Решение модульных уравнений: Как решать уравнения с модулем

Содержание

Модульные уравнения. Уравнения содержащие модуль.Решение уравнений с модулем.

Как решить простейшее модульное уравнение или уравнение содержащее модуль?

Обычно решение сводится к системе :
Уравнения содержащие модуль

Сразу рассмотрим на примере решение уравнений.

Пример №1:

Решите уравнение | x – 6| = 18.

Решение:

Выражение стоящее под модулем приравниваем к 0:

x-6=0
x=6

Отмечаем 6 на координатной прямой, далее проверяем знак на каждом из получившихся интервалах.

На интервале (-∞; 6) возьмем число 0 и подставим
0-6=-6 получилось отрицательное число, значит на этом интервале будет знак “ – ”

На интервале (6;+∞) возьмем число 7 и подставим
7-6=1 получилось положительное число, значит на этом интервале будет знак “ + ”

Числовая прямая

Теперь решаем уравнения на каждом интервале.

(-∞; 6) здесь получился знак “ – ”, значит выражение под модулем поменяет знаки на противоположные:

-x+6=18
x=-12

Видно, что -12 лежит на интервале (-∞; 6) следовательно, является корнем уравнения.

(6;+∞) здесь получился знак “ + ”, значит выражение под модулем остается без изменения:

x-6=18
x=24

Видно, что 24 лежит на интервале (6;+∞) следовательно, является корнем уравнения.

Ответ: -12 и 24

Пример №2:

Решите уравнение | 2x – 5 |- | 4 — x | = -18.

Решение:

Выражения стоящие под модулем приравниваем к 0:

2x – 5 = 0 и 4 — x = 0
x=2,5 и x=4

Отмечаем x=2,5 и x=4 на координатной прямой, далее проверяем знак на каждом из получившихся интервалах.

На интервале (-∞; 2,5) возьмем число 0 и подставим в каждое выражение
2*0-5=-5 получилось отрицательное число, значит на этом интервале будет знак “ – ”
4-0=4 получилось положительное число, значит на этом интервале будет знак “ + ”

На интервале (2,5; 4) возьмем число 3 и подставим в каждое выражение
2*3-5=1 получилось положительное число, значит на этом интервале будет знак “ + ”
4-3=1 получилось положительное число, значит на этом интервале будет знак “ + ”

На интервале (4; +∞) возьмем число 5 и подставим в каждое выражение
2*5-5=5 получилось положительное число, значит на этом интервале будет знак “ + ”
4-5=-1 получилось отрицательное число, значит на этом интервале будет знак “ – ”

Теперь решаем уравнения на каждом интервале.

(-∞; 2,5) здесь получился знак “ – ” у выражения “ 2x – 5 ”, значит выражение под модулем поменяет знаки на противоположные и знак “ + ” у выражения “ 4 — x ”, значит выражение под модулем остается без изменения:

-2x + 5 — ( 4 — x ) = -18
-2x + 5 — 4 + x = -18
x=19
Видно, что 19 не лежит на интервале (-∞; 2,5) следовательно, не является корнем уравнения.

(2,5; 4) здесь получился знак “ + ” у обоих выражений, значит выражения под модулем останутся без изменений:

2x – 5 — ( 4 — x ) = -18
2x – 5 — 4 + x = -18
3x=-9
x=-3

Видно, что -3 лежит на интервале (2,5; 4) следовательно,не является корнем уравнения.

(4; +∞) здесь получился знак “ – ” у выражения “ 4 — x ”, значит выражение под модулем поменяет знаки на противоположные и знак “ + ” у выражения “ 2x – 5 ”, значит выражение под модулем остается без изменения:

2x – 5 — ( — 4 + x ) = -18
2x – 5 + 4 — x = -18
x=-17

Видно, что -17 лежит на интервале (4; +∞) следовательно,не является корнем уравнения.

Ответ: корней нет

Пример №3:

Решите уравнение ||x|-3|=15.

Решение:

Так как в правой части стоит простое число то распишем на два уравнения (раскроем внешний модуль):

|x|-3=15
|x|-3=-15

Перенесем в обоих уравнениях -3 вправо, получим:

|x|=15+3
|x|=-15+3

|x|=18
|x|=-12 (модуль не может равняться отрицательному числу, следовательно это уравнение не имеет решений)

Раскрываем модуль |x|=18

x=18
x=-18

Ответ: -18 и 18

Хочешь готовиться к экзаменам бесплатно? Репетитор онлайн бесплатно. Без шуток. ЗДЕСЬ

Решение модульных уравнений

Для того, чтобы научиться решать уравнения с модулем, надо вспомнить и выучить определение модуля.

Из определения видно, что модуль любого числа неотрицателен. Кроме того, определение показывает как можно избавляться от знака модуля в уравнении.

На практике это делается так:

1) Находят значения переменной, при которых выражения стоящие под знаком модуля обращаются в нуль.

2) Отмечают все нули на числовой прямой. Они разобьют эту прямую на лучи и промежутки, на которых все подмодульные выражения имеют постоянный знак.

3) Определяем знаки подмодульных выражений на каждом промежутке и раскрываем все модули (заменяя их подмодульными выражениями со знаком плюс или со знаком минус в зависимости от знака подмодульного выражения).

4) Решаем получившиеся уравнения на каждом промежутке (сколько промежутков, столько и уравнений).Обратите внимание, что обязательно выбираем только те решения, которые находятся в данном промежуток (полученные решения могут и не принадлежать промежутку).

Хватит уже теории, пора на примерах посмотреть как решаются уравнения с модулем. Начнем с более простого.

Решение уравнений с модулями

Пример 1. Решить уравнение  .

Решение.  Так как  , то  . Если  , то  ,  и  уравнение принимает вид  .

Отсюда получаем  .

Ответ:  .   

Пример 2. Решить уравнение  .

Решение.  Из уравнения следует, что  .

Поэтому  , , , и уравнение принимает вид  или  .

Так как  , то исходное уравнение корней не имеет.

Ответ:  корней нет.

Пример 3. Решить уравнение  .

Решение. Перепишем уравнение в равносильном виде .

Полученное уравнение относится к уравнениям типа .

Известно, что уравнение такого типа равносильно неравенству . Следовательно, здесь имеем   или   .

Ответ:  .

Думаю, как решать такого вида уравнения с модулем вы уже разобрались. Попробуем разобраться с более сложным уравнением.

Пример 4. Решить уравнение: |x2 + 2x|  |2 – x| = |x2 – x|

Находим нули подмодульных выражений:

х2  + 2х = 0, х(х + 2) = 0, х = 0 или х = ‒ 2.  При этом парабола у = х2  + 2х положительна на промежутках (–∞; –2 ) и (0; +∞), а на промежутке (–2; 0 ) она отрицательна (см. рисунок).

 

х2  ‒ х = 0, х(х – 1) =0, х = 0 или х = 1. Эта парабола у = х2 ‒ х положительна на промежутках (–∞; 0 ) и (1; +∞), а на промежутке (0; 1) она отрицательна (см. рисунок).

2 – х = 0, х = 2, модуль положителен на промежутке (–∞; 0) и принимает отрицательные значения на промежутке (2; +∞) (см. рисунок).

Теперь решаем уравнения на промежутках:

1)   х ≤ ‒2:   х2  + 2х – (2 – х) = х2  ‒ х, х2  + 2х – 2 + х = х2  ‒ х, 4х = 2, х = 1/2 (не входит в рассматриваемый промежуток)

2)   –2 ≤ x <0:   ‒(х2  + 2х) – (2 – х) = х2  ‒ х, ‒х2  ‒ 2х – 2 + х = х2 ‒ х, ‒2 х2 = 2, х2 = ‒1, решений нет.

3)    0 ≤ x <1:   х2  + 2х ‒ (2 – х) = ‒ (х2  ‒ х), х2  + 2х ‒ 2 + х = ‒х2  + х, 2х2  + 2х – 2 = 0, х2  + х – 1 = 0, √D = √5,
х1 = (‒1 ‒ √5)/2 и х2 = (‒1 + √5)/2.

Так как первый корень отрицательный, то он не принадлежит нашему промежутку, а второй корень больше нуля и меньше единицы это и есть наше решение на данном промежутке.

4)    1 ≤ x <2:   х2 + 2х – (2 – х) = х2 ‒ х, х2 + 2х – 2 + х = х2 ‒ х, 4х = 2, х= 1/2 (не входит в рассматриваемый промежуток)

5)    х ≥ 2:   х2 + 2х –(‒(2 – х)) = х2 ‒ х, х2 + 2х + 2 ‒ х = х2 ‒ х, 2х = ‒ 2, х = ‒1 (не входит в рассматриваемый промежуток).

Ответ: (‒1 + √5)/2.

Вы заметили, что решается это уравнение также как и предыдущие, отличие в количестве промежутков. Так как под модулем стоят квадратные выражения то корней получилось больше, а соответственно и больше промежутков.

А как же решать уравнение в котором модуль стоит под модулем? Давайте посмотрим на примере.

Пример 5. Решите уравнение |3 – |x – 2|| = 1

Подмодульное выражение может принимать значение либо 1 либо – 1. Получаем два уравнения:

3 ‒ |х ‒ 2|= ‒1 или 3 ‒ |х ‒ 2|= 1

Решаем каждое уравнение отдельно.

1)  3 ‒ |х ‒ 2|= ‒1, ‒|х ‒ 2|= ‒1 – 3, ‒|х ‒ 2|= ‒4, |х ‒ 2|= 4,
х ‒ 2= 4 или х ‒ 2= ‒ 4, откуда получаем х1 = 6, х2 = ‒2.

2)  3 ‒ |х ‒ 2|= 1, ‒|х ‒ 2|= 1 ‒ 3, ‒|х – 2|= ‒2, |х – 2|= 2,
х – 2 = 2 или х – 2 = ‒2,  
х3 = 4 , х4 = 0.

Надеюсь, после изучения данной статьи вы будете успешно решать уравнения с модулем. Если остались вопросы, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская.

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

6.2.4. Модуль числа

Автор Татьяна Андрющенко На чтение 2 мин. Просмотров 5.2k. Опубликовано

Модулем числа а (записывают |a|) называют расстояние от начала отсчета до точки, соответствующей данному числу а.

Значение модуля любого числа неотрицательно. |3|=3; |-3|=3, т.к. расстояние от начала отсчета и до числа -3, и до числа 3 равно трем единичным отрезкам. Противоположные числа имеют равные модули. Модуль нуля равен нулю: |0|=0.

По определению модуля числа: |a|=a, если a≥0 и |a|=-a, если а<0. Читают: модуль неотрицательного числа равен самому этому числу; модуль отрицательного числа равен противоположному числу.

Примеры.

1. Вычислить: а) |5|-2; б) |-12| : 6; в) |-24| + |13|; г) |65|-|-45|.

Решение. а) |5|-2=5-2=3;

б) |-12| : 6=12 : 6=2;

в) |-24|+|13|=24+13=37;

г) |65|-|-45|=65-45=20.

2. Решить уравнение: а) |m|+4=10; б) 6-|x|=2.

Решение.

а) |m|+4=10;

|m|=10-4; из суммы вычли известное слагаемое;

|m|=6. Так как |-6|=6  и  |6|=6, то m=-6  или m=6.

Ответ: -6; 6.

б) 6-|x|=2.

|x|=6-2;

|x|=4, отсюда х=-4 или х=4.

Ответ: -4; 4.

3. Записать перечислением элементов множество целых чисел А, модуль которых меньше числа 5.

Решение. По определению модуля числа 5 искомые числа должны отстоять от начала отсчета как вправо, так и влево на расстояние, меньшее пяти единичных отрезков. В этом промежутке (показан штриховкой на рисунке) бесконечно много чисел, но нам нужно выбрать из них лишь все целые числа. Берем числа: -4, -3, -2, -1, 0, 1, 2, 3, 4. Числа -5 и 5 не подходят по условию.

Ответ:  множество А={-4, -3, -2, -1, 0, 1, 2, 3, 4}.

4. Записать перечислением множество натуральных чисел В, модуль которых меньше числа 5.

Решение. Из всех чисел, показанных на рисунке штриховкой, нам нужно выбрать натуральные, т.е. только те числа, которые употребляются при счете предметов. Ответ: B={1, 2, 3, 4}.

 

Решение уравнений с модулем

Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа,  и как правильно раскрывать выражения, содержащие знак модуля, то наличие в уравнении выражения, стоящего под знаком модуля, перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак «+» и абсолютное значение 5.

Число -5  имеет знак «-» и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x),   если f(x) ≥ 0, и

|f(x)|= — f(x), если f(x) < 0

Например |x-3|=x-3,  если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение , содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля.

Тогда наше уравнение или неравенство преобразуется в два  различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение  существует на числовом  промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x2+4x-3

1.  Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если  x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка:  х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При  х≥3 |x-3|=x-3, и наше уранение имеет вид:

x-3=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

x2 -3х=0

и решим это уравнение.

Это уравнение имеет корни:

х1=0, х2=3

Внимание! поскольку  уравнение x-3=-x2+4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х2=3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

3-x=-x2+4x-3

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

x2-5х+6=0

х1=2, х2=3

Внимание! поскольку  уравнение 3-х=-x2+4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х1=2.

Итак: из первого промежутка мы берем только корень х=3, из второго — корень  х=2.

Ответ:  х=3, х=2

 

Урок 4: Уравнения с модулем

План урока:

Модуль числа

Решение уравнений с модулем

Уравнения с параметрами

 

Модуль числа

Напомним, что такое модуль числа. Так называют значение числа, взятое без учета его знака. То есть модуль чисел 9 и (– 9) одинаков и равен 9. Для обозначения модуля применяют специальные прямоугольные скобки:

|9| = |– 9| = 9

|674| = |– 674| = 674

|2,536| = |– 2,536| = 2,536

Грубо говоря, операция нахождения модуля сводится к отбрасыванию у числа знака «минус», если он у него есть. Вообще, если число х неотрицательно, то его модуль |х| = х. Если же число отрицательно, то его модуль имеет противоположное значение: |х| = х. Математически это можно записать так:

Именно такое определение обычно и применяется в математике.

Модуль играет важную роль в математике. Дело в том, с его помощью удобно записывать расстояние между двумя точками на координатной прямой. Пусть на ней отмечены точки a и b. Расстояние между ними равно |a – b|, причем неважно, какое из этих чисел больше, а какое меньше:

Также модуль возникает при извлечении квадратного корня из четной степени числа:

В частности, если n = 1, получим формулу:

Для того чтобы получить график функции у = |x|, сначала надо построить график функции без учета знака модуля:

Далее следует выполнить преобразование. Те точки графика, которые располагаются выше оси Ох, остаются на своем месте. В данном случае это та часть графика, которая находится в I четверти. Те же точки, которые располагаются ниже оси Ох, должны быть симметрично (относительно этой самой оси Ох) отображены. В результате они окажутся выше оси Ох:

В результате получилась «галочка».

Пример. Постройте график ф-ции у = |х2 – 4х + 3|

Решение. Для построения графика функции, содержащей модуль, сначала надо построить график для «подмодульного» выражения. Поэтому построим график у = х2 – 4х + 3. Это квадратичная ф-ция, ее график – это парабола:

Часть графика, в промежутке от 1 до 3, находится ниже оси Ох. Чтобы построить ф-цию у = |х2 – 4х + 3|, надо перевернуть эту часть графика:

Решение уравнений с модулем

Изучим простейший случай уравнения, содержащего модуль, когда вся его слева записано выр-ние в модульных скобках, а справа находится число. То есть уравнение имеет вид

|у(х)| = b

где b – какое-то число, а у(х) – произвольная ф-ция.

Если b< 0, то ур-ние корней не имеет, ведь модуль не может быть отрицательным.

 

Пример. Найдите корни ур-ния

|125x10 + 97x4– 12,56х3 + 52х2 + 1001х – 1234| = – 15

Решение: Справа стоит отрицательное число. Однако модуль не может быть меньше нуля. Это значит, что у ур-ния отсутствуют корни.

Ответ: корни отсутствуют.

Если b = 0, то мы получим какое-то произвольное ур-ние у(х) = 0, у которого могут быть корни. Проще говоря, модульные скобки в таком случае можно просто убрать.

 

Пример. Решите ур-ние

|13х – 52| = 0

Решение.

Ясно, что подмодульное выр-ние равно нулю:

13х – 52 = 0

13х = 52

х = 4

Ответ: 4.

Наиболее интересен случай, когда b> 0, то есть в правой части стоит положительное число. Ясно, что тогда под модулем находится либо само это число b, либо противоположное ему число – b:

|b| = b

|– b| = b

То есть мы получаем два различных ур-ния: у(х) = bи у(х) = – b.

 

Пример. Решите ур-ние

|х| = 10

Решение. В правой части – положительное число, поэтому либо х = – 10, либо х = 10.

Ответ: 10; (– 10).

 

Пример. Решите ур-ние

|10х + 5| = 7

Решение. Исходное ур-ние разбивается на два других ур-ния:

10х + 5 = 7 или 10х + 5 = – 7

10х = 2 или 10х = – 12

х = 0,2 или х = – 1,2

Ответ: 0,2; (– 1,2).

 

Пример. Найдите корни ур-ния

|x2– 2х – 4| = 4

Решение. Снова заменим исходное равенство на два других:

x2– 2х – 4 = 4 или x2– 2х – 4 = – 4

Имеем два квадратных ур-ния. Решим каждое из них:

x2– 2х – 4 = 4

x2– 2х – 8 = 0

D = b2– 4ас = (– 2)2 – 4•1•(– 8) = 4 + 32 = 36

х1 = (2 – 6)/2 = – 2

х2 = (2 + 6)/2 = 4

Нашли корни (– 2) и 4. Решаем второе ур-ние:

x2– 2х – 4 = – 4

x2– 2х = 0

х(х – 2) = 0

х = 0 или х – 2 = 0

х = 0 или х = 2

Получили ещё два корня: 0 и 2.

Ответ: – 2, 4, 0, 2

Встречаются случаи, когда в уравнении, содержащем знак модуля, под ним находятся обе части равенства:

|у(х)| = |g(x)|

Здесь возможны два варианта. Либо подмодульные выр-ния равны друг другу (у(х) = g(x)), либо у них противоположные значения (у(х) = – g(x)). То есть снова надо решить два ур-ния.

 

Пример. Решите ур-ние

|x2 + 2x– 1| = |х + 1|

Решение. Выр-ния справа и слева (без знака модуля) либо равны, либо противоположны. Можно составить два ур-ния:

x2 + 2x– 1 = х + 1 или x2 + 2x– 1 = – (х + 1)

х2 + х – 2 = 0 или х2 + 3х = 0

Решим 1-ое ур-ние:

х2 + х – 2 = 0

D = b2– 4ас = 12 – 4•1•(– 2) = 1 + 8 = 9

х1 = (1 – 3)/2 = – 1

х2 = (1 + 3)/2 = 2

Теперь переходим ко 2-омуур-нию:

х2 + 3х = 0

х(х + 3) = 0

х = 0 или х + 3 = 0

х = 0 или х = – 3

Всего удалось найти 4 корня: (– 1), (– 2), 2 и 0.

Ответ:(– 1), (– 2), 2, 0.

Возможен случай, когда в левой части равенства находится модуль выр-ния, а в правой – обычное выражение, без модуля. Такое ур-ние имеет вид |у(х)| = g(x). Здесь также возможны два варианта: у(х) = g(x) или у(х) = – g(x). Однако следует учитывать ещё один факт. Модуль не может быть отрицательным, а потому должно выполняться нер-во g(x)⩾ 0. Но это неравенство не надо решать. Достаточно просто подставить в него все полученные корни и проверить, справедливо ли нер-во.

Пример. Найдите решение уравнения, содержащего модуль:

2 + 3,5х – 20| = 4,5х

Решение. Рассмотрим два отдельных равенства:

х2 + 3,5х – 20 = 4,5х илих2 + 3,5х – 20 = – 4,5х

х2 – х – 20 = 0 или х2 + 8х – 20 = 0

Решим каждое из полученных квадратных ур-ний.

х2 – х – 20 = 0

D = b2– 4ас = 12 – 4•1•(– 20) = 1 + 80 = 81

х1 = (1 – 9)/2 = – 4

х2 = (1 + 9)/2 = 5

х2 + 8х – 20 = 0

D = b2– 4ас = 82 – 4•1•(– 20) = 64 + 80 = 144

х3 = (– 8 – 12)/2 = – 10

х4 = (– 8 + 12)/2 = 2

Итак, получили 4 корня: (– 4), 5, (– 10) и 2. Однако правая часть исходного ур-ния, 4,5x, не может быть отрицательной, ведь модуль числа – это всегда неотрицательная величина:

4,5х ≥ 0

Для х = – 4 и х = – 10 это условие не выполняется, поэтому эти корни должны быть исключены.

Ответ: 2 и 5

Мы рассмотрели три случая, когда ур-ние имеет вид:

  1. у(х) = b (b– это некоторая константа)
  2. |у(х)| = |g(x)|
  3. |у(х)| = g(x)

Однако порою ур-ние не удается свести ни к одному из этих видов. Тогда для решения уравнений и неравенств, содержащих модуль, следует рассматривать их на отдельных интервалах, где подмодульные выр-ния не изменяют свой знак.

 

Пример. Найдите корни ур-ния

|x + 1| + |x– 4| = 6

Решение. Выр-ния х + 1 и х – 4 меняют знак при переходе через точки (– 1) и 4:

Если отметить обе точки на прямой, то они образуют на ней 3 интервала:

Исследуем ур-ние на каждом из полученных промежутков.

Так как при х <– 1 оба подмодульные выр-ния отрицательны, то можно записать, что

|x + 1| = – (х + 1) = – х – 1

|x– 4| = – (х – 4) = – х + 4

Тогда ур-ние примет вид

|x + 1| + |x– 4| = 6

– х – 1 – х + 4 = 6

–2х = 3

х = – 1,5

Это значение удовлетворяет условию х <– 1, поэтому корень верный.

Далее изучим случай, когда х∊[– 1; 4). Здесь отрицательно только выражение x– 4, поэтому модули заменяются так:

|x + 1| = х + 1

|x– 4| = – (х – 4) = – х + 4

Ур-ние примет вид:

|x + 1| + |x– 4| = 6

x + 1 – x+ 4 = 6

5 = 6

Получили неверное тождество. Получается, что на промежутке [– 1; 4) корней нет.

При х ≥4 выр-ния х – 4 и х + 1 положительны, поэтому

|x + 1| = х + 1

|x– 4| = х – 4

Исходное ур-ние будет выглядеть так

|x + 1| + |x– 4| = 6

х + 1 + х – 4 = 6

2х = 9

х = 4,5

Найденный корень удовлетворяет условию х ≥4, поэтому он также должен быть включен в ответ.

 

Уравнения с параметрами

Изучим ур-ния:

5х = 10

5х = 15

5х = 20

Для решения каждого из них надо число справа поделить на 5 (множитель перед х). В итоге получаем значения х, равные 2, 3 и 4.

Теперь обозначим число в правой части буквой, например, как v. Тогда все эти ур-ния будут выглядеть одинаково:

5х = v

Решением таких ур-ний будет дробь v/5.

Надо понимать разный смысл, который мы вкладываем при этом в буквы х и v. Через х мы обозначили переменную, то есть ту величину, значение которой необходимо найти. Под буквой подразумевалась заранее известная величина, то есть константа, которая известна заранее в каждом конкретном ур-нии. Такую величину называют параметром, а ур-ние 5х = v называют уравнением с параметром.

Изучая уравнение с параметром, мы рассматриваем не одно конкретное ур-ние, а сразу целую группу, или семейство ур-ний. Например, все ур-ния первой степени можно описать в виде

ах + b= 0

где х – это переменная величина, а числа а, b– это параметры. Для описания квадратного ур-ния в общем виде необходимы уже три параметра (а, b и с):

ах2 + bx + c = 0

Параметры встречаются не только при описании ур-ний, но и, например, при рассмотрении функций. Так, линейная функция задается формулой у = kx + b. Здесь числа k и b являются параметрами. Так как ур-ние у = kx + b задает на плоскости прямую линию, то величины k и b порою называют параметрами уравнения прямой.

Если при решении обычного ур-ния мы определяем значение его корней в виде конкретных чисел, то при решении ур-ний с параметром находят формулу, позволяющую при заданном значении параметра вычислить значение корня.

 

Пример. Решите ур-ние

х2 – 2ах = 0

и найдите его корни при значении параметра а, равном 3.

Решение. Вынесем множитель х за скобки:

х2 – 2ах = 0

х(х – 2а) = 0

х = 0 или х – 2а = 0

х = 0 или х = 2а

Получили, что при любом значении параметра а ур-ние имеет два корня. Один из них равен нулю при любом значении а, а второй вычисляется по формуле х = 2а:

при а = 3х = 2•3 = 6

Ответ: есть два корня – 0 и 2а. При а = 2 корни равны 0 и 6.

 

Пример. Решите ур-ние

р2х – 3рх = р2 – 9

Решение. Слева вынесем за скобки множитель рх, а выр-ние справа преобразуем, используя формулу разности квадратов:

рх(р – 3) = (р – 3)(р + 3)

Возникает желание поделить обе части рав-ва на р(р – 3), чтобы выразить х. Однако сразу так делать нельзя, ведь если величина р(р – 3) равна нулю, то получится деление на ноль.

Поэтому сначала изучим случаи, когда один из множителей слева равен нулю. Если р = 0, то мы получим рав-во

0•х•(0 – 3) = (0 – 3) (3 – 0)

0 = – 9

Это неверное тождество, а потому при р = 0 ур-ние корней не имеет.

Если р – 3 = 0, то есть р = 3, получится следующее

3•х•0 = 0•(3 + 3)

0 = 0

Это равенство верно при любом х. Значит, при р = 3 корнем ур-ния является любое число.

Если же р≠ 0 и р ≠ 3, то произведение р(р – 3) также не равно нулю, а потому обе части равенства можно поделить на р(р – 3). Тогда получим

В этом случае ур-ние имеет единственный корень.

Ответ: при р = 0 корней нет; при р = 3 корнем является любое число; при других рх = (р + 3)/р.

Часто в задаче требуется не выразить корень ур-ния через параметр, а лишь оценить количество корней ур-ния или диапазон их значений.

 

Пример. Сколько корней имеет ур-ние

2 – 6х + 5| = b

при различных значениях параметра b.

Решение. Будем решать ур-ние графическим методом. Для этого сначала построим график у = |х2 – 6х + 5|. В модульных скобках находится обычная квадратичная функция, чьи ветви смотрят вверх. Найдем нули функции:

х2 – 6х + 5 = 0

D = b2– 4ас = (– 6)2 – 4•1•5 = 36 + 20 = 16

х1 = (6 – 4)/2 = 1

х2 = (6 + 4)/2 = 5

Итак, нули ф-ции – это точки 1 и 5. Найдем координату х0 вершины параболы по формуле:

х0 = –b/2a = 6/2 = 3

Подставив х0 в квадратичную ф-цию найдем координату у0 вершины параболы:

32 – 6•3 + 5 = 9 – 18 + 5 = – 4

Теперь построим квадратичную ф-цию:

Для построения графика, содержащего модуль функции, надо отобразить точки с отрицательными ординатами (они находятся ниже оси Ох) симметрично относительно оси Ох:

Мы построили график левой части ур-ния. График правой части представляет собой горизонтальную прямую у = b. Можно выделить 5 различных случаев взаимного расположения этих графиков:

При b< 0 прямая пролегает ниже графика. Общих точек у графиков нет, а потому ур-ние корней не имеет.

При b = 0 прямая у = 0 касается графика в 2 точках: (1; 0) и (5; 0). Получаем 2 корня.

Если 0 <b< 4, то прямая пересекает график в 4 точках.

При b = 4 прямая у = 4 касается перевернутой вершины параболы, а также пересекает ветви ещё в 2 точках. Итого 3 корня.

Наконец, при b>4 есть горизонтальная прямая пересекает график лишь в 2 точках, то есть получаем 2 корня.

Ответ: нет корней при b< 0; 2 корня при b = 0 и b> 4; 3 корня при b = 4; 4 корня при 0 <b< 4.

Пример. При каком а ур-ние

х4 – (а + 2)х2 + 3а – 3 = 0

имеет ровно 4 корня?

Решение. Это ур-ние является биквадратным, то есть для его решения нужно произвести замену у = х2:

у2 – (а + 2)у + 3а – 3 = 0 (1)

Для того, чтобы исходное ур-ние имело 4 корня, необходимо, чтобы у квадратного уравнения с параметром(1) было два положительных корня: у1 и у2. Тогда, проводя обратную замену х2 = у1 и х2 = у2, мы получим два разных квадратных ур-ния, корни которых будут равны

Если же хоть один из двух корней, например, у1, окажется равным нулю, то величины

Совпадут (они обе будут равны нулю), и останется лишь 3 корня. Если же у1 будет отрицательным числом, то ур-ние

х2 = у1

вовсе не будет иметь решений, и тогда останется не более 2 корней.

Итак, решим ур-ние (1):

у2 – (а + 2)у + 3а – 3 = 0

D = b2– 4ас = (– (а + 2))2 – 4•1•(3а – 3) = (а + 2)2 – 12 а + 12 =

= а2 + 4а + 4 – 12а + 12 = а2 – 8а + 16 = а2 – 2•4•а + 42 = (а – 4)2

Чтобы у ур-ния (1) было два различных корня, дискриминант должен быть положительным. Величина (а – 4)2 положительна при всех значениях а, кроме а = 4, которое обращает дискриминант в ноль. Значит, а ≠ 4.

Извлечем корень из дискриминанта:

Корни ур-ния (1) можно вычислить по формулам:

И у1, и у2 должны быть положительными величинами, однако у1 меньше, чем у2 (ведь для его вычисления дискриминант брали со знаком «минус», а не «плюс»). Поэтому достаточно записать нер-во:

Получили неравенство, содержащее модуль. Для избавления от модульных скобок в нер-ве рассмотрим 2 случая. Если а – 4>0, то есть а > 4, выполняется равенство

|а – 4| = а – 4

Тогда имеем

а + 2 – (а – 4) > 0

6> 0

Это нер-во выполняется при любом допустимом значении а, поэтому при а >4 исходное ур-ние имеет 4 корня.

Если а < 4, то справедливо соотношение

|а – 4| = – (а – 4)

Тогда получится следующее:

а + 2 – |а – 4|> 0

а + 2 – (– (а – 4)) > 0

а + 2 + а – 4 > 0

2а > 2

а > 1

Итак, при условии, что а< 4, должно выполняться нер-во а > 1. Это значит, что а∊(1; 4). С учетом первого случая, при котором было получено решение

а > 4

можно записать окончательный ответ: а∊(1; 4)∪(4; + ∞).

Ответ: а∊(1; 4)∪(4; + ∞).

 

Пример. При каких параметрах а у ур-ния

х2 – 2(а + 1)х + а2 + 2а – 3 = 0

существует два корня, которые принадлежат интервалу (– 5; 5)?

Решение. Данное ур-ние является квадратным. Найдем его дискриминант:

D = b2– 4ас = (– 2(а + 1))2 – 4•1•( а2 + 2а – 3) = 4(а2 + 2а + 1) – 4(а2 + 2а – 3) =

= 4(а2 + 2а + 1 – а2– 2а + 3) = 4•4 = 16

Получаем, что при любом а дискриминант положителен, а потому уур-ния 2 корня. Вычислить их можно по формулам

Для того, чтобы оба решения уравнения с параметром принадлежали интервалу (– 5; 5), нужно, чтобы меньший из них (это х1) был больше – 5, больший (это х2) – меньше – 5:

Значит, должны выполняться два нер-ва

х1>– 5и х2<5

а – 1 >– 5 и а + 3 < 5

а >– 4 и а < 2

Эти два нер-ва выполняются, если а∊(– 4; 2)

Ответ: (– 4; 2)

 

«Решение уравнений с модулем и параметром»

Пояснительная записка

1 Пояснительная записка Профильное обучение в гимназии направлено на обеспечение углубленного изучения математики, а, значит, прежде всего, на осознанное изучение данного предмета, на развитие математического

Подробнее

Пояснительная записка.


Пояснительная записка. методов решения уравнений и неравенств с модулем и своим содержанием привлекает внимание учащихся 10 классов, которым интересна математика. Предлагаемый курс является развитием системы

Подробнее

Пояснительная записка.

1 2 Пояснительная записка. Курс «Решение задач с параметрами» является предметно-ориентированным и предназначен для обучающихся 10 и 11 классов, сориентированных на получение высшего профессионального

Подробнее

Cрок реализации программы 1 год

Управление образования городского округа «Охинский» Муниципальное бюджетное общеобразовательное учреждение средняя общеобразовательная школа г. Охи РАБОЧАЯ УЧЕБНАЯ ПРОГРАММА ОБЪЕДИНЕНИЯ ДОПОЛНИТЕЛЬНОГО

Подробнее

b, где x, y переменные, k, b параметры.

1 Пояснительная записка Основная функция курса по выбору «Решение задач с параметром» направлена на повышение интереса к математике. Общеизвестно, что на вступительных экзаменах в ВУЗы довольно часто предлагаются

Подробнее

Элективный курс «Задачи с параметром»

Элективный курс «Задачи с параметром» Неделя Тема урока неделя Задачи с параметром. Первое знакомство 2 неделя Типы задач с параметрами 3 2 неделя Параметр и поиск решений уравнений, неравенств и их систем

Подробнее

Знакомые и незнакомые функции

МУНИЦИПАЛЬНОЕ АВТОНОМНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА 2» Рекомендовано Председатель методсовета Ф. И. О. Протокол от 2016 г. Утверждаю Директор школы О. А.Сорокина

Подробнее

Требования к знаниям и умениям учащихся:

2 Пояснительная записка Основная задача обучения математике в школе заключается в обеспечении прочного и сознательного овладения учащимися системой математических знаний и умений, необходимых в повседневной

Подробнее

Пояснительная записка

Пояснительная записка Программа данного курса предназначена для учащихся 11 класса. Основная цель курса: Создание условий для развития логического мышления, математической культуры и интуиции учащихся

Подробнее

Пояснительная записка

Пояснительная записка 1 Профильное обучение в гимназии направлено на обеспечение углубленного изучения математики, а, значит, прежде всего, на осознанное изучение данного предмета, на развитие математического

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа составлена на основе: — Федерального компонента государственного образовательного стандарта среднего (полного) общего образования (профильный уровень) по математике

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

2 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Программа разработана на основе авторской программы Шарыгина И.Ф. «Факультативный курс по математике, 8 класс», с учетом требований Обязательного минимума содержания программ по

Подробнее

Виды деятельности на занятиях:

Пояснительная записка программы платной образовательной услуге «Избранные вопросы математики» для учащихся 0-классов Платная образовательная программа «Избранные вопросы математики» для учащихся 0- классов

Подробнее

«Решение уравнений и неравенств»

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа 32 городского округа Тольятти ПРОГРАММА СПЕЦКУРСА ПО МАТЕМАТИКЕ «Решение уравнений и неравенств» ДЛЯ УЧАЩИХСЯ 9-Х КЛАССОВ

Подробнее

Пояснительная записка

2 Пояснительная записка Рабочая программа элективного курса «Решение задач с параметрами» 9 класса разработана с учетом нормативно-правовых документов: -Закон Российской Федерации от 29. 12.2012г. 273-ФЗ

Подробнее

Powered by TCPDF (

Powered by TCPDF (www.tcpdf.org) Элективный курс «Элементарная алгебра в ЕГЭ » Элективный курс «Элементарная алгебра в ЕГЭ» рассчитан на 34 часа для учащихся 11 классов. Данная программа курса сможет привлечь

Подробнее

<т 2016 г. Рабочая программа

Министерство образования и науки Российской Федерации Экономический лицей Федерального государственного бюджетного образовательного учреждения высшего образования «Российский экономический университет

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Рабочая программа по элективному курсу «Избранные вопросы математики» для учащихся 10 классов составлена на основе примерной программы среднего общего образования (профильный уровень)

Подробнее

Рабочая программа Факультативный курс

Согласовано Утверждаю Руководитель МО математического цикла Директор МОБУ «Боровая СОШ» Дементьева Е. Г. Ерѐмина Т.Н. «26» августа 2015г. 2015г. Рабочая программа Факультативный курс Подготовка к ЕГЭ по

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Статус документа

1 ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Статус документа Элективный курс «Углубленное изучение отдельных тем курса математики» соответствует целям и задачам обучения в старшей школе. Основная функция данного элективного

Подробнее

учебный год

Муниципальное бюджетное общеобразовательное учреждение «Гимназия 1» «Согласовано» Принято решением «Утверждаю» заместитель директора по УВР педагогического совета Директор МБОУ Гимназия 1 Тропина И.А.

Подробнее

Пояснительная записка. Цели предмета:

Пояснительная записка. Основная задача обучения математике в школе — обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой

Подробнее

Пояснительная записка

Пояснительная записка Концепция профильного обучения подразумевает, что реализация идеи профилизации обучения на старшей ступени ставит выпускника основной ступени перед необходимостью совершения ответственного

Подробнее

Пояснительная записка

Пояснительная записка Рабочая программа элективного курса «Задачи с модулями и параметрами», реализуемая в рамках профильного обучения, носит предметно ориентированный характер и предназначена для учащихся

Подробнее

Пояснительная записка

Пояснительная записка Основная задача обучения математике в школе обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Факультативный курс Квадратный трехчлен и его неравенства рассчитан на 34 часа (1 час в неделю), предназначен для учащихся 9-го класса общеобразовательной школы, является предметно-ориентированным.

Подробнее

РАБОЧАЯ ПРОГРАММА. Класс 9

Муниципальное казенное общеобразовательное учреждение Ханты-Мансийского района «Средняя общеобразовательная школа с. Елизарово» Рассмотрена на заседании ШМО Протокол от 20 г. Согласовано Заместитель директора

Подробнее

Пояснительная записка.

Пояснительная записка. Рабочая программа элективного учебного предмета составлена на основе: — авторской программы элективного предмета «Методы решения уравнений» Дрогаченко Т.В., учителя МОУ «СОШ с углубленным

Подробнее

Пояснительная записка

Пояснительная записка Итоговый письменный экзамен по алгебре за курс основной школы сдают все учащиеся 9х классов. Особенности такого экзамена: состоит из двух частей; на выполнение каждой части дается

Подробнее

ПРОГРАММА ЭЛЕКТИВНОГО КУРСА

Приложение к основной образовательной программе основного общего образования муниципального бюджетного общеобразовательного учреждения муниципального образования город Нягань «Средняя общеобразовательная

Подробнее

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА Задачи с параметрами играют важную роль в формировании логического мышления и математической культуры школьника, но их решение вызывает у них значительные затруднения. Это связано

Подробнее

Как раскрыть модуль в модуле в уравнении. Уравнения с модулем. Решение неравенств с модулем

Инструкция

Если модуль представлен в виде непрерывной функции, то значение ее аргумента может быть как положительным, так и отрицательным: |х| = х, х ≥ 0; |х| = — х, х

Модуль нулю, а модуль любого положительного числа – ему . Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Возведенный в степень аргумент одновременно находится под знаком корня того же порядка – он решается при помощи : √a² = |a| = ±a.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| >

Модуль нуля равен нулю, а модуль любого положительного числа – ему самому. Если аргумент отрицательный, то после раскрытия скобок его знак меняется с минуса на плюс. На основании этого вытекает вывод, что модули противоположных чисел равны: |-х| = |х| = х.

Модуль комплексного числа находится по формуле: |a| = √b ² + c ², а |a + b| ≤ |a| + |b|. Если в аргументе присутствует в виде множителя целое положительное число, то его можно вынести за знак скобки, например: |4*b| = 4*|b|.

Отрицательным модуль быть не может, поэтому любое отрицательное число преобразуется в положительное: |-x| = x, |-2| = 2, |-1/7| = 1/7, |-2,5| = 2,5.

Если аргумент представлен в виде сложного числа, то для удобства вычислений допускается изменение порядка членов выражения, заключенного в прямоугольные скобки: |2-3| = |3-2| = 3-2 = 1, поскольку (2-3) меньше нуля.

Если перед вами задача, в которой не указано условие раскрытия скобок модуля, то избавляться от них не нужно – это и будет конечный результат. А если требуется их раскрыть, то необходимо указать знак ±. Например, нужно найти значение выражения √(2 * (4-b)) ². Его решение выглядит следующим образом: √(2 * (4-b)) ² = |2 * (4-b)| = 2 * |4-b|. Поскольку знак выражения 4-b неизвестен, то его нужно оставить в скобках. Если добавить дополнительное условие, например, |4-b| > 0, то в итоге получится 2 * |4-b| = 2 *(4 — b). В качестве неизвестного элемента также может быть задано конкретное число, которое следует принимать во внимание, т. к. оно будет влиять на знак выражения.

Модуль – это абсолютная величина выражения. Чтобы хоть как-то обозначить модуль, принято использовать прямые скобки. То значение, которое заключено в ровных скобках, и является тем значением, которое взято по модулю. Процесс решения любого модуля заключается в раскрытии тех самых прямых скобок, которые математическим языком именуются модульными скобками. Их раскрытие происходит по определенному ряду правил. Также, в порядке решения модулей, находятся и множества значений тех выражений, которые находились в модульных скобках. В большей части всех случаев, модуль раскрывается таким способом, что выражение, которое было подмодульным, получает и положительные, и отрицательные значения, в числе которых также и значение ноль. Если отталкиваться от установленных свойств модуля, то в процессе составляются различные уравнения или же неравенства от исходного выражения, которые затем необходимо решить. Разберемся же с тем, как решать модули.

Процесс решения

Решение модуля начинается с записи исходного уравнения с модулем. Чтобы ответить на вопрос о том, как решать уравнения с модулем, нужно раскрыть его полностью. Для решения такого уравнения, модуль раскрывается. Все модульные выражения должны быть рассмотрены. Следует определить при каких значениях неизвестных величин, входящих в его состав, модульное выражение в скобках обращается в ноль. Для того чтобы это сделать, достаточно приравнять выражение в модульных скобках к нулю, а затем высчитать решение образовавшегося уравнения. Найденные значения нужно зафиксировать. Таким же способом нужно определить еще и значение всех неизвестных переменных для всех модулей в данном уравнении. Далее необходимо заняться определением и рассмотрением всех случаев существования переменных в выражениях, когда они отличны от значения ноль. Для этого нужно записать некоторую систему из неравенств соответственно всем модулям в исходном неравенстве. Неравенства должны быть составлены так, чтоб они охватывали все имеющиеся и возможные значения для переменной, которые находят на числовой прямой. Затем нужно начертить для визуализации эту самую числовую прямую, на которой в дальнейшем отложить все полученные значения.

Практически все сейчас можно сделать в интернете. Не является исключением из правил и модуль. Решить онлайн его можно на одном из многочисленных современных ресурсов. Все те значения переменной, которые находятся в нулевом модуле, будут особым ограничением, которое будет использовано в процессе решения модульного уравнения. В исходном уравнении требуется раскрыть все имеющиеся модульные скобки, при этом, изменяя знак выражения, таким образом, чтобы значения искомой переменной совпадали с теми значениями, которые видно на числовой прямой. Полученное уравнение необходимо решить. То значение переменной, которое будет получено в ходе решения уравнения, нужно проверять на ограничение, которое задано самим модулем. Если значение переменной полностью удовлетворяет условие, то оно является правильным. Все корни, которые будут получены в ходе решения уравнения, но не будут подходить по ограничениям, должны быть отброшены.

Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля
. Итак, модулем числа a
называется само это число, если a
неотрицательно и -a
, если число a
меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1.
Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

{±c, если с > 0

Если |x| = c, то x = {0, если с = 0

{нет корней, если с

1) |x| = 5, т. к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

2) |x 2 – 5| = 11, т.к. 11 > 0, то

x 2 – 5 = 11 или x 2 – 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 нет корней

3) |x 2 – 5x| = -8 , т.к. -8

3.
Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x)
или f(x) = -g(x)
.

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3

2) |x – 1| = 1 – x 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Решим методом интервалов данное неравенство:

(1 – x)(1 + x) ≥ 0

2. Решение:

x – 1 = 1 – x 2 или x – 1 = -(1 – x 2)

x 2 + x – 2 = 0 x 2 – x = 0

x = -2 или x = 1 x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1.

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

1) |x 2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x 2 – 5x + 7 = 2x – 5 или x 2 – 5x +7 = -2x + 5

x 2 – 7x + 12 = 0 x 2 – 3x + 2 = 0

x = 3 или x = 4 x = 2 или x = 1

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

x 2 – 6|x| + 5 = 0. По свойству модуля x 2 = |x| 2 , поэтому уравнение можно переписать так:

|x| 2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t 2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1 x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5.

Рассмотрим еще один пример:

x 2 + |x| – 2 = 0. По свойству модуля x 2 = |x| 2 , поэтому

|x| 2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t 2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2 или |x| = 1

Нет корней x = ± 1

Ответ: x = -1, x = 1.

6.
Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или 3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5 или 3 + |x + 1| = -5

|x + 1| = 2 |x + 1| = -8

x + 1 = 2 или x + 1 = -2. Нет корней.

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Одна из самых сложных тем для учащихся – это решение уравнений, содержащих переменную под знаком модуля. Давайте разберемся для начала с чем же это связано? Почему, например, квадратные уравнения большинство детей щелкает как орешки, а с таким далеко не самым сложным понятием как модуль имеет столько проблем?

На мой взгляд, все эти сложности связаны с отсутствием четко сформулированных правил для решения уравнений с модулем. Так, решая квадратное уравнение, ученик точно знает, что ему нужно сначала применять формулу дискриминанта, а затем формулы корней квадратного уравнения. А что делать, если в уравнении встретился модуль? Постараемся четко описать необходимый план действий на случай, когда уравнение содержит неизвестную под знаком модуля. К каждому случаю приведем несколько примеров.

Но для начала вспомним определение модуля
. Итак, модулем числа a
называется само это число, если a
неотрицательно и -a
, если число a
меньше нуля. Записать это можно так:

|a| = a, если a ≥ 0 и |a| = -a, если a

Говоря о геометрическом смысле модуля, следует помнить, что каждому действительному числу соответствует определенная точка на числовой оси – ее координата. Так вот, модулем или абсолютной величиной числа называется расстояние от этой точки до начала отсчета числовой оси. Расстояние всегда задается положительным числом. Таким образом, модуль любого отрицательного числа есть число положительное. Кстати, даже на этом этапе многие ученики начинают путаться. В модуле может стоять какое угодно число, а вот результат применения модуля всегда число положительное.

Теперь перейдем непосредственно к решению уравнений.

1.
Рассмотрим уравнение вида |x| = с, где с – действительное число. Это уравнение можно решить с помощью определения модуля.

Все действительные числа разобьем на три группы: те, что больше нуля, те, что меньше нуля, и третья группа – это число 0. Запишем решение в виде схемы:

{±c, если с > 0

Если |x| = c, то x = {0, если с = 0

{нет корней, если с

1) |x| = 5, т.к. 5 > 0, то x = ±5;

2) |x| = -5, т.к. -5

3) |x| = 0, то x = 0.

2. Уравнение вида |f(x)| = b, где b > 0. Для решения данного уравнения необходимо избавиться от модуля. Делаем это так: f(x) = b или f(x) = -b. Теперь необходимо решить отдельно каждое из полученных уравнений. Если в исходном уравнении b

1) |x + 2| = 4, т.к. 4 > 0, то

x + 2 = 4 или x + 2 = -4

2) |x 2 – 5| = 11, т.к. 11 > 0, то

x 2 – 5 = 11 или x 2 – 5 = -11

x 2 = 16 x 2 = -6

x = ± 4 нет корней

3) |x 2 – 5x| = -8 , т.к. -8

3.
Уравнение вида |f(x)| = g(x). По смыслу модуля такое уравнение будет иметь решения, если его правая часть больше или равна нулю, т.е. g(x) ≥ 0. Тогда будем иметь:

f(x) = g(x)
или f(x) = -g(x)
.

1) |2x – 1| = 5x – 10. Данное уравнение будет иметь корни, если 5x – 10 ≥ 0. Именно с этого и начинают решение таких уравнений.

1. О.Д.З. 5x – 10 ≥ 0

2. Решение:

2x – 1 = 5x – 10 или 2x – 1 = -(5x – 10)

3. Объединяем О.Д.З. и решение, получаем:

Корень x = 11/7 не подходит по О.Д.З., он меньше 2, а x = 3 этому условию удовлетворяет.

Ответ: x = 3

2) |x – 1| = 1 – x 2 .

1. О.Д.З. 1 – x 2 ≥ 0. Решим методом интервалов данное неравенство:

(1 – x)(1 + x) ≥ 0

2. Решение:

x – 1 = 1 – x 2 или x – 1 = -(1 – x 2)

x 2 + x – 2 = 0 x 2 – x = 0

x = -2 или x = 1 x = 0 или x = 1

3. Объединяем решение и О.Д.З.:

Подходят только корни x = 1 и x = 0.

Ответ: x = 0, x = 1.

4. Уравнение вида |f(x)| = |g(x)|. Такое уравнение равносильно двум следующим уравнениям f(x) = g(x) или f(x) = -g(x).

1) |x 2 – 5x + 7| = |2x – 5|. Данное уравнение равносильно двум следующим:

x 2 – 5x + 7 = 2x – 5 или x 2 – 5x +7 = -2x + 5

x 2 – 7x + 12 = 0 x 2 – 3x + 2 = 0

x = 3 или x = 4 x = 2 или x = 1

Ответ: x = 1, x = 2, x = 3, x = 4.

5. Уравнения, решаемые методом подстановки (замены переменной). Данный метод решения проще всего объяснить на конкретном примере. Так, пусть дано квадратное уравнение с модулем:

x 2 – 6|x| + 5 = 0. По свойству модуля x 2 = |x| 2 , поэтому уравнение можно переписать так:

|x| 2 – 6|x| + 5 = 0. Сделаем замену |x| = t ≥ 0, тогда будем иметь:

t 2 – 6t + 5 = 0. Решая данное уравнение, получаем, что t = 1 или t = 5. Вернемся к замене:

|x| = 1 или |x| = 5

x = ±1 x = ± 5

Ответ: x = -5, x = -1, x = 1, x = 5.

Рассмотрим еще один пример:

x 2 + |x| – 2 = 0. По свойству модуля x 2 = |x| 2 , поэтому

|x| 2 + |x| – 2 = 0. Сделаем замену |x| = t ≥ 0, тогда:

t 2 + t – 2 = 0. Решая данное уравнение, получаем, t = -2 или t = 1. Вернемся к замене:

|x| = -2 или |x| = 1

Нет корней x = ± 1

Ответ: x = -1, x = 1.

6.
Еще один вид уравнений – уравнения со «сложным» модулем. К таким уравнениям относятся уравнения, в которых есть «модули в модуле». Уравнения данного вида можно решать, применяя свойства модуля.

1) |3 – |x|| = 4. Будем действовать так же, как и в уравнениях второго типа. Т.к. 4 > 0, то получим два уравнения:

3 – |x| = 4 или 3 – |x| = -4.

Теперь выразим в каждом уравнении модуль х, тогда |x| = -1 или |x| = 7.

Решаем каждое из полученных уравнений. В первом уравнении нет корней, т.к. -1

Ответ x = -7, x = 7.

2) |3 + |x + 1|| = 5. Решаем это уравнение аналогичным образом:

3 + |x + 1| = 5 или 3 + |x + 1| = -5

|x + 1| = 2 |x + 1| = -8

x + 1 = 2 или x + 1 = -2. Нет корней.

Ответ: x = -3, x = 1.

Существует еще и универсальный метод решения уравнений с модулем. Это метод интервалов. Но мы его рассмотрим в дальнейшем.

blog.сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Термин (module) в буквальном переводе с латинского означает «мера». Это понятие было введено в математику английским учёным Р. Котесом. А немецкий математик К. Вейерштрасс ввёл в обращение знак модуля — символ, которым это понятие обозначается при написании.

Вконтакте

Впервые данное понятие изучается в математике по программе 6 класса средней школы. Согласно одному из определений, модуль — это абсолютное значение действительного числа. Другими словами, чтобы узнать модуль действительного числа, необходимо отбросить его знак.

Графически абсолютное значение а
обозначается как |a|
.

Основная отличительная черта этого понятия заключается в том, что он всегда является неотрицательной величиной.

Числа, которые отличаются друг от друга только знаком, называются противоположными. Если значение положительное, то противоположное ему будет отрицательным, а ноль является противоположным самому себе.

Геометрическое значение

Если рассматривать понятие модуля с позиций геометрии, то он будет обозначать расстояние, которое измеряется в единичных отрезках от начала координат до заданной точки. Это определение полностью раскрывает геометрический смысл изучаемого термина.

Графически это можно выразить следующим образом: |a| = OA.

Свойства абсолютной величины

Ниже будут рассмотрены все математические свойства этого понятия и способы записи в виде буквенных выражений:

Особенности решения уравнений с модулем

Если говорить о решении математических уравнений и неравенств, в которых содержится module, то необходимо помнить, что для их решения потребуется открыть этот знак.

К примеру, если знак абсолютной величины содержит в себе некоторое математическое выражение, то перед тем как раскрыть модуль, необходимо учитывать действующие математические определения.

|А + 5| = А + 5
, если, А больше или равняется нулю.

5-А
, если, А значение меньше нуля.

В некоторых случаях знак может раскрываться однозначно при любых значениях переменной.

Рассмотрим ещё одни пример. Построим координатную прямую, на которой отметим все числовые значения абсолютной величиной которых будет 5.

Для начала необходимо начертить координатную прямую, обозначить на ней начало координат и задать размер единичного отрезка. Кроме того, прямая должна иметь направление. Теперь на этой прямой необходимо нанести разметки, которые будут равны величине единичного отрезка.

Таким образом, мы можем увидеть, что на этой координатной прямой будут две интересующие нас точки со значениями 5 и -5.

Модульный арифметический решатель

— Калькулятор сравнения

Поиск инструмента

Решатель модульных уравнений

Инструмент / решатель для решения модульного уравнения. Модульное уравнение — это математическое выражение, представленное в форме сравнения по крайней мере с одной неизвестной переменной.

Результаты

Модуль решения модульных уравнений

— dCode

Тэги: Арифметика

Поделиться

dCode и другие

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Калькулятор модульных уравнений

Решите уравнения с несколькими модулями

В частном случае одно неизвестное с несколькими уравнениями с несколькими модулями , есть китайская теорема об остатках:

Ответы на вопросы (FAQ)

Что такое модульное уравнение? (Определение)

Модульное уравнение — это уравнение (или система уравнений, по крайней мере, с одной неизвестной переменной), действительное в соответствии с линейным сравнением (по модулю / модулю).С модулем вместо того, чтобы говорить о равенстве, принято говорить о конгруэнтности.

Для системы уравнений с несколькими модулями (нелинейной) это другой расчет, который может быть решен с помощью калькулятора, решающего китайскую проблему остатков, доступную в dCode.

Как решить модульное уравнение?

Как решить несколько уравнений?

Введите по одному уравнению в каждой строке или разделите их оператором &&.

Как написать символ сравнения ≡?

Нет необходимости писать ≡ (конгруэнтно), чтобы dCode мог решать уравнения, достаточно знака равенства =.

Задайте новый вопрос

Исходный код

dCode сохраняет за собой право собственности на исходный код онлайн-инструмента Modular Equation Solver. За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / free), любой алгоритм, апплет или фрагмент «Modular Equation Solver» (преобразователь, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любой «Modular Equation Solver» Функция Equation Solver (вычисление, преобразование, решение, дешифрование / шифрование, дешифрование / шифрование, декодирование / кодирование, перевод), написанная на любом информатическом языке (Python, Java, PHP, C #, Javascript, Matlab и т. Д.)), и никакая загрузка данных, скрипт, копирование-вставка или доступ к API для «Modular Equation Solver» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

Сводка

Похожие страницы

Поддержка

Форум / Справка

Ключевые слова

модульный, модуль, модуль, уравнение, сравнение, конгруэнтность, модуль, равенство, калькулятор

Ссылки

Источник: https: // www.dcode.fr/modular-equation-solver

© 2021 dCode — Идеальный «инструментарий» для решения любых игр / загадок / геокешинга / CTF.

Модульный арифметический решатель

— Калькулятор сравнения

Поиск инструмента

Решатель модульных уравнений

Инструмент / решатель для решения модульного уравнения. Модульное уравнение — это математическое выражение, представленное в форме сравнения по крайней мере с одной неизвестной переменной.

Результаты

Модуль решения модульных уравнений

— dCode

Тэги: Арифметика

Поделиться

dCode и другие

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Калькулятор модульных уравнений

Решите уравнения с несколькими модулями

В частном случае одно неизвестное с несколькими уравнениями с несколькими модулями , есть китайская теорема об остатках:

Ответы на вопросы (FAQ)

Что такое модульное уравнение? (Определение)

Модульное уравнение — это уравнение (или система уравнений, по крайней мере, с одной неизвестной переменной), действительное в соответствии с линейным сравнением (по модулю / модулю).С модулем вместо того, чтобы говорить о равенстве, принято говорить о конгруэнтности.

Для системы уравнений с несколькими модулями (нелинейной) это другой расчет, который может быть решен с помощью калькулятора, решающего китайскую проблему остатков, доступную в dCode.

Как решить модульное уравнение?

Как решить несколько уравнений?

Введите по одному уравнению в каждой строке или разделите их оператором &&.

Как написать символ сравнения ≡?

Нет необходимости писать ≡ (конгруэнтно), чтобы dCode мог решать уравнения, достаточно знака равенства =.

Задайте новый вопрос

Исходный код

dCode сохраняет за собой право собственности на исходный код онлайн-инструмента Modular Equation Solver. За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / free), любой алгоритм, апплет или фрагмент «Modular Equation Solver» (преобразователь, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любой «Modular Equation Solver» Функция Equation Solver (вычисление, преобразование, решение, дешифрование / шифрование, дешифрование / шифрование, декодирование / кодирование, перевод), написанная на любом информатическом языке (Python, Java, PHP, C #, Javascript, Matlab и т. Д.)), и никакая загрузка данных, скрипт, копирование-вставка или доступ к API для «Modular Equation Solver» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

Сводка

Похожие страницы

Поддержка

Форум / Справка

Ключевые слова

модульный, модуль, модуль, уравнение, сравнение, конгруэнтность, модуль, равенство, калькулятор

Ссылки

Источник: https: // www.dcode.fr/modular-equation-solver

© 2021 dCode — Идеальный «инструментарий» для решения любых игр / загадок / геокешинга / CTF.

Модульный арифметический решатель

— Калькулятор сравнения

Поиск инструмента

Решатель модульных уравнений

Инструмент / решатель для решения модульного уравнения. Модульное уравнение — это математическое выражение, представленное в форме сравнения по крайней мере с одной неизвестной переменной.

Результаты

Модуль решения модульных уравнений

— dCode

Тэги: Арифметика

Поделиться

dCode и другие

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Калькулятор модульных уравнений

Решите уравнения с несколькими модулями

В частном случае одно неизвестное с несколькими уравнениями с несколькими модулями , есть китайская теорема об остатках:

Ответы на вопросы (FAQ)

Что такое модульное уравнение? (Определение)

Модульное уравнение — это уравнение (или система уравнений, по крайней мере, с одной неизвестной переменной), действительное в соответствии с линейным сравнением (по модулю / модулю).С модулем вместо того, чтобы говорить о равенстве, принято говорить о конгруэнтности.

Для системы уравнений с несколькими модулями (нелинейной) это другой расчет, который может быть решен с помощью калькулятора, решающего китайскую проблему остатков, доступную в dCode.

Как решить модульное уравнение?

Как решить несколько уравнений?

Введите по одному уравнению в каждой строке или разделите их оператором &&.

Как написать символ сравнения ≡?

Нет необходимости писать ≡ (конгруэнтно), чтобы dCode мог решать уравнения, достаточно знака равенства =.

Задайте новый вопрос

Исходный код

dCode сохраняет за собой право собственности на исходный код онлайн-инструмента Modular Equation Solver. За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / free), любой алгоритм, апплет или фрагмент «Modular Equation Solver» (преобразователь, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любой «Modular Equation Solver» Функция Equation Solver (вычисление, преобразование, решение, дешифрование / шифрование, дешифрование / шифрование, декодирование / кодирование, перевод), написанная на любом информатическом языке (Python, Java, PHP, C #, Javascript, Matlab и т. Д.)), и никакая загрузка данных, скрипт, копирование-вставка или доступ к API для «Modular Equation Solver» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

Сводка

Похожие страницы

Поддержка

Форум / Справка

Ключевые слова

модульный, модуль, модуль, уравнение, сравнение, конгруэнтность, модуль, равенство, калькулятор

Ссылки

Источник: https: // www.2 + 3 п + 1 ≡ 0
D = -3% p
sqrtD = modular_sqrt (D, p)
если sqrtD == 0:
return None
еще:
n = (sqrtD — 3) * инверсия (6, p)% p
return (n, — (n + 1)% p)

Обратить по модулю простое число очень просто,

  def инверсия (x, p):
  вернуть pow (x, p - 2, p)
  

Я адаптировал эту реализацию Тонелли-Шанкса к Python3 ( // вместо / для целочисленного деления)

  def modular_sqrt (a, p):
    "" "Найдите квадратичный вычет (mod p) числа 'a'. e на нечетное s (т.е.е.
    # уменьшаем все степени двойки из p-1)
    #
    s = p - 1
    е = 0
    а s% 2 == 0:
        s // = 2
        е + = 1

    # Найдите число n с легендарным символом n | p = -1.
    # Это не займет много времени.
    #
    п = 2
    а legendre_symbol (n, p)! = -1:
        п + = 1

    # Вот драконы!
    # Прочтите статью "Квадратные корни из 1; 24, 51,
    №10 Дэну Шанксу »Эзры Брауна, чтобы узнать больше.
    # Информация
    #

    # x - это предположение квадратного корня, которое становится лучше
    # на каждой итерации.2 = ab (mod p)
    # поддерживается на протяжении всего цикла.
    # g используется для последовательных степеней n для обновления
    # оба а и Б
    # r - показатель степени - уменьшается с каждым обновлением
    #
    x = pow (a, (s + 1) // 2, p)
    b = pow (a, s, p)
    g = pow (n, s, p)
    г = е

    в то время как True:
        т = б
        m = 0
        для m в диапазоне (r):
            если t == 1:
                перерыв
            t = pow (t, 2, p)

        если m == 0:
            вернуть х

        gs = pow (g, 2 ** (r - m - 1), p)
        g = (gs * gs)% p
        х = (х * gs)% p
        b = (b * g)% p
        г = м


def legendre_symbol (a, p):
    "" "Вычислить символ Лежандра a | p, используя
        Критерий Эйлера.p - простое число, a -
        взаимно простое с p (если p делит
        a, то a | p = 0)

        Возвращает 1, если a имеет квадратный корень по модулю
        p, -1 в противном случае.
    "" "
    ls = pow (a, (p - 1) // 2, p)
    вернуть -1, если ls == p - 1 else ls
  

Некоторые результаты можно увидеть на ideone

python — математический вопрос о решении модульных уравнений

У меня есть следующее модульное уравнение:

  327𝑥≡ ℎ * 327 * 327 * 𝑥 ≡ ℎ * 327 ≡ 1 (мод. 1009) и т. Д.

𝑥 ≡ ℎ * 327x ≡ ℎ * 1 ≡ ℎ (мод. 1009).Итак, я должен узнать, что такое ℎ.

3 * 327 = 981≡-28 (мод1009)

  

Я не понимаю, как здесь выводится 3, по какой формуле вы находите 3.

Я знаю, что -28% 1009 = 981, но я не знаю, как автор узнал умножение на 3, чтобы получить ответ, который создает мод, который получает число. Любая помощь здесь будет оценена

Полная формула здесь, я знаю, что это можно решить с помощью EGCD, но я пытаюсь понять, как автор решил решение так, как он это сделал:

  Вопрос:

В [1505]: (327 * 327 * 108)% 1009
Из [1505]: 327
Только 108 (насколько я знаю (вернет 327.Итак, уравнение:

(327 * 327 * x)% 1009 = 327. Каков самый быстрый способ решить эту проблему, шаг за шагом.
 (Я не понимаю, как автор решил 3 здесь, на шаге, указанном ниже (3 * 327 = 981 ≡ − 28 (mod 1009))

Ответ (который сработал)
gcd (327,1009) = 1, поэтому существует ℎ, поэтому 327 ∗ ℎ≡1 (mod1009), поэтому если 327 * 327 * 𝑥≡327 (mod1009), то

327𝑥≡ℎ * 327 * 327 * 𝑥≡ℎ * 327≡1 (mod1009) и так

𝑥≡ℎ * 327𝑥≡ℎ * 1≡ℎ (mod1009).

Итак, я должен узнать, что такое ℎ.

3 * 327 = 981 ≡ −28 (мод. 1009)

327 = 28 * 12 - 9, поэтому

327≡ (−3 * 327) * 12-9 (мод. 1009)

378 * 327≡ − 9 (мод. 1009)

28 = 3 * 9 + 1

-3 * 327 ≡ 3 * (-37 * 327) +1 (мод. 1009)

108 * 327≡1 (мод. 1009)

Итак, 108 и 𝑥≡108 (мод. 1009).=====

И действительно, 108 * 327 * 327 = 35316 * 327 = (1009 * 35 + 1) * 327 = 1009 * (35 * 327) +327.

  

Хорошо, судя по ответам, я придумал эту программу, которая, кажется, проверяет результаты:

  def getmod4 (A, N):
  multiplier = N // A
  a = A * множитель
  б = - (N - а)
  va = b% N
  утверждать va == a

  # или следующие e, d могут быть выполнены с помощью a // b ??
  e = a // b # math.gcd ((va | 1) -1, (b | 1) -1)
  #f = - (va // e)

  c = math.gcd ((A | 1) -1, (b | 1) -1)
  c = abs (b) // c - c

  г = абс (б) * с - А

  assert ((-множитель * A) * c - d)% N == A

  print (f "Уравнение: {abs (b)} * {c} - {d}: {abs (b) * c - d}")
  print (f "Проверка: ((- {множитель} * {A}) * {c} - {d})% {N} = {((-множитель * A) * c - d)% N}")
  вернуть абс (b) * c - d

  

результат:

  В [3079]: getmod4 (327,1009)
Уравнение: 28 * 12 - 9: 327
Проверка: ((-3 * 327) * 12 - 9)% 1009 = 327
Из [3079]: 327

В [3081]: getmod4 (261,10099)
Уравнение: 181 * -20 - -3881: 261
Проверка: ((-38 * 261) * -20 - -3881)% 10099 = 261
Из [3081]: 261
  

% PDF-1.6
%
186 0 obj>
эндобдж

xref
186 95
0000000016 00000 н.
0000003339 00000 н.
0000003516 00000 н.
0000003644 00000 п.
0000003701 00000 п.
0000004304 00000 п.
0000004429 00000 н.
0000004552 00000 н.
0000004676 00000 н.
0000004803 00000 н.
0000004927 00000 н.
0000005054 00000 н.
0000006233 00000 н.
0000006611 00000 н.
0000006984 00000 н.
0000007181 00000 н.
0000008220 00000 н.
0000009397 00000 н.
0000017753 00000 п.
0000018932 00000 п.
0000019956 00000 п.
0000020954 00000 п.
0000021151 00000 п.
0000021548 00000 н.
0000021906 00000 п.
0000031430 00000 п.
0000031485 00000 п.
0000031552 00000 п.
0000031745 00000 п.
0000032765 00000 п.
0000033633 00000 п.
0000034492 00000 п.
0000035535 00000 п.
0000035719 00000 п.
0000036568 00000 п.
0000052190 00000 п.
0000052542 00000 п.
0000052672 00000 п.
0000053847 00000 п.
0000055023 00000 п.
0000055219 00000 п.
0000056191 00000 п.
0000057368 00000 п.
0000057557 00000 п.
0000073173 00000 п.
0000073372 00000 п.
0000073767 00000 п.
0000086689 00000 п.
0000086881 00000 п.
0000087262 00000 п.
0000087470 00000 п.
0000087640 00000 п.
0000088433 00000 п.
0000089607 00000 п.
00000

00000 п.
00000

00000 п.
0000102639 00000 п.
0000102831 00000 н.
0000103306 00000 н.
0000103642 00000 п.
0000103927 00000 н.
0000104006 00000 н.
0000104186 00000 п.
0000104824 00000 н.
0000105999 00000 н.
0000106591 00000 н.
0000106636 00000 н.
0000107482 00000 н.
0000107676 00000 н.
0000108406 00000 п.
0000109272 00000 н.
0000109461 00000 п.
0000114031 00000 н.
0000117164 00000 н.
0000131074 00000 н.
0000131255 00000 н.
0000131541 00000 н.
0000131604 00000 н.
0000136686 00000 н.
0000136870 00000 н.
0000140945 00000 н.
0000141129 00000 н.
0000155245 00000 н.
0000155433 00000 н.
0000155718 00000 н.
0000157698 00000 н.
0000157879 00000 н.
0000157935 00000 п.
0000158133 00000 н.
0000158234 00000 н.
0000158282 00000 н.
0000158441 00000 н.
0000158633 00000 н.
0000158801 00000 н.
0000002196 00000 н.
трейлер
] >>
startxref
0
%% EOF

280 0 obj> поток
xb«f`te`g`fb @

Решатель квадратного модульного уравнения

Это веб-приложение может решать уравнения вида a⁢x² + bx + c ≡ 0 (mod n) , где неизвестное целое число x находится в диапазоне 0 ≤ x .В частности, он может найти модульные квадратные корни, установив a = -1 , b = 0 , c = число, корень которого мы хотим найти и n = модуль .

Вы можете вводить числа или числовые выражения в поля ввода слева.

Калькулятор принимает числа до 1000 цифр, но обратите внимание, что модуль n должен быть разложен на множители (некоторые большие числа не могут быть разложены на множители за разумный промежуток времени).Механизм факторизации — это тот, который используется в апплете факторизации метода эллиптической кривой, который использует методы ECM и SIQS.

Когда a не равно нулю, количество решений зависит от количества различных простых множителей модуля, поэтому, если модуль имеет много маленьких простых множителей (скажем, более 14), программе может не хватить памяти, и она не покажет никакого решения. или ** для возведения в степень (показатель степени должен быть больше или равен нулю).

  • <, == , > ; <= , > = ,! = Для сравнения. Операторы возвращают ноль для false и -1 для true.
  • И , ИЛИ , XOR , НЕ для двоичной логики. Операции выполняются в двоичном формате (основание 2). К положительным (отрицательным) числам добавляется бесконечное количество битов, равных нулю (единице).
  • SHL или << : Когда b ≥ 0, a SHL b сдвигает a оставляет количество битов, указанное b .Это эквивалентно a × 2 b . В противном случае a SHL b сдвигает a вправо на количество битов, указанное в — b . Это эквивалентно полу ( a /2 b ). Пример: 5 SHL 3 = 40.
  • SHR или >> : Когда b ≥ 0, a SHR b сдвигает a вправо на количество битов, указанное в b .Это эквивалентно полу ( a /2 b ). В противном случае a SHR b сдвигает a влево на количество битов, указанное в — b . Это эквивалентно a × 2 b . Пример: -19 SHR 2 = -5.
  • н! : факториал ( n должно быть больше или равно нулю). Пример: 6! = 6 × 5 × 4 × 3 × 2 = 720.
  • p # : примитив (произведение всех простых чисел, меньших или равных p ).Пример: 12 # = 11 × 7 × 5 × 3 × 2 = 2310.
  • B (n) : Предыдущее вероятное простое число до n . Пример: B (24) = 23.
  • F (n) : число Фибоначчи F n из последовательности 0, 1, 1, 2, 3, 5, 8, 13, 21 и т. Д., Где каждый элемент равен сумме двух предыдущих членов последовательность. Пример: F (7) = 13.
  • L (n) : число Люка L n = F n -1 + F n +1
  • N (n) : Следующее возможное простое число после n .Пример: N (24) = 29.
  • P (n) : Неограниченный номер раздела (количество разложений n на суммы целых чисел без учета порядка). Пример: P (4) = 5, потому что число 4 можно разделить 5 различными способами: 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.
  • Gcd (m, n) : наибольший общий делитель этих двух целых чисел. Пример: GCD (12, 16) = 4.
  • Modinv (m, n) : инверсия m по модулю n , действительно только тогда, когда m и n взаимно просты, что означает, что у них нет общих множителей.Пример: Modinv (3,7) = 5, потому что 3 × 5 ≡ 1 (mod 7)
  • Modpow (m, n, r) : находит m n по модулю r . Пример: Modpow (3, 4, 7) = 4, потому что 3 4 4 (mod 7).
  • Jacobi (m, n) : получает символ Якоби m и n . Когда второй аргумент является простым, результат равен нулю, если m кратно n , он равен единице, если существует решение x ² m (mod n ), и оно равно −1, когда упомянутое сравнение не имеет решения.
  • IsPrime (n) : возвращает ноль, если n не является вероятным простым числом, -1, если это так. Пример: IsPrime (5) = -1.
  • Sqrt (n) : целая часть квадратного корня аргумента.
  • NumDigits (n, r) : количество цифр n в базе r . Пример: NumDigits (13, 2) = 4, потому что 13 в двоичном формате (основание 2) выражается как 1101.
  • SumDigits (n, r) : сумма цифр n в базе r .Пример: SumDigits (213, 10) = 6, потому что сумма цифр, выраженная в десятичном формате, равна 2 + 1 + 3 = 6.
  • RevDigits (n, r) : находит значение, полученное путем обратной записи цифр n по основанию r . Пример: RevDigits (213, 10) = 312.
  • Вы можете использовать префикс 0x для шестнадцатеричных чисел, например, 0x38 равно 56.

    Символ возведения в степень отсутствует на некоторых мобильных устройствах, поэтому две звездочки ** можно ввести в качестве оператора возведения в степень.

    Исходный код

    Вы можете загрузить исходный код текущей программы и старый апплет квадратного модульного уравнения с GitHub. Обратите внимание, что исходный код написан на языке C, и вам нужна среда Emscripten для создания Javascript.

    Автор Дарио Альперн. Последнее обновление 12 июня 2021 г.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.