ Какой метод вы предпочитаете? Почему?

Самопроверка

ⓐ После выполнения упражнений используйте этот контрольный список, чтобы оценить свое мастерство в достижении целей этого раздела.

ⓑ Что этот контрольный список говорит вам о вашем мастерстве в этом разделе? Какие шаги вы предпримете для улучшения?

Глоссарий

дискриминант
В квадратной формуле величина называется дискриминантом.

Решите квадратное уравнение с помощью программы «Пошаговое решение математических задач»

Решение уравнений — центральная тема алгебры. Все приобретенные навыки в конечном итоге приводят к способности решать уравнения и упрощать решения.В предыдущих главах мы решали уравнения первой степени. Теперь у вас есть необходимые навыки для решения уравнений второй степени, которые известны как квадратных уравнения .

КВАДРАТИКА, РЕШЕННАЯ ФАКТОРИНГОМ

ЦЕЛИ

По завершении этого раздела вы сможете:

  1. Определите квадратное уравнение.
  2. Приведите квадратное уравнение в стандартную форму.
  3. Решите квадратное уравнение, вычислив множители.

Квадратное уравнение — это полиномиальное уравнение, которое содержит вторую, но не более высокую степень переменной.

Стандартная форма квадратного уравнения — ax 2 + bx + c = 0, когда a ≠ 0 и a, b и c — действительные числа.

Все квадратные уравнения могут быть представлены в стандартной форме, и любое уравнение, которое может быть преобразовано в стандартную форму, является квадратным уравнением. Другими словами, стандартная форма представляет все квадратные уравнения.

Решение уравнения иногда называют корнем уравнения .

Эта теорема доказана в большинстве учебных пособий по алгебре.

Важная теорема, которую невозможно доказать на уровне этого текста, гласит: «Каждое полиномиальное уравнение степени n имеет ровно n корней». Использование этого факта говорит нам, что квадратные уравнения всегда будут иметь два решения. Возможно, что два решения равны.

Квадратное уравнение будет иметь два решения, потому что оно имеет степень два.

Самый простой метод решения квадратичных вычислений — факторинг.Этот метод не всегда можно использовать, потому что не все многочлены факторизуемы, но он используется всякий раз, когда факторизация возможна.

Метод решения с помощью факторизации основан на простой теореме.

Если AB = 0, то либо A = 0, либо B = 0.

Другими словами, если произведение двух множителей равно нулю, то по крайней мере один из множителей равен нулю.

Мы не будем пытаться доказывать эту теорему, но внимательно отметим, что в ней говорится. Мы никогда не сможем перемножить два числа и получить ответ ноль, если хотя бы одно из чисел не равно нулю.Конечно, оба числа могут быть нулевыми, поскольку (0) (0) = 0.

Решение Шаг 1 Приведите уравнение в стандартную форму.

Мы должны вычесть 6 с обеих сторон.

Шаг 2 Полностью разложить на множители.

Напомним, как разложить на множители трехчлены.

Шаг 3 Установите каждый коэффициент равным нулю и решите относительно x. Поскольку у нас есть (x — 6) (x + 1) = 0, мы знаем, что x — 6 = 0 или x + 1 = 0, и в этом случае x = 6 или x = — 1.

Здесь применяется приведенная выше теорема, согласно которой хотя бы один из факторов должен иметь нулевое значение.

Шаг 4 Проверьте решение в исходном уравнении. Если x = 6, то x 2 — 5x = 6 становится

Проверка ваших решений — верный способ узнать, правильно ли вы решили уравнение.

Следовательно, x = 6 является решением. Если x = — 1, то x 2 — 5x = 6 становится

Следовательно, — 1 — решение.

Решения могут быть обозначены либо записью x = 6 и x = — 1, либо использованием обозначения набора и записи {6, — 1}, что мы читаем «набор решений для x равен 6 и — 1». В этом тексте мы будем использовать обозначения набора.

В этом примере 6 и -1 называются элементами набора.
Обратите внимание, что в этом примере уравнение уже имеет стандартную форму.
Опять же, проверка решений убедит вас, что вы не допустили ошибки при решении уравнения.
также называют корнями уравнения.
(x + 1) — наименьший общий знаменатель всех дробей в уравнении.
Помните, что каждый член уравнения нужно умножить на (x + 1).

Проверьте решения в исходном уравнении.

Проверьте исходное уравнение, чтобы убедиться, что знаменатель не равен нулю.
Обратите внимание, что здесь два решения равны.Это происходит только тогда, когда трехчлен является полным квадратом.

НЕПОЛНАЯ КВАДРАТИКА

ЦЕЛИ

По завершении этого раздела вы сможете:

  1. Определите неполное квадратное уравнение.
  2. Решите неполное квадратное уравнение.

Если уравнение представлено в стандартной форме ax 2 + bx + c = 0, либо b = 0, либо c = 0, уравнение представляет собой неполное квадратичное уравнение .

Пример 1

5x 2 — 10 = 0 является неполным квадратичным, так как средний член отсутствует и, следовательно, b = 0.

Когда вы сталкиваетесь с неполной квадратичной с c — 0 (отсутствует третий член), ее все же можно решить с помощью факторизации.

x — общий множитель. Произведение двух факторов равно нулю. Поэтому мы используем теорему из предыдущего раздела.
Проверьте эти решения.

Обратите внимание, что если член c отсутствует, вы всегда можете множить x из других членов. Это означает, что во всех таких уравнениях нуль будет одним из решений.
Неполная квадратичная система с отсутствующим членом b должна быть решена другим методом, поскольку факторизация возможна только в особых случаях.

Пример 3 Решить относительно x, если x 2 — 12 = 0.

Решение Поскольку x 2 — 12 не имеет общего множителя и не является разностью квадратов, его нельзя разложить на рациональные множители. Но из предыдущих наблюдений мы имеем следующую теорему.

Обратите внимание, что есть два значения, которые в квадрате будут равны A.

Используя эту теорему, имеем

Проверьте эти решения.
Добавьте 10 с каждой стороны. Проверьте эти решения.
Здесь 7x — общий множитель. Проверьте эти решения.

Обратите внимание, что в этом примере у нас есть квадрат числа, равного отрицательному числу. Это никогда не может быть правдой в действительной системе счисления, и поэтому у нас нет реального решения.

ЗАВЕРШЕНИЕ ПЛОЩАДИ

ЦЕЛИ

По завершении этого раздела вы сможете:

  1. Определите трехчлен полного квадрата.
  2. Завершите третий член, чтобы получить трехчлен в виде полного квадрата.
  3. Решите квадратное уравнение, заполнив квадрат.

Из вашего опыта факторизации вы уже понимаете, что не все многочлены факторизуемы. Следовательно, нам нужен метод решения квадратичных вычислений, которые не подлежат факторизации.Необходимый метод называется «завершение квадрата».

Сначала давайте рассмотрим значение «трехчлена полного квадрата». Когда мы возводим двучлен в квадрат, мы получаем полный квадрат трехчлена. Общая форма: (a + b) 2 = a 2 + 2ab + b 2 .

Помните, возведение бинома в квадрат означает его умножение на себя.

Из общей формы и этих примеров мы можем сделать следующие наблюдения относительно трехчлена полного квадрата.

  1. Два из трех членов являются точными квадратами. 4x 2 и 9 в первом примере, 25x 2 и 16 во втором примере и 2 и b 2 в общем виде.

    Другими словами, первый и третий члены представляют собой полные квадраты.
  2. Другой член — это два плюс или минус произведение квадратных корней из двух других членов.

Член -7 сразу говорит, что это не может быть трехчлен полного квадрата.Задача при заполнении квадрата состоит в том, чтобы найти число, которое заменит -7 таким образом, чтобы получился идеальный квадрат.

Рассмотрим эту задачу: заполните пробел так, чтобы «x 2 + 6x + _______» было трехчленом в виде полного квадрата. Из двух условий для трехчлена полного квадрата мы знаем, что пробел должен содержать полный квадрат и что 6x должно быть удвоенным произведением квадратного корня x 2 и числа в пробеле. Поскольку x уже присутствует в 6x и представляет собой квадратный корень из x 2 , то 6 должно быть в два раза больше квадратного корня из числа, которое мы помещаем в пробел.Другими словами, если мы сначала возьмем половину 6, а затем возведем в квадрат этот результат, мы получим необходимое число для бланка.

Следовательно, x 2 + 6x + 9 — это трехчлен полного квадрата.

Теперь давайте рассмотрим, как мы можем использовать завершение квадрата для решения квадратных уравнений.

Пример 5 Решите x 2 + 6x — 7 = 0, заполнив квадрат.

Напомним, что вместо -7, +9 сделает выражение идеальным квадратом.

Решение Сначала мы замечаем, что член -7 необходимо заменить, если мы хотим получить трехчлен в виде полного квадрата, поэтому мы перепишем уравнение, оставив пустое место для нужного числа.

Здесь будьте осторожны, чтобы не нарушить никаких правил алгебры. Например, обратите внимание, что вторая форма появилась в результате добавления +7 к обеим сторонам уравнения. Никогда не добавляйте что-либо к одной стороне, не добавляя то же самое к другой стороне.

Теперь мы находим половину 6 = 3 и 3 2 = 9, чтобы получить число для пробела.Опять же, если мы поместим 9 в пустое поле, мы также должны добавить 9 к правой стороне.

Помните, что если 9 добавляется к левой части уравнения, это также должно быть добавлено к правой части.

Теперь разложите на множители трехчлена полного квадрата, что дает

Теперь x 2 + 6x + 9 можно записать как (x + 3) 2 .

Таким образом, 1 и -7 являются решениями или корнями уравнения.

Пример 6 Решите 2x 2 + 12x — 4 = 0, заполнив квадрат.

Решение Эта проблема порождает еще одну трудность. Первый член, 2x 2 , не является полным квадратом.
Мы исправим это, разделив все члены уравнения на 2 и получим

Другими словами, получите коэффициент 1 для члена x 2 .

Теперь добавим 2 к обеим сторонам, получив

Опять же, это более лаконично.

Пример 7 Решите 3x 2 + 7x — 9 = 0, заполнив квадрат.

Решение Шаг 1 Разделите все термины на 3.

Опять же, получите коэффициент 1 для x 2 , разделив на 3.

Шаг 2 Перепишите уравнение, оставив пробел для члена, необходимого для завершения квадрата.

Шаг 3 Найдите квадрат половины коэффициента при x и прибавьте к обеим сторонам.

Это выглядит сложным, но мы следуем тем же правилам, что и раньше.

Шаг 4 Разложите квадрат на множители.

Факторинг никогда не должен быть проблемой, поскольку мы знаем, что у нас есть полный квадратный трехчлен, что означает, что мы находим квадратные корни из первого и третьего членов и используем знак среднего члена.

Если у вас возникнут какие-либо затруднения, вам следует еще раз повторить арифметику при сложении чисел справа.
Теперь у нас

Шаг 5 Извлеките квадратный корень из каждой части уравнения.

Шаг 6 Решите относительно x (два значения).

не может быть упрощено. Мы могли бы также записать решение этой проблемы в более сжатой форме как

Выполните шаги, описанные в предыдущем вычислении, а затем обратите особое внимание на последнее значение. Каков вывод, когда квадрат количества равен отрицательному числу? «Реального решения нет.«

Какое действительное число мы можем возвести в квадрат и получить -7?

Таким образом, чтобы решить квадратное уравнение, заполнив квадрат, следуйте этому пошаговому методу.

Шаг 1 Если коэффициент при x2 не равен 1, разделите все члены на этот коэффициент.
Шаг 2 Перепишите уравнение в виде x2 + bx + _______ = c + _______.
Шаг 3 Найдите квадрат половины коэффициента члена x и добавьте эту величину к обеим сторонам уравнения.
Шаг 4 Разложите заполненный квадрат на множители и объедините числа в правой части уравнения.
Шаг 5 Найдите квадратный корень из каждой части уравнения.
Шаг 6 Решите относительно x и упростите.
Если шаг 5 невозможен, уравнение не имеет реального решения.

Эти шаги помогут в решении уравнений в следующем упражнении.

КВАДРАТИЧЕСКАЯ ФОРМУЛА

ЦЕЛИ

По завершении этого раздела вы сможете:

  1. Решите общее квадратное уравнение, заполнив квадрат.
  2. Решите любое квадратное уравнение, используя формулу корней квадратного уравнения.
  3. Решите квадратное уравнение, заполнив квадрат.

Стандартная форма квадратного уравнения — ax 2 + bx + c = 0. Это означает, что каждое квадратное уравнение может быть представлено в этой форме. В некотором смысле, тогда ax 2 + bx + c = 0 представляет все квадраты. Если вы сможете решить это уравнение, у вас будет решение всех квадратных уравнений.

Решим общее квадратное уравнение методом завершения квадрата.

Это необходимо для получения члена x 2 с коэффициентом 1.
Это мы проделывали в предыдущем разделе много раз.
Надо прибавить с каждой стороны.

Эта форма называется квадратной формулой и представляет собой решение всех квадратных уравнений.

Запомните это выражение.

Чтобы использовать формулу корней квадратного уравнения, вы должны указать a, b и c.Для этого данное уравнение всегда необходимо оформлять в стандартном виде.

Осторожно подставьте значения a, b и c в формулу.

Не каждое квадратное уравнение имеет реальное решение.

Это уравнение уже имеет стандартную форму.

Реального решения нет, так как -47 не имеет действительного квадратного корня.

Опять же, это уравнение в стандартной форме.

Теперь это решение следует упростить.

ПРОБЛЕМЫ СО СЛОВОМ

ЦЕЛИ

По завершении этого раздела вы сможете:

  1. Определите проблемы со словами, для решения которых требуется квадратное уравнение.
  2. Решайте текстовые задачи, связанные с квадратными уравнениями.

Некоторые типы текстовых задач можно решить с помощью квадратных уравнений. Процесс обрисовки и постановки проблемы такой же, как описано в главе 5, но с проблемами, решаемыми квадратичными методами, вы должны быть очень осторожны, проверяя решения в самой проблеме.Физические ограничения внутри проблемы могут устранить одно или оба решения.

Пример 1 Если длина прямоугольника на 1 единицу больше ширины более чем в два раза, а его площадь составляет 55 квадратных единиц, найдите длину и ширину.

Решение Формула площади прямоугольника: Площадь = Длина X Ширина. Пусть x = ширина, 2x + 1 = длина.

Если x представляет ширину, то 2x представляет удвоенную ширину, а 2x + 1 представляет единицу более чем удвоенную ширину.
Приведите квадратное уравнение в стандартную форму.
Эта квадратичная величина может быть решена путем факторизации.

На этом этапе вы можете видеть, что решение x = -11/2 недействительно, поскольку x представляет собой измерение ширины, а отрицательные числа не используются для таких измерений. Следовательно, решение

ширина = x = 5, длина = 2x + 1 = 11.

Измерение не может быть отрицательным значением.
Значение x равно.
Помните, что ЖК-дисплей означает наименьший общий знаменатель.
Каждый член нужно умножить в 10 раз.
Опять же, эту квадратичную величину можно разложить на множители.

Оба решения проверяют. Следовательно, набор решений есть.

Есть два решения этой проблемы.

Пример 3 Если определенное целое число вычитается из его квадрата, умноженного на 6, получается 15.Найдите целое число.

Решение Пусть x = целое число. Тогда

Поскольку ни одно из решений не является целым числом, проблема не имеет решения.

У вас может возникнуть соблазн указать эти значения в качестве решения, если вы не обратили пристальное внимание на тот факт, что проблема запрашивала целое число.

Пример 4 Управляющий фермой имеет под рукой 200 метров забора и желает огородить прямоугольное поле так, чтобы его площадь составляла 2400 квадратных метров.Какими должны быть размеры поля?

Решение Здесь задействованы две формулы. P = 2l + 2w для периметра и A = lw для площади.
Сначала используя P = 2l + 2w, получаем

Теперь мы можем использовать формулу A = lw и подставить (100 — l) вместо w, получив

Поле должно быть шириной 40 метров и длиной 60 метров.

Мы могли бы точно так же решить для l, получив l = 100 — w. Тогда

Обратите внимание, что в этой задаче мы фактически используем систему уравнений

P = 2 l + 2 w
A = l w.

В общем случае система уравнений, в которой участвует квадратичная функция, будет решаться методом подстановки. (См. Главу 6.)

РЕЗЮМЕ

Ключевые слова

  • Квадратное уравнение — это полиномиальное уравнение от одной неизвестной, которое содержит вторую степень, но не более высокую степень переменной.
  • Стандартная форма квадратного уравнения : ax 2 + bx + c = 0, когда a 0.
  • Неполное квадратное уравнение имеет вид ax 2 + bx + c = 0, и либо b = 0, либо c = 0.
  • Квадратичная формула — это

Процедуры

  • Самый прямой и, как правило, самый простой метод поиска решений квадратного уравнения — это факторизация. Этот метод основан на теореме: если AB = 0, то A = 0 или B = 0. Чтобы использовать эту теорему, мы приводим уравнение в стандартную форму, коэффициент и устанавливаем каждый коэффициент равным нулю.
  • Чтобы решить квадратное уравнение, заполнив квадрат, выполните следующие действия:
    Шаг 1 Если коэффициент при x 2 не равен 1, разделите все члены на этот коэффициент.
    Шаг 2 Перепишите уравнение в виде x 2 + bx + _____ = c + _____
    Шаг 3 Найдите квадрат половины коэффициента члена x и прибавьте эту величину к обеим сторонам. уравнения.
    Шаг 4 Разложите заполненный квадрат на множители и объедините числа в правой части уравнения.
    Шаг 5 Найдите квадратный корень из каждой части уравнения.
    Шаг 6 Решите относительно x и упростите.
  • Метод завершения квадрата используется для вывода формулы корней квадратного уравнения.
  • Чтобы использовать квадратную формулу, напишите уравнение в стандартной форме, укажите a, b и c и подставьте эти значения в формулу. Все решения следует упростить.

Природа корней | Формула | Калькулятор | Примеры

Используйте приведенное ниже моделирование, чтобы найти природу корней квадратного уравнения графически.

Используйте ползунки для настройки значений \ (a, b \) и \ (c \), затем моделирование дает значение дискриминанта, количество действительных корней и показывает график квадратного уравнения.2-24k & = 0 \\ 4k (k-6) & = 0 \\ k & = 0,6 \ end {align} \]

Теперь в цветах нет числа 0

Следовательно, \ [k = 6 \]

\ (\ следовательно \), правильное число — 6

Райли пытается нарисовать график квадратного уравнения. Условия природы корней квадратного уравнения задаются как:

  • Оба корня настоящие
  • Один из корней отрицательный, а другой положительный

Можете ли вы помочь ей нарисовать возможные наброски квадратного уравнения?

Интерактивные вопросы

Вот несколько занятий для вас.

Выберите / введите свой ответ и нажмите кнопку «Проверить ответ», чтобы увидеть результат.


Подведем итоги

Мини-урок был посвящен увлекательной концепции «Природы корней». Математическое путешествие по Nature of Roots начинается с того, что студент уже знает, и переходит к творческому созданию новой концепции в молодых умах. Сделано так, чтобы не только было понятно и легко понять, но и навсегда осталось с ними.В этом заключается магия Куэмат.

О компании Cuemath

В Cuemath наша команда экспертов по математике стремится сделать обучение интересным для наших любимых читателей, студентов!

Благодаря интерактивному и увлекательному подходу «обучение-обучение-обучение» учителя исследуют тему со всех сторон.

Будь то рабочие листы, онлайн-классы, сеансы сомнений или любые другие формы отношений, это логическое мышление и интеллектуальный подход к обучению, в которые мы, в Cuemath, верим.2 + bx + c = 0 \), который принадлежит множеству действительных чисел.

5. Что такое мнимые корни?

Корни, не представленные на числовой прямой, являются мнимыми корнями. Мнимые корни возникают, когда квадратное уравнение не пересекает ось \ (x \).

6. Как вы приблизитесь к природе иррациональных корней?

Мы можем приблизительно определить природу иррациональных корней, округлив число до двух цифр после десятичной точки.

Пример: иррациональный корень \ (\ pm1.2 + Ьх + с = 0 \):

  1. Настоящие и отчетливые корни
  2. Корни настоящие и равные
  3. Сложные корни

9. Как узнать природу корней кубического уравнения?

Чтобы определить характер корней кубического уравнения, вычислите значение его дискриминанта. 2 — 4ac}} {2a} $

Число D = b 2 — 4ac называется «дискриминантом» .2-32 $ 90 478

$ y = 2 (x-3) (x + 5)

$
y-перехват в
$ (0, -30)

$

вершина в
$ (- 1, -32)

$

x-перехватывает на
$ (3, 0) $ и $ (- 5, 0) $
Парабола

График квадратного уравнения называется параболой .
Если a> 0, то его вершина указывает вниз:

Если a <0, то его вершина указывает вверх: Если a = 0, график не парабола, а прямая линия.

Вершина параболы равна $ x = — \ frac {b} {2a} $.

Формулы Виета

Если x 1 и x 2 являются корнями квадратного уравнения ax 2 + bx + c = 0
затем:
$ x_1 + x_2 = — \ frac {b} {a} $
$ x_1x_2 = \ frac {c} {a} $
Эти формулы называются формулами Виета .
Мы можем найти корни x 1 и x 2 квадратного уравнения, решив совместные уравнения.

Задачи на квадратные уравнения

Проблема 1. Решите уравнение:
x 2 — 4 = 0
Решение: x 2 -4 = (x — 2) (x + 2)
(x — 2) (x + 2) = 0
x — 2 = 0 или x + 2 = 0
Корни равны x = 2 или x = -2

Решение 2:
a = 1, b = 0, c = -4
D = 0 2 — 4 ⋅ 1 ⋅ (-4) = 16
$ x_1 = \ frac {-b — \ sqrt {D}} {2a} = \ frac {- 0 — \ sqrt {16}} {2 \ cdot 1} = \ frac {-4} {2} = -2 $
$ x_2 = \ frac {-b + \ sqrt {D}} {2a } = \ frac {- 0 + \ sqrt {16}} {2 \ cdot 1} = \ frac {4} {2} = 2 $


Проблема 2. Решите уравнение:
3x 2 + 4x + 5 = 0
Решение: дискриминант D = 4 2 — 4⋅3⋅5 = 16-60 = -44
Итак, квадратное уравнение не имеет реальных корней.


Задача 3. Решите уравнение:
x 2 + 4x — 5 = 0; х =?
Решение: Дискриминант 4 2 — (-4⋅1⋅5) = 16 + 20 = 36> 0
Уравнение имеет 2 действительных корня: $ \ frac {-4 \ pm \ sqrt {36} } {2}
долл. США x = 1 или x = -5


Проблема 4. Решите уравнение:
x 2 + 4x + 4 = 0; х =?
Решение: Дискриминант 4 2 — (4⋅1⋅4) = 16-16 = 0
Итак, есть одно реальное решение: $ x = \ frac {-4} {2} $
x = -2


Задача 5. Решите уравнение:
x 2 — 13x + 12 = 0
Корни: 1, 12


Задача 6. Решите уравнение:
8x 2 — 30x + 7 = 0
Корни: 3.2 — 4ac}} {2a} $

Квадратные уравнения на математическом форуме

Задачи с квадратными уравнениями
Задачи с использованием формул Виета
Решение уравнений кубической и четвертой степени — 1

Форумы, посвященные квадратным уравнениям

Дискриминант: определение и объяснение | Study.com

Это формула для нахождения дискриминанта.

Использование дискриминанта

Дискриминант сообщает вам, сколько возможных решений имеет конкретное квадратное уравнение.Однако, прежде чем мы сможем использовать квадратное уравнение, мы сначала должны изменить его на стандартную форму . Стандартная форма — это когда все переменные и константы находятся на одной стороне уравнения, а другая сторона равна нулю. Выглядит это так:

Это квадратное уравнение стандартной формы.

Когда у вас есть квадратное уравнение в стандартной форме, вы можете пометить числа соответствующими буквами и вставить значения в формулу для поиска дискриминанта.Результат вашего дискриминанта говорит вам, сколько решений имеет ваша квадратичная.

Примеры

Давайте посмотрим на пример:

Пример 1

В нашем примере квадратное уравнение дает нам 1 для буквы a , 5 для буквы b и 4 для буквы c . Мы берем эти значения и вставляем их в соответствующие места в формуле дискриминанта, и мы обнаруживаем, что наш дискриминант равен 9, положительному числу.Это говорит нам о том, что у нашего квадратного уравнения есть два возможных вещественных решения. Реальные решения — это решения, которые можно вычислить с помощью формулы квадратичных уравнений. Когда вы построите график этого квадратного уравнения, вы увидите, что кривая пересекает ось x в двух местах, именно там, где находятся ваши решения.

Хотя дискриминант сообщает нам количество возможных решений, он не говорит нам, что это за решения. Но это дает нам представление о том, сколько решений нам нужно искать.

Помните, что если перед переменными нет чисел, предполагается, что перед ними стоит 1. Мы не пишем 1, потому что это математическое соглашение и потому что это выглядит аккуратнее, особенно когда у вас много букв, с которыми нужно работать.

Рассмотрим другой пример:

Пример 2

Мы присвоили нашим буквам соответствующие значения. Подставив соответствующие значения в нашу дискриминантную формулу, мы обнаруживаем, что наш дискриминант равен -31, то есть отрицательное число.Хм … что это могло значить? Когда дискриминант отрицательный, это означает, что реальных решений нет. Это означает, что при построении графика уравнения вы увидите, что оно никогда не пересекает ось x и поэтому не имеет реальных решений.

Есть еще одна возможная ситуация — когда дискриминант равен 0. Когда вы видите это, это означает, что существует только одно возможное реальное решение. На графике уравнение касается оси x только в одной точке.

Вот таблица, которая поможет вам запомнить возможные дискриминантные ситуации и их значение:

Дискриминант Количество решений
> 0 Два реальных решения
= 0 Одно реальное решение
<0 Реальных решений нет

Резюме урока

Подводя итог, дискриминант помогает вам, сообщая вам, сколько возможных решений имеет квадратное уравнение.Формулу можно найти, посмотрев на квадратный корень в формуле квадратного корня. Возможны три сценария. Если дискриминант положительное число, то есть два реальных решения. Если дискриминант равен 0, то существует только одно реальное решение. Если дискриминант — отрицательное число, то реальных решений нет.

Результаты обучения

После этого урока вы сможете:

  • Определить дискриминант и вспомнить его назначение
  • Объясните, как найти дискриминант
  • Опишите возможные сценарии использования дискриминанта

3.2-4 (6) (- 1))) / (2 (6)) `

`= (6 + -кв (36 + 24)) / 12`

`= (6 + -sqrt60) / 12`

`= (6-2sqrt15) / 12 или (6 + 2sqrt15) / 12`

`= (3-sqrt15) / 6 или (3 + sqrt15) / 6`

Так

`r = -0,145 или 1,145`

.

Добавить комментарий

Ваш адрес email не будет опубликован.