Признаки равенства трапеции: геометрия / Признаки равенства четырёхугольников / Математика

Содержание

Признаки равенства двух прямоугольных треугольников: по катету, гипотенузе

В данной публикации мы рассмотрим признаки равенства прямоугольных треугольников, изучаемые по геометрии 7 класса. Также разберем пример решения задачи для закрепления изложенного материала.

Равенство прямоугольных треугольников

Два прямоугольных треугольника равны, если они соответствуют одному из следующих условий.

1 признак

Катет и гипотенуза первого прямоугольного треугольника равны катету и гипотенузе второго треугольника.

2 признак

Два катета первого прямоугольного треугольника равны двум катетам второго треугольника.

3 признак

Катет и острый угол первого прямоугольного треугольника равны катету и острому углу второго треугольника.

4 признак

Гипотенуза и острый угол первого прямоугольного треугольника равны гипотенузе и острому углу второго треугольника.

Пример задачи

Дана трапеция ABCD, в которой на основание AD опущены две высоты – BE и CF. При этом отрезки AE и FD равны. Докажите, что трапеция ABCD – равнобокая.

Решение

Трапеция ABCD является равнобокой, если равны AB и CD.

Опущенные на основание AD высоты образуют два прямоугольных треугольника – △ABE и △FCD.

По условиям задачи AE и FD, которые являются катетами рассматриваемых треугольников, равны.

BE и CF – это высоты трапеции, одновременно являющиеся катетами наших треугольников. Как расстояния между двумя параллельными линиями (основаниями трапеции), они также имеют одинаковую длину.

Таким образом, мы имеем два прямоугольных треугольника c равными катетами (AE=FD и BE=CF). Это является одним из признаков равенства фигур.

Это значит, что AB=CD (гипотенузы треугольников). Отсюда следует, что трапеция ABCD – равнобокая.

Признаки равенства двух треугольников: по сторонам, углам

В данной публикации мы рассмотрим признаки равенства треугольников, а также разберем пример решения задачи разными способами для закрепления изложенного материала.

Признаки равенства треугольников

Два треугольника равны между собой, если выполняется одно из условий, представленных ниже.

1 признак

Две стороны и угол между ними первого треугольника соответственно равны двум сторонам и углу между ними второго треугольника.

2 признак

Сторона и два прилежащих к ней угла первого треугольника соответсвенно равны стороне и двум прилежащим к ней углам второго треугольника.

3 признак

Три стороны первого треугольника соответственно равны трем сторонам второго треугольника.

Примечание: равенство прямоугольных треугольников, наряду с вышеперечисленными, доказывается и по другим признакам.

Пример задачи

Диагонали AC и BD параллелограмма ABCD пересекаются в точке E. Докажите, что △AED = △BEC.

Решение 1

Т.к. это параллелограмм, его противоположные стороны равны, т. е. AD=BC.

Диагональ AC, также, является секущей, которая пересекает две параллельные прямые, на которых лежат стороны AD и BC. Как известно, внутренние накрест лежащие углы попарно равны, следовательно, ∠СAD = ∠ACB. Аналогичным образом, равны углы ∠BDA и ∠DBC.

Значит, рассматриваемые нами треугольники △AED и △BEC равны по второму признаку равенства (по стороне и 2 прилежащим к ней углам).

Примечание: таким же способом можно доказать, что △AEB = △CED.

Решение 2

Диагонали параллелограмма в точке пересечения делятся пополам, т.е. AE=EC и BE=ED. Также противоположные стороны параллелограмма равны, т.е. BC=AD.

Таким образом, △AED и △BEC равны согласно третьему признаку равенства (по трем сторонам).

Примечание: Аналогичным образом можно доказать равенство △AEB и △CED.

Решение 3

Разбирая решения 1 и 2 мы уже выяснили, что накрест лежащие углы равны, а диагонали параллелограмма в точке пересечения делятся на две одинаковые части.

С учетом этого, доказать равенство треугольников △AED и △BEC  (или △AEB и △CED) можно, сославшись на первый признак (по двум сторонам и углу между ними).

Признаки равенства треугольников [wiki.eduVdom.com]

Рис.1

Два треугольника называются равными, если их можно совместить наложением. На рисунке 1 изображены равные треугольники ABC и А1В1С1. Каждый из этих треугольников можно наложить на другой так, что они полностью совместятся, т. е. попарно совместятся их вершины и стороны. Ясно, что при этом совместятся попарно и углы этих треугольников.

Таким образом, если два треугольника равны, то элементы (т. е. стороны и углы) одного треугольника соответственно равны элементам другого треугольника. Отметим, что в равных треугольниках против соответственно равных сторон (т. е. совмещающихся при наложении) лежат равные углы, и обратно: против соответственно равных углов лежат равные стороны.

Так, например, в равных треугольниках ABC и A1B1C1, изображенных на рисунке 1, против соответственно равных сторон АВ и А1В1 лежат равные углы С и С1. Равенство треугольников ABC и А1В1С1 будем обозначать так: Δ ABC = Δ А1В1С1.
Оказывается, что равенство двух треугольников можно установить, сравнивая некоторые их элементы.

Рис.2

Теорема 1. Первый признак равенства треугольников. Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны (рис. 2).

Доказательство. Рассмотрим треугольники ABC и A1B1C1, у которых АВ = A1B1, АС = A1C1 ∠ А = ∠ А1 (см. рис.2). Докажем, что Δ ABC = Δ A1B1C1.

Так как ∠ А = ∠ А1, то треугольник ABC можно наложить на треугольник А1В1С1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А1В1 и A1C1. Поскольку АВ = A1B1, АС = А1С1, то сторона АВ совместится со стороной А1В1 а сторона АС — со стороной А1C1; в частности, совместятся точки В и В1, С и C1. Следовательно, совместятся стороны ВС и В1С1. Итак, треугольники ABC и А1В1С1 полностью совместятся, значит, они равны.

Аналогично методом наложения доказывается теорема 2.

Рис.3

Теорема 2. Второй признак равенства треугольников. Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны (рис. 34).

Замечание. На основе теоремы 2 устанавливается теорема 3.

Теорема 3. Сумма любых двух внутренних углов треугольника меньше 180°.

Из последней теоремы вытекает теорема 4.

Теорема 4. Внешний угол треугольника больше любого внутреннего угла, не смежного с ним.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого
треугольника, то такие треугольники равны
(подробнее).



Пример 1. В треугольниках ABC и DEF (рис. 4)

Рис.4

∠ А = ∠ Е, АВ = 20 см, АС = 18 см, DE = 18 см, EF = 20 см.
Сравнить треугольники ABC и DEF. Какой угол в треугольнике DEF равен углу В?

Решение. Данные треугольники равны по первому признаку. Угол F треугольника DEF равен углу В треугольника ABC, так как эти углы лежат против соответственно равных сторон DE и АС.


Пример 2. Отрезки АВ и CD (рис. 5) пересекаются в точке О, которая является серединой каждого из них. Чему равен отрезок BD, если отрезок АС равен 6 м?

Рис.5

Решение. Треугольники АОС и BOD равны (по первому признаку): ∠ АОС = ∠ BOD (вертикальные), АО = ОВ, СО = OD (по условию).

Из равенства этих треугольников следует равенство их сторон, т. е. АС = BD. Но так как по условию АС = 6 м, то и BD = 6 м.


Пример 3. В треугольниках ABC и DEF (см. рис. 4) АВ = EF, ∠A = ∠E, ∠B = ∠F.

Рис.4

Сравнить эти треугольники. Какие стороны в треугольнике DEF равны соответственно сторонам ВС и СА?

Решение. Треугольники ABC и DEF равны по второму признаку. Стороны DF и DE треугольника DEF равны соответственно сторонам ВС и СА треугольника ABC, так как стороны DF и ВС (DE и СА) лежат против равных углов Е и A (F и В).


Пример 4. На рисунке 6 углы DAB и СВА, CAB и DBA равны, СА = 13 м. Найти DB.

Решение. Треугольники АСВ и ADB имеют одну общую сторону АВ и по два равных угла, которые прилежат к этой стороне. Следовательно, треугольники АСВ и ADB равны (по второму признаку). Из равенства этих треугольников следует равенство сторон BD и АС, т. е. BD = 13 м.



Признаки равенства треугольников | Геометрия

Два треугольника считаются равными, если их можно совместить наложением. Но, чтобы не выполнять каждый раз наложение, для доказательства равенства треугольников, установили три признака, по которым можно определить, совместятся треугольники или нет. Эти признаки называются признаками равенства треугольников.

Первый признак равенства треугольников

Теорема:

Два треугольника равны, если у них равны две стороны и угол, лежащий между этими сторонами.

Доказательство:

Рассмотрим два треугольника  ABC  и  A1B1C1,  у которых:

 AB = A1B1AC = A1C1∠A = ∠A1.

Требуется доказать, что

ABC = A1B1C1.

Если наложить  A1B1C1  на  ABC  так, чтобы точка  A1  совместилась с точкой  A  и сторона  A1B1  совместилась со стороной  AB,  то точка  B  совместится с точкой  B1,  так как  A1B1 = AB.  Сторона  A1C1  совместится со стороной  AC,  так как  ∠A = ∠A1.  Точка  C1  совпадёт с точкой  C,  так как  A1C1 = AC.  Стороны  B1C1  и  BC  совместятся, так как совместились их концы. Таким образом, треугольники совместятся. Теорема доказана.

Второй признак равенства треугольников

Теорема:

Два треугольника равны, если у них равна одна из сторон и два прилежащих к ней угла.

Доказательство:

Рассмотрим два треугольника  ABC  и  A1B1C1,  у которых:

 AC = A1C1,  ∠A = ∠A1  и  ∠C = ∠C1.

Требуется доказать, что

ABC = A1B1C1.

Если наложить  A1B1C1  на  ABC  так, чтобы точка  A1  совместилась с точкой  A  и сторона  A1C1  совместилась со стороной  AC,  то точка  C1  совпадёт с точкой  C,  так как  A1C1 = AC.  Сторона  A1B1  совпадёт со стороной  AB,  так как  ∠A = ∠A1.  Сторона  C1B1  совпадёт со стороной  CB, так как  ∠C = ∠C1.   Вершина  B1  совпадёт с вершиной  B,  так как  B  и  B1  будут служить точками пересечения одних и тех же отрезков. Таким образом, треугольники совместятся. Теорема доказана.

Третий признак равенства треугольников

Теорема:

Два треугольника равны, если три стороны одного треугольника равны трём сторонам другого.

Доказательство:

Рассмотрим два треугольника  ABC  и  A1B1C1,  у которых:

AB = A1B1,  BC = B1C1,  AC = A1C1.

Требуется доказать, что

ABC = A1B1C1.

Приложим треугольники  ABC  и  A1B1C1  один к другому так, чтобы вершина  A  совместилась с  A1,  вершина  C  — с  C1, а вершины  B  и  B1  оказались по разные стороны от прямой  AC.

Соединив точки  B  и  B1,  получим два равнобедренных треугольника  BAB1  и  BСB1.

В треугольнике  BAB1  1 = 4,  в  BСB1  2 = 3  (как углы при основании). Следовательно,

1 + 2 = 4 + 3,  поэтому  ∠ABC = ∠AB1C.

Итак,  AB = A1B1BC = B1C1∠ABC = ∠A1B1C1.

Из этого следует, что треугольники  ABC  и  A1B1C1  равны по первому признаку равенства треугольников. Теорема доказана.

Признаки равенства прямоугольных треугольников

Для прямоугольных треугольников, кроме перечисленных трёх признаков равенства, имеются ещё дополнительные признаки, так как у них у всех есть прямой угол, а все прямые углы равны между собой.

Два прямоугольных треугольника будут равны в следующих четырёх случаях:

  1. Если катеты одного треугольника равны катетам другого.
  2. Если катет и прилежащий к нему острый угол одного треугольника равны катету и прилежащему к нему острому углу другого.
  3. Если гипотенуза и острый угол одного треугольника равны гипотенузе и острому углу другого.
  4. Если гипотенуза и катет одного треугольника равны гипотенузе и катету другого.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Математический справочник / / Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. / / Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.  / / Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.



Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников.

Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.

TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. / / Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.  / / Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Поделиться:   





Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.



Признаки равенства треугольников. Признаки равенства прямоугольных треугольников. Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.

Признаки равенства треугольников. Признаки равенства прямоугольных треугольников.

Признаки подобия треугольников. Признаки подобия прямоугольных треугольников.


Поиск в инженерном справочнике DPVA. Введите свой запрос:


Поиск в инженерном справочнике DPVA. Введите свой запрос:

Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Математический справочник / / Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. / / Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д.

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.

Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Коды баннеров проекта DPVA.ru
Начинка: KJR Publisiers

Консультации и техническая
поддержка сайта: Zavarka Team

Проект является некоммерческим. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Владельцы сайта www.dpva.ru не несут никакой ответственности за риски, связанные с использованием информации, полученной с этого интернет-ресурса.
Free xml sitemap generator

Билет Признаки равенства треугольников. Признаки равенства прямоугольных

Планиметрия (расширенная)

1. Площади плоских фигур Площадь треугольника: стр. 1 2. Средняя линия 3. Треугольники Сумма углов треугольника равна 180. Тупой угол между биссектрисами двух углов треугольника равен 90 + половина третьего

Подробнее

Задание 16. Планиметрия

Задание 6. Планиметрия Угловые соотношения в плоских фигурах Теорема. Две прямые, параллельные третьей, параллельны. Теорема. Если две прямые параллельности пересечены секущей, то. Накрест лежащие углы

Подробнее

ШКОЛА С УГЛУБЛЕННЫМ ИЗУЧЕНИЕМ ПРЕДМЕТА

Примерные экзаменационные билеты для проведения устной итоговой аттестации выпускников IX классов общеобразовательных учреждений ГЕОМЕТРИЯ По геометрии предлагается два блока экзаменационных билетов для

Подробнее

Задание 3, 6, 16. Планиметрия

Задание 3, 6, 6. Планиметрия Угловые соотношения в плоских фигурах Теорема. Сумма смежных углов равна 80 0. и смежные углы Теорема. Биссектрисы смежных углов взаимно перпендикулярны. Теорема. Вертикальные

Подробнее

Анализ геометрических высказываний

Анализ геометрических высказываний 1. 1. Укажите номера верных утверждений. 1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. 2) Вертикальные углы

Подробнее

Основные определения, теоремы и формулы планиметрии.

Основные определения, теоремы и формулы планиметрии. Обозначения: AВС треугольник с вершинами А, B, С. а = BC, b = AС, с = АB его стороны, соответственно, медиана, биссектриса, высота, проведенные к стороне

Подробнее

Анализ геометрических высказываний

Анализ геометрических высказываний 1. Укажите номера верных утверждений. 1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. 2) Вертикальные углы

Подробнее

Метод ключевых задач

Метод ключевых задач Задачи, в которых фигурируют середины отрезков Задача. Докажите, что середины сторон четырехугольника являются вершинами параллелограмма. Пример. В четырехугольнике = = 90. Точки и

Подробнее

7 sin A. Найдите AB. 25

Прототипы задания 6 1. В треугольнике ABC угол C равен 90 0, AC = 4,8, 25. В треугольнике ABC AC = BC, AB = 8, 33 tga. 7 4 33 sin A. Найдите AB. 25 Найдите AC. 2. В треугольнике ABC угол C равен 90 0,

Подробнее

Пояснительная записка

Пояснительная записка Билеты составлены по курсу геометрии 7 8 классов. Всего 16 билетов. Каждый билет содержит 3 вопроса. В первом вопросе даётся одно из следующих заданий: дать определение понятия, указать

Подробнее

Тест 201. Круг. Свойство

Тест 194. Окружность. Понятие Окружность это: 1. множество точек, удаленных от данной точки на данное ненулевое расстояние; 2. множество точек, из которых данный отрезок виден под прямым углом; 3. некоторая

Подробнее

AC 6, cos A. Найдите BH.

Прототипы задания 6 1. Задание 6 ( 26097) 16. Задание 6 ( 20001) В треугольнике ABC угол C равен 90, sin A 0, 6, 21 AC 4. Найдите AB. В треугольнике ABC AC BC 12, sin B. 5 2. Задание 6 ( 29580) Найдите

Подробнее

Вписанные и описанные окружности

Вписанные и описанные окружности Окружностью, описанной около треугольника, называется окружность, которая проходит через все его вершины. Около всякого треугольника можно описать единственную окружность.

Подробнее

Билет 10. Билет 12. Билет 13. Билет 14

Билет 1 1. Первый признак равенства треугольников. 2. Параллелограмм. Определение, свойства. 3. Задача по теме «Координаты и векторы». Билет 2 1. Второй признак равенства треугольников. 2. Прямоугольник.

Подробнее

7 класс 1. Виды углов.

7 класс 1. Виды углов. Угол называется прямым, если он равен 90 0. Угол называется острым, если он меньше 90 0. Угол называется тупым, если он больше 90 0, но меньше 180 0. Прямой угол Острый угол Тупой

Подробнее

Геометрия

Геометрия 1. Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65 и 50. Найдите меньший угол параллелограмма. 2. Разность углов, прилежащих к одной стороне параллелограмма, равна

Подробнее

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ В результате изучения курса геометрии 8 класса учащиеся должны знать: основные понятия и определения геометрических фигур по программе; формулировки основных теорем и их следствий;

Подробнее

Тема 21 «Трапеция.

Многоугольники».

Тема 1 «Трапеция. Многоугольники». Трапеция четырехугольник, у которого ровно одна пара противолежащих сторон параллельна. Параллельные стороны называются основаниями трапеции. Две другие стороны называются

Подробнее

Тренировочные задачи

И. В. Яковлев Материалы по математике MathUs.ru Тренировочные задачи Теорема Пифагора 1. Найдите диагональ квадрата со стороной a. a. В прямоугольном треугольнике с углом 60 гипотенуза равна. Найдите катеты.

Подробнее

ID_7510 1/9 neznaika.pro

1 Анализ геометрических высказываний Ответами к заданиям являются слово, словосочетание, число или последовательность слов, чисел. Запишите ответ без пробелов, запятых и других дополнительных символов.

Подробнее

Работа по геометрии для 8 класса.


Работа по геометрии для 8 класса. 1.Вид работы: промежуточная аттестация по геометрии в 8 классе Цель работы: оценка уровня достижения учащимися 8 класса планируемых результатов обучения геометрии 2.Перечень

Подробнее

Прототипы задания В6-2 (2013)

Прототипы задания В6-2 (2013) ( 27742) Один острый угол прямоугольного треугольника на больше другого. Найдите больший острый угол. Ответ дайте в градусах. ( 27743) В треугольнике ABC угол A равен, внешний

Подробнее

ГЕОМЕТРИЯ: ПЛАНИМЕТРИЯ

ГЕОМЕТРИЯ: ПЛАНИМЕТРИЯ I Группа 1.01 Разность двух углов, получившихся при пересечении двух прямых, равна 20. Найти больший из этих углов. 1.02 Углы треугольника пропорциональны числам 3:7:8. Найти наибольший

Подробнее

10 класс Повторение планиметрии

Учебное пособие по геометрии 10 класс Повторение планиметрии (задачи в картинках) Для учащихся Лицея 1502 при МЭИ І полугодие Краткое содержание 1. Программа коллоквиума по «Планиметрии». 2. Содержание

Подробнее

Зырянова С.П. МАОУ СОШ 4 Абинск

Зырянова С.П. МАОУ СОШ 4 Абинск 1. Определение. Треугольником называется геометрическая фигура, состоящая их трех точек, не лежащих на одной прямой, и отрезков, соединяющие их. 2. Изображение. A C 4. Элементы

Подробнее

Теоретическая часть экзамена по Г-8 кл.

Теоретическая часть экзамена по Г-8 кл. Знать и понимать (сделать чертеж и показать на рисунке) следующие определения и теоремы (без доказательства) из учебника Г-8 А.Г. Мерзляка Глава 1 1. Сумма углов

Подробнее

Произвольный треугольник

Произвольный треугольник В приведенных ниже формулах используются следующие обозначения: а) с длины сторон АВС лежащие против углов А В и С соответственно б) высоты медианы l l l биссектрисы в) радиус

Подробнее

Вписанные и описанные окружности

Вписанные и описанные окружности Окружностью, описанной около треугольника, называется окружность, которая проходит через все его вершины. Около всякого треугольника можно описать единственную окружность.

Подробнее

ОГЭ 2015 (задание 13, модуль «ГЕОМЕТРИЯ»)

ОГЭ 2015 (задание 13, модуль «ГЕОМЕТРИЯ») 169915 Какие из следующих утверждений верны? 1) Если угол равен 45, то вертикальный с ним угол равен 45. 2) Любые две прямые имеют ровно одну общую точку. 3) Через

Подробнее

ЗАДАНИЕ 9 ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК. 1. В треугольнике ABC угол C равен,,. Найдите AB. 2. В треугольнике ABC угол C равен,,. Найдите AB.

ЗАДАНИЕ 9 ПРЯМОУГОЛЬНЫЙ ТРЕУГОЛЬНИК 1. В треугольнике ABC угол C равен,,. Найдите AB. 2. В треугольнике ABC угол C равен,,. Найдите AB. 3. В треугольнике ABC угол C равен,,. Найдите AB. 4. В треугольнике

Подробнее

Расстояние от точки до прямой

Расстояние от точки до прямой Пример 1. Стороны треугольника равны 15, 37 и 44 см. Из вершины большего угла треугольника проведен к его плоскости перпендикуляр, равный 16 см. Найти расстояние от его концов

Подробнее

Что такое трапеция? [Определение, факты и пример]

Что такое трапеция?

Трапеция, также известная как трапеция, представляет собой плоскую замкнутую форму, имеющую 4 прямые стороны с одной парой параллельных сторон.

Параллельные стороны трапеции называются основаниями, а непараллельные стороны — ножками. У трапеции тоже могут быть параллельные ножки. Параллельные стороны могут быть горизонтальными, вертикальными или наклонными.

Расстояние по перпендикуляру между параллельными сторонами называется высотой.

Примеры :

Без примеров :

Типы трапеций

Трапеция бывает трех типов, а именно

1. Правая трапеция : имеет пару прямых углов.

2. Равнобедренная трапеция : имеет равную длину непараллельных сторон. На изображении стороны AD и BC равны.

3. Чешуйчатая трапеция : у нее нет равных углов и равных сторон.

Свойства трапеции

  • Трапеция называется параллелограммом, если обе пары ее противоположных сторон параллельны.

  • Трапеция — это квадрат, если обе пары его противоположных сторон параллельны; все его стороны равной длины и расположены под прямым углом друг к другу.

  • Трапеция может быть прямоугольником, если обе пары ее противоположных сторон параллельны; его противоположные стороны равны по длине и расположены под прямым углом друг к другу.

Примеры из реальной жизни

Некоторые из многих примеров трапеции — это лицевая сторона коробки для попкорна, сумочки и мостов.

Интересные факты

  • Трапеция была известна как τραπέζιον «ловушка» на древнегреческом, что буквально означает «столик», а также означает «неправильный четырехугольник». Кроме того, «оид» в переводе с древнегреческого означает «похожий».

  • Слово трапеция было введено в английский язык в 1570 году. Марин Прокл был первым, кто использовал слово «трапеция» в первой книге «Начала» Евклида.

Трапеции: определение и свойства — математический класс [видео 2021 года]

Свойство

Трапеции имеют одно свойство, которое необходимо соблюдать. Свойство в том, что у него должна быть одна пара параллельных сторон. Если вы посмотрите на трапецию, вы увидите, что у нее две плоские стороны.Эти плоские стороны параллельны друг другу. Если вы продлите эти линии, они никогда не встретятся. Попытайся.

Словарь

При работе с трапециями есть несколько слов, которые мы должны добавить в наш словарь.

Первое слово — это основание , то есть стороны, параллельные друг другу. Нарисуйте треугольник, нижняя сторона которого будет одной из ваших основ. Сторона, полученная путем срезания вершины треугольника, является другой основой.

Второе слово, которое следует рассмотреть: ноги . Это наклонные стороны, которые образуют левый и правый край трапеции, которая находится самой длинной стороной вниз. Возвращаясь к разрезанному треугольнику, ноги — это стороны, которые поднимаются и встречаются на вершине треугольника. Но, поскольку вершина треугольника срезана, ноги заканчиваются там, где произошел срез.

Третье слово — высота , что просто высота трапеции. Это то, насколько высока трапеция, когда вы сидите на плоской поверхности.Вы можете определить высоту, измерив расстояние от одной базы до другой.

Специальные трапеции

Когда ноги вашей трапеции имеют одинаковую длину и когда углы, образуемые каждой стороной с основанием, равны, тогда у вас есть так называемая равнобедренная трапеция . Это означает, что, если трапеция расположена ровно с самым длинным основанием вниз, два нижних угла будут равны, а два верхних угла также будут равны. Представьте себе эту трапецию как равнобедренный треугольник (треугольник с двумя равными сторонами и двумя равными углами) с отрезанной вершиной.

Теперь представьте себе разносторонний треугольник (треугольник, все стороны которого имеют разную длину) и отрежьте его вершину. Когда вы это сделаете, вы получите разностороннюю трапецию , трапецию, ноги которой имеют разную длину.

Третий вид специальной трапеции — это правая трапеция , трапеция, у которой одна ножка перпендикулярна основанию. Он будет выглядеть как прямоугольный треугольник (треугольник с одним прямым углом) с обрезанной вершиной.

Краткое содержание урока

Вау! Посмотрите, что мы узнали всего за несколько минут! Мы узнали, что трапеция представляет собой четырехстороннюю плоскую форму с одной парой параллельных сторон. Трапеции выглядят как треугольники со срезанной вершиной. Единственное свойство, которому должны соответствовать все трапеции, — это то, что у них должны быть две стороны, параллельные друг другу.

Специальные слова, которые мы используем с трапециями, — это основания, ноги и высота. Основания относятся к двум сторонам, параллельным друг другу. Ножки относятся к двум наклонным сторонам, а высота — это просто высота трапеции, когда она расположена ровно, ее самое длинное основание опущено.

Особый случай равнобедренной трапеции возникает, когда у вас есть ноги, равные по длине друг другу, и углы, образованные ногами и основаниями, также равны друг другу. Итак, у равнобедренной трапеции два нижних и два верхних угла равны друг другу. Частный случай разносторонней трапеции возникает, когда обе ножки имеют разную длину, а правая трапеция возникает, когда одна ножка перпендикулярна основанию.

Результаты обучения

Усвоение информации из этого урока может привести к вашей способности:

  • Распознавать свойство, связанное с трапециями
  • Определяет основания, опоры и высоту относительно трапеций
  • Характеризуйте особые трапеции: равнобедренную, разностороннюю и правую

Вся элементарная математика — Учебное пособие — Геометрия

Параллелограмм. Свойства параллелограмма.
Знаки параллелограмма.Прямоугольник. Ромб.
пл. Трапеция. Равнобедренная трапеция.
Средняя линия трапеции и треугольника.

Параллелограмм (ABCD, рис. 32) представляет собой четырехугольник, противоположные стороны которого попарно параллельны.

Любые две противоположные стороны параллелограмма называются основаниями , расстояние между ними называется высотой (BE, Рис.32).

Свойства параллелограмма.

1. Противоположные стороны параллелограмма равны (AB = CD, AD = BC).

2. Противоположные углы параллелограмма равны (A =
С, В =
D).

3. Диагонали параллелограмма делятся в точке их пересечения на две
(AO = OC, BO = OD).

4. Сумма квадратов диагоналей равна сумме квадратов четырех сторон :
AC² + BD²
= AB² + BC²
+ CD² + AD².

Знаки параллелограмма.

Четырехугольник является параллелограммом, если выполняется одно из следующих условий:

1. Противоположные стороны попарно равны (AB = CD, AD = BC).

2. Противоположные углы равны два на два (
А =
C,
B =
D).

3. Две противоположные стороны равны и параллельны (AB = CD, AB || CD).

4. Диагонали делятся в точке пересечения на две (AO = OC, BO = OD).

Прямоугольник.

Если один из углов параллелограмма прямой, то все углы прямые (почему?). Этот параллелограмм называется прямоугольником (рис.33).

Основные свойства прямоугольника.

Стороны прямоугольника одновременно являются его высотой.

Диагонали прямоугольника равны: AC = BD.

Квадрат диагональной длины равен сумме квадратов его сторон (см. Выше теорему Пифагора):

AC²
= AD² + DC².

Ромб. Если все стороны параллелограмма равны, то этот параллелограмм называется ромбом (рис. 34).

Диагонали ромба взаимно перпендикулярны (AC BD) и разделяют
его углы на два
(DCA = BCA,
ABD = CBD и т. Д.).

Квадрат представляет собой параллелограмм с прямыми углами и равными сторонами (рис. 35). Квадрат — это частный случай прямоугольника и ромба.
одновременно; Итак, у него есть все их вышеупомянутые свойства.

Трапеция представляет собой четырехугольник, две противоположные стороны которого параллельны (рис.36).

Здесь AD || г. до н.э. Параллельные стороны называются основаниями трапеции, две другие (AB и CD) боковыми сторонами. Расстояние между базами
(BM) — высота . Отрезок EF, соединяющий средние точки E и F боковых сторон, называется средней линией трапеции.
Средняя линия трапеции равна полусумме оснований:

и параллельно им: EF || AD и EF || ДО Н.Э.
Трапеция с равными боковыми сторонами (AB = CD) называется равнобедренной трапецией . В равнобедренной трапеции углы у каждого основания, равны
(A = D,
B = C).
Параллелограмм можно рассматривать как частный случай трапеции.

Средняя линия треугольника — это отрезок , соединяющий середины боковых сторон треугольника. Средняя линия треугольника равна половине
основания и параллельно ему.
Это свойство следует из предыдущей части, так как треугольник можно рассматривать как предельный случай (вырождение)
трапеция, когда одно из ее оснований превращается в точку.

Что такое трапеция? (Определение, свойства и видео) // Tutors.

com

Содержание

  1. Что такое трапеция?
  2. Определения трапеций
  3. Уголки трапеции
  4. Свойства трапеции
  5. Форма трапеции
  6. Виды трапеций

Что такое трапеция?

Трапеция — четырехугольник с одной парой параллельных сторон. Трапеция — это:

  • Плоская фигура (плоская)
  • Замкнутая фигура (имеет внутреннюю и внешнюю)
  • Многоугольник (прямые стороны)
  • Четырехугольник (четыре прямые стороны)

Чтобы сделать трапецию, вам понадобится треугольник.Подойдет любой треугольник: прямой, тупой, равнобедренный, разносторонний. Отрежьте верхнюю часть треугольника так, чтобы разрез был параллелен основанию треугольника. Теперь у вас есть более крошечный треугольник и трапеция.

Поскольку для определения требуется только одна пара параллельных сторон, две другие стороны можно расположить разными способами, создавая четыре внутренних угла, которые в сумме всегда составляют 360 °.

Определения трапеций

Мы уже знаем, что трапеция похожа на нижнюю часть треугольника, если от нее отрезать меньший треугольник.Вы также можете сделать трапецию из четырех отрезков или четырех прямых объектов.

Используйте все, что вам нравится: сырые спагетти, карандаши, палочки от леденцов; все, что у вас есть под рукой. Четыре прямых (линейных) объекта могут быть четырех разных длин или трех разных длин (два из них могут быть одинаковыми).

Положите два объекта вниз или нарисуйте два отрезка линии, чтобы они были параллельны (равноудалены). Сделайте их горизонтально по отношению к вам. Поместите два других объекта слева и справа от этих двух или нарисуйте их так, чтобы все восемь конечных точек соприкасались.

Вот она, трапеция! Горизонтальные части — это основания . Последние две части, которые вы нарисовали или положили (на левом и правом концах), называются ножками трапеции.

Уголки трапеции

Обратите внимание, что мы не беспокоились ни о каком из внутренних углов, поскольку сохранение двух сторон параллельными заставляет остальную часть трапеции встать на место. Углы сортируются и складываются в 360 °.

Высота трапеции — это ее высота.Пусть вас не обманывают покатые ножки — если они наклонены, то длиннее высоты. Высота всегда измеряется от основания (любой параллельной стороны) до другой стороны под прямым углом к ​​основанию.

Вы можете провести перпендикулярную линию где угодно вдоль основания трапеции, и когда она касается противоположной, параллельной стороны, ее длина равна высоте.

Свойства трапеции

Трапеция — это параллелограмм?

Вы можете определить любую трапецию, если это четырехугольник с одной парой параллельных сторон.Многие математики включают параллелограммы как типы трапеций, потому что, конечно, параллелограмм имеет по крайней мере одну пару параллельных сторон. Другие математики исключают параллелограммы, говоря, что у трапеции должно быть ровно одной пары параллельных сторон.

Еще одним отличительным свойством всех трапеций является то, что любые два смежных внутренних угла будут дополнительными (добавить к 180 °).

Трапеции

Обычно для максимальной ясности на изображениях и рисунках трапеций показаны две параллельные стороны, идущие горизонтально, причем более длинная сторона обращена вниз в качестве основания.Однако будьте готовы увидеть трапеции в любой ориентации . Трапецию можно нарисовать или изобразить либо с ногой внизу, либо с более короткой параллельной стороной внизу.

Поскольку параллельные стороны — единственные, которые могут быть основаниями, даже когда трапеция рисуется с ногой внизу и горизонтально, это , а не основание. Это все еще нога.

Основание обычно представляет собой более длинную параллельную сторону, но если трапеция рисуется с более короткой параллельной стороной внизу, то это основание.

Виды трапеций

Так как трапеции могут возникать как треугольники, они имеют общие названия, полученные от типов треугольников:

  1. Чешуйчатая трапеция — начиналась как разносторонний треугольник
  2. Равнобедренная трапеция — Начиналась как равнобедренный треугольник
  3. Правая трапеция — Когда-то был прямоугольный треугольник
  4. Тупая трапеция — Как тупой треугольник
  5. Острая трапеция — Как острый треугольник

Скален трапеция

Разносторонняя трапеция имеет четыре стороны неравной длины. Основания параллельны, но разной длины. Две ножки разной длины.

Равнобедренная трапеция

Равнобедренная трапеция имеет ножки одинаковой длины. Основания параллельны, но разной длины.

Правая трапеция

Правая трапеция имеет один прямой угол (90 °) между основанием и ножкой.

Тупая трапеция

Тупая трапеция имеет один внутренний угол (образованный основанием или опорой ) больше 90 °.

Острая трапеция

Острая трапеция имеет оба внутренних угла (образованных более длинным основанием и ножками ) размером менее 90 °.

Резюме урока

Используя всего четыре линии и четыре внутренних угла, мы построили трапецию , узнали, что делает трапецию уникальной (пара параллельных сторон), каковы различные части трапеции и названия пяти специальных трапеций.

Следующий урок:

Как найти площадь трапеции

9.

7: Использование свойств прямоугольников, треугольников и трапеций (часть 2)

Использование свойств треугольников

Теперь мы знаем, как найти площадь прямоугольника. Мы можем использовать этот факт, чтобы визуализировать формулу площади треугольника. В прямоугольнике на рисунке \ (\ PageIndex {9} \) мы обозначили длину b и ширину h, так что это площадь bh.

Рисунок \ (\ PageIndex {9} \) — Площадь прямоугольника равна основанию b, умноженному на высоту h.

Мы можем разделить этот прямоугольник на два равных треугольника (рисунок \ (\ PageIndex {10} \)). Конгруэнтные треугольники имеют одинаковую длину сторон и углы, поэтому их площади равны. Площадь каждого треугольника равна половине площади прямоугольника или \ (\ dfrac {1} {2} \) bh. Этот пример помогает нам понять, почему формула для вычисления площади треугольника имеет вид A = \ (\ dfrac {1} {2} \) bh.

Рисунок \ (\ PageIndex {10} \) — прямоугольник можно разделить на два треугольника равной площади. Площадь каждого треугольника составляет половину площади прямоугольника.

Формула площади треугольника: A = \ (\ dfrac {1} {2} \) bh, где b — основание, а h — высота. Чтобы найти площадь треугольника, нужно знать его основание и высоту. Основание — это длина одной стороны треугольника, обычно стороны внизу. Высота — это длина линии, которая соединяет основание с противоположной вершиной и составляет с основанием угол 90 °. На рисунке \ (\ PageIndex {11} \) показаны три треугольника с отмеченными основанием и высотой каждого.

Рисунок \ (\ PageIndex {11} \) — Высота h треугольника — это длина отрезка линии, соединяющего основание с противоположной вершиной и образующего угол 90 ° с основанием.

Определение: Свойства треугольника

Для любого треугольника ΔABC сумма углов составляет 180 °. $$ m \ angle A + m \ angle B + m \ angle C = 180 ° $$ Периметр треугольника равен сумме длин сторон. $$ P = a + b + c $$ Площадь треугольника равна половине основания b, умноженному на высоту h. $$ A = \ dfrac {1} {2} bh \]

Пример \ (\ PageIndex {9} \):

Найдите площадь треугольника с основанием 11 дюймов и высотой 8 дюймов.

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь треугольника
Шаг 3. Имя . Выберите переменную для ее представления. пусть A = площадь треугольника
Шаг 4. Перевести . Напишите соответствующую формулу. Заменять.
Шаг 5. Решите уравнение. A = 44 квадратных дюйма
Шаг 6. Проверить . $$ \ begin {split} A & = \ dfrac {1} {2} bh \\ 44 & \ stackrel {?} {=} \ Dfrac {1} {1} {2} (11) 8 \\ 44 & = 44 \; \ checkmark \ end {split} $$
Шаг 7. Ответьте на вопрос. Площадь составляет 44 квадратных дюйма.

Упражнение \ (\ PageIndex {17} \):

Найдите площадь треугольника с основанием 13 дюймов и высотой 2 дюйма.

Ответ

13 кв. Дюймов

Упражнение \ (\ PageIndex {18} \):

Найдите площадь треугольника с основанием 14 дюймов и высотой 7 дюймов.

Ответ

49 кв.дюйм

Пример \ (\ PageIndex {10} \):

Периметр треугольного сада составляет 24 фута. Длина двух сторон составляет 4 фута и 9 футов. Какова длина третьей стороны?

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. длина третьей стороны треугольника
Шаг 3. Имя . Выберите переменную для ее представления. Пусть c = третья сторона
Шаг 4. Перевести . Напишите соответствующую формулу. Подставьте в данную информацию.
Шаг 5. Решите уравнение. $$ \ begin {split} 24 & = 13 + c \\ 11 & = c \ end {split} $$
Шаг 6. Чек . $$ \ begin {split} P & = a + b + c \\ 24 & \ stackrel {?} {=} 4 + 9 + 11 \\ 24 & = 24 \; \ checkmark \ end {split} $$
Шаг 7. Ответьте на вопрос. Третья сторона имеет длину 11 футов.

Упражнение \ (\ PageIndex {19} \):

Периметр треугольного сада составляет 48 футов. Длина двух сторон 18 футов и 22 фута. Какова длина третьей стороны?

Ответ

8 футов

Упражнение \ (\ PageIndex {20} \):

Длина двух сторон треугольного окна составляет 7 футов 5 футов.Периметр 18 футов. Какова длина третьей стороны?

Ответ

6 футов

Пример \ (\ PageIndex {11} \):

Площадь треугольного церковного окна — 90 квадратных метров. База окна 15 метров. Какая высота окна?

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. высота треугольника
Шаг 3. Имя . Выберите переменную для ее представления. Пусть h = высота
Шаг 4. Перевести . Напишите соответствующую формулу. Подставьте в данную информацию.
Шаг 5. Решите уравнение. $$ \ begin {split} 90 & = \ dfrac {15} {2} h \\ 12 & = h \ end {split} $$
Шаг 6. Чек . $$ \ begin {split} A & = \ dfrac {1} {2} bh \\ 90 & \ stackrel {?} {=} \ Dfrac {1} {2} \ cdot 15 \ cdot 12 \\ 90 & = 90 \; \ checkmark \ end {split} $$
Шаг 7. Ответьте на вопрос. Высота треугольника 12 метров.

Упражнение \ (\ PageIndex {21} \):

Площадь треугольной картины составляет 126 квадратных дюймов. База 18 дюймов.Какая высота?

Ответ

14 дюймов

Упражнение \ (\ PageIndex {22} \):

Треугольная дверь палатки имеет площадь 15 квадратных футов. Высота 5 футов. Что такое база?

Ответ

6 футов

Равнобедренные и равносторонние треугольники

Помимо прямоугольного треугольника, некоторые другие треугольники имеют особые имена. Треугольник с двумя сторонами равной длины называется равнобедренным треугольником .Треугольник, у которого три стороны равной длины, называется равносторонним треугольником . На рисунке \ (\ PageIndex {12} \) показаны оба типа треугольников.

Рисунок \ (\ PageIndex {12} \) — В равнобедренном треугольнике две стороны имеют одинаковую длину, а третья сторона является основанием. В равностороннем треугольнике все три стороны имеют одинаковую длину.

Определение: равнобедренные и равносторонние треугольники

У равнобедренного треугольника две стороны одинаковой длины.

Равносторонний треугольник имеет три стороны равной длины.

Пример \ (\ PageIndex {12} \):

Периметр равностороннего треугольника составляет 93 дюйма. Найдите длину каждой стороны.

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.

Периметр = 93 дюйма

Шаг 2. Определите , что вы ищете. длина сторон равностороннего треугольника
Шаг 3. Имя . Выберите переменную для ее представления. Пусть s = длина каждой стороны
Шаг 4. Перевести . Напишите соответствующую формулу. Заменять.
Шаг 5. Решите уравнение. $$ \ begin {split} 93 & = 3s \\ 31 & = s \ end {split} $$
Шаг 6. Чек . $$ \ begin {split} 93 & = 31 + 31 + 31 \\ 93 & = 93 \; \ checkmark \ end {split} $$
Шаг 7. Ответьте на вопрос. Каждая сторона 31 дюйм.

Упражнение \ (\ PageIndex {23} \):

Найдите длину каждой стороны равностороннего треугольника с периметром 39 дюймов.

Ответ

13 дюймов

Упражнение \ (\ PageIndex {24} \):

Найдите длину каждой стороны равностороннего треугольника с периметром 51 сантиметр.

Ответ

17 см

Пример \ (\ PageIndex {13} \):

У Арианны есть 156 дюймов бисера, которые можно использовать для обрезки шарфа. Платок будет представлять собой равнобедренный треугольник с основанием 60 дюймов. Как долго она сможет сделать две равные стороны?

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.

P = 156 дюймов

Шаг 2. Определите , что вы ищете. длины двух равных сторон
Шаг 3. Имя . Выберите переменную для ее представления. Пусть s = длина каждой стороны
Шаг 4. Перевести . Напишите соответствующую формулу. Подставьте в данную информацию.
Шаг 5. Решите уравнение. $$ \ begin {split} 156 & = 2s + 60 \\ 96 & = 2s \\ 48 & = s \ end {split} $$
Шаг 6. Проверить . $$ \ begin {split} p & = a + b + c \\ 156 & \ stackrel {?} {=} 48 + 60 + 48 \\ 156 & = 156 \; \ checkmark \ end {split} $$
Шаг 7. Ответьте на вопрос. Арианна может сделать каждую из двух равных сторон по 48 дюймов в длину.

Упражнение \ (\ PageIndex {25} \):

Палуба заднего двора имеет форму равнобедренного треугольника с основанием 20 футов. Периметр палубы 48 футов. Какова длина каждой из равных сторон колоды?

Ответ

14 футов

Упражнение \ (\ PageIndex {26} \):

Парус лодки представляет собой равнобедренный треугольник с основанием 8 метров. Периметр — 22 метра. Какова длина каждой из равных сторон паруса?

Ответ

7 м

Используйте свойства трапеций

Трапеция — это четырехсторонняя фигура, четырехугольник , две стороны которого параллельны, а две — нет.Параллельные стороны называются основаниями. Мы называем длину меньшего основания b и длину большего основания B. Высота h трапеции — это расстояние между двумя основаниями, как показано на рисунке \ (\ PageIndex {13} \).

Рисунок \ (\ PageIndex {13} \) — Трапеция имеет большее основание, B, и меньшее основание, b. Высота h — это расстояние между основаниями.

Формула площади трапеции:

\ [Area_ {trapezoid} = \ dfrac {1} {2} h (b + B) \]

Разделение трапеции на два треугольника может помочь нам понять формулу.Площадь трапеции — это сумма площадей двух треугольников. См. Рисунок \ (\ PageIndex {14} \).

Рисунок \ (\ PageIndex {14} \) — Разделение трапеции на два треугольника может помочь вам понять формулу для ее площади.

Высота трапеции — это также высота каждого из двух треугольников. См. Рисунок \ (\ PageIndex {15} \).

Рисунок \ (\ PageIndex {15} \)

Формула площади трапеции

\ [Area_ {trapezoid} = \ dfrac {1} {2} h (\ textcolor {blue} {b} + \ textcolor {red} {B}) \]

Если раздадим, то получим,

Определение: Свойства трапеций

  • У трапеции четыре стороны.См. Рисунок 9.25.
  • Две его стороны параллельны, а две — нет.
  • Площадь A трапеции равна A = \ (\ dfrac {1} {2} \) h (b + B).

Пример \ (\ PageIndex {14} \):

Найдите площадь трапеции, высота которой 6 дюймов, а основания 14 и 11 дюймов.

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь трапеции
Шаг 3. Имя . Выберите переменную для ее представления. Пусть A = площадь
Шаг 4. Перевести . Напишите соответствующую формулу. Заменять.
Шаг 5. Решите уравнение. $$ \ begin {split} A & = \ dfrac {1} {2} \ cdot 6 (25) \\ A & = 3 (25) \\ A & = 75 \; квадратный\; дюймы \ end {split} $$
Шаг 6. Проверка : Разумен ли этот ответ?

Если мы нарисуем прямоугольник вокруг трапеции с таким же большим основанием B и высотой h, его площадь должна быть больше, чем у трапеции.

Если мы нарисуем прямоугольник внутри трапеции, имеющий такое же маленькое основание b и высоту h, его площадь должна быть меньше, чем у трапеции.

Площадь большего прямоугольника составляет 84 квадратных дюйма, а площадь меньшего прямоугольника — 66 квадратных дюймов.Таким образом, имеет смысл, что площадь трапеции составляет от 84 до 66 квадратных дюймов

Шаг 7. Ответьте на вопрос. Площадь трапеции составляет 75 квадратных дюймов.

Упражнение \ (\ PageIndex {27} \):

Высота трапеции — 14 ярдов, а основание — 7 и 16 ярдов. Какой район?

Ответ

161 кв. Ярд

Упражнение \ (\ PageIndex {28} \):

Высота трапеции 18 сантиметров, основания 17 и 8 сантиметров.Какой район?

Ответ

255 кв. См

Пример \ (\ PageIndex {15} \):

Найдите площадь трапеции высотой 5 футов и основаниями 10,3 и 13,7 футов.

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь трапеции
Шаг 3. Имя . Выберите переменную для ее представления. Пусть A = площадь
Шаг 4. Перевести . Напишите соответствующую формулу. Заменять.
Шаг 5. Решите уравнение. $$ \ begin {split} A & = \ dfrac {1} {2} \ cdot 5 (24) \\ A & = 12 \ cdot 5 \\ A & = 60 \; квадратный\; футов \ end {split} $$
Шаг 6. Проверка : Разумен ли этот ответ? Площадь трапеции должна быть меньше площади прямоугольника с основанием 13,7 и высотой 5, но больше площади прямоугольника с основанием 10,3 и высотой 5.
Шаг 7. Ответьте на вопрос. Площадь трапеции составляет 60 квадратных футов.

Упражнение \ (\ PageIndex {29} \):

Высота трапеции 7 сантиметров, оснований 4.6 и 7,4 сантиметра. Какой район?

Ответ

42 кв. См

Упражнение \ (\ PageIndex {30} \):

Высота трапеции 9 метров, оснований 6,2 и 7,8 метра. Какой район?

Ответ

63 кв.м

Пример \ (\ PageIndex {16} \):

У Винни есть сад в форме трапеции. Трапеция имеет высоту 3.4 ярда, а основания — 8,2 и 5,6 ярда. Сколько квадратных ярдов будет доступно для посадки?

Решение

Шаг 1. Прочтите о проблеме. Нарисуйте фигуру и напишите на ней указанную информацию.
Шаг 2. Определите , что вы ищете. площадь трапеции
Шаг 3. Имя .Выберите переменную для ее представления. Пусть A = площадь
Шаг 4. Перевести . Напишите соответствующую формулу. Заменять.
Шаг 5. Решите уравнение. $$ \ begin {split} A & = \ dfrac {1} {2} \ cdot (3.4) (13.8) \\ A & = 23.46 \; квадратный\; ярдов \ end {split} $$

Шаг 6. Проверьте : Разумен ли этот ответ? Да.Площадь трапеции меньше площади прямоугольника с основанием 8,2 ярда и высотой 3,4 ярда, но больше площади прямоугольника с основанием 5,6 ярда и высотой 3,4 ярда.

Шаг 7. Ответьте на вопрос. У Винни 23,46 квадратных ярда, на которых он может сажать растения.

Упражнение \ (\ PageIndex {31} \):

Линь хочет подстричь лужайку, имеющую форму трапеции.Основания составляют 10,8 ярда и 6,7 ярда, а высота — 4,6 ярда. Сколько квадратных ярдов дерна ему нужно?

Ответ

40,25 кв. Ярда

Упражнение \ (\ PageIndex {32} \):

Кира хочет покрыть свой внутренний двор бетонной брусчаткой. Если внутренний дворик имеет форму трапеции с основанием 18 футов 14 футов и высотой 15 футов, сколько квадратных футов брусчатки ему понадобится?

Ответ

240 кв.фут

Практика ведет к совершенству

Использование свойств прямоугольников

В следующих упражнениях найдите (а) периметр и (б) площадь каждого прямоугольника.

  1. Длина прямоугольника составляет 85 футов, а ширина — 45 футов.
  2. Длина прямоугольника составляет 26 дюймов, а ширина — 58 дюймов.
  3. Прямоугольная комната 15 футов шириной и 14 футов длиной.
  4. Подъездная дорога имеет форму прямоугольника 20 футов шириной и 35 футов длиной.

В следующих упражнениях решите.

  1. Найдите длину прямоугольника с периметром 124 дюйма и шириной 38 дюймов.
  2. Найдите длину прямоугольника с периметром 20,2 ярда и шириной 7,8 ярда.
  3. Найдите ширину прямоугольника с периметром 92 метра и длиной 19 метров.
  4. Найдите ширину прямоугольника с периметром 16,2 метра и длиной 3,2 метра.
  5. Площадь прямоугольника 414 квадратных метров.Длина 18 метров. Какая ширина?
  6. Площадь прямоугольника 782 квадратных сантиметра. Ширина 17 сантиметров. Какая длина?
  7. Длина прямоугольника на 9 дюймов больше ширины. По периметру 46 дюймов. Найдите длину и ширину.
  8. Ширина прямоугольника на 8 дюймов больше длины. По периметру 52 дюйма. Найдите длину и ширину.
  9. Периметр прямоугольника 58 метров. Ширина прямоугольника на 5 метров меньше длины.Найдите длину и ширину прямоугольника.
  10. Периметр прямоугольника 62 фута. Ширина на 7 футов меньше длины. Найдите длину и ширину.
  11. Ширина прямоугольника на 0,7 метра меньше длины. Периметр прямоугольника 52,6 метра. Найдите размеры прямоугольника.
  12. Длина прямоугольника на 1,1 метра меньше ширины. Периметр прямоугольника 49,4 метра. Найдите размеры прямоугольника.
  13. Периметр прямоугольника 150 футов. Длина прямоугольника в два раза больше ширины. Найдите длину и ширину прямоугольника.
  14. Длина прямоугольника в три раза больше ширины. Периметр 72 фута. Найдите длину и ширину прямоугольника.
  15. Длина прямоугольника на 3 метра меньше двойной ширины. Периметр — 36 метров. Найдите длину и ширину.
  16. Длина прямоугольника на 5 дюймов больше, чем в два раза ширины.По периметру 34 дюйма. Найдите длину и ширину.
  17. Ширина прямоугольного окна 24 дюйма. Площадь — 624 квадратных дюйма. Какая длина?
  18. Длина прямоугольного плаката составляет 28 дюймов. Площадь составляет 1316 квадратных дюймов. Какая ширина?
  19. Площадь прямоугольной крыши — 2310 квадратных метров. Длина 42 метра. Какая ширина?
  20. Площадь прямоугольного брезента составляет 132 квадратных фута. Ширина 12 футов. Какая длина?
  21. Периметр прямоугольного двора составляет 160 футов.Длина на 10 футов больше ширины. Найдите длину и ширину.
  22. Периметр прямоугольной картины 306 сантиметров. Длина на 17 сантиметров больше ширины. Найдите длину и ширину.
  23. Ширина прямоугольного окна на 40 дюймов меньше высоты. Периметр дверного проема — 224 дюйма. Найдите длину и ширину.
  24. Ширина прямоугольной площадки на 7 метров меньше длины. Периметр детской площадки 46 метров.Найдите длину и ширину.

Используйте свойства треугольников

В следующих упражнениях решайте задачи, используя свойства треугольников.

  1. Найдите площадь треугольника с основанием 12 дюймов и высотой 5 дюймов.
  2. Найдите площадь треугольника с основанием 45 см и высотой 30 см.
  3. Найдите площадь треугольника с основанием 8,3 метра и высотой 6,1 метра.
  4. Найдите площадь треугольника с основанием 24.2 фута и высотой 20,5 футов.
  5. Треугольный флаг имеет основание 1 фут и высоту 1,5 фута. Какая у него площадь?
  6. Треугольное окно имеет основание 8 футов и высоту 6 футов. Какая у него площадь?
  7. Если треугольник имеет стороны 6 футов и 9 футов, а периметр равен 23 футам, какова длина третьей стороны?
  8. Если треугольник имеет стороны 14 и 18 см, а периметр равен 49 см, какова длина третьей стороны?
  9. Что такое основание треугольника площадью 207 квадратных дюймов и высотой 18 дюймов?
  10. Какова высота треугольника площадью 893 квадратных дюйма и основанием 38 дюймов?
  11. Периметр треугольного отражающего бассейна составляет 36 ярдов.Длина двух сторон составляет 10 ярдов и 15 ярдов. Какова длина третьей стороны?
  12. Треугольный двор имеет периметр 120 метров. Длина двух сторон 30 метров и 50 метров. Какова длина третьей стороны?
  13. Равнобедренный треугольник имеет основание 20 сантиметров. Если периметр равен 76 сантиметрам, найдите длину каждой из других сторон.
  14. Равнобедренный треугольник имеет основание 25 дюймов. Если периметр составляет 95 дюймов, найдите длину каждой из других сторон.
  15. Найдите длину каждой стороны равностороннего треугольника с периметром 51 ярд.
  16. Найдите длину каждой стороны равностороннего треугольника с периметром 54 метра.
  17. Периметр равностороннего треугольника 18 метров. Найдите длину каждой стороны.
  18. Периметр равностороннего треугольника составляет 42 мили. Найдите длину каждой стороны.
  19. Периметр равнобедренного треугольника составляет 42 фута. Длина самой короткой стороны — 12 футов.Найдите длину двух других сторон.
  20. Периметр равнобедренного треугольника составляет 83 дюйма. Длина самой короткой стороны — 24 дюйма. Найдите длину двух других сторон.
  21. Блюдо имеет форму равностороннего треугольника. Каждая сторона 8 дюймов в длину. Найдите периметр.
  22. Плитка для пола имеет форму равностороннего треугольника. Каждая сторона 1,5 фута в длину. Найдите периметр.
  23. Дорожный знак в форме равнобедренного треугольника имеет основание 36 дюймов.Если периметр составляет 91 дюйм, найдите длину каждой из других сторон.
  24. Платок в форме равнобедренного треугольника имеет основу 0,75 метра. Если периметр составляет 2 метра, найдите длину каждой из других сторон.
  25. Периметр треугольника составляет 39 футов. Одна сторона треугольника на 1 фут длиннее второй. Третья сторона на 2 фута длиннее второй. Найдите длину каждой стороны.
  26. Периметр треугольника составляет 35 футов.Одна сторона треугольника на 5 футов длиннее второй. Третья сторона на 3 фута длиннее второй. Найдите длину каждой стороны.
  27. Одна сторона треугольника — это вдвое меньшая сторона. Третья сторона на 5 футов больше самой короткой. Периметр — 17 футов. Найдите длины всех трех сторон.
  28. Одна сторона треугольника в три раза больше наименьшей стороны. Третья сторона на 3 фута больше самой короткой. Периметр — 13 футов. Найдите длины всех трех сторон.

Используйте свойства трапеций

В следующих упражнениях решите, используя свойства трапеций.

  1. Высота трапеции составляет 12 футов, а основания — 9 и 15 футов. Какой район?
  2. Высота трапеции — 24 ярда, а основание — 18 и 30 ярдов. Какой район?
  3. Найдите площадь трапеции высотой 51 метр и основаниями 43 и 67 метров.
  4. Найдите площадь трапеции высотой 62 дюйма и основаниями 58 и 75 дюймов.
  5. Высота трапеции составляет 15 сантиметров, а основания — 12,5 и 18,3 сантиметра. Какой район?
  6. Высота трапеции составляет 48 футов, а основание — 38,6 и 60,2 фута. Какой район?
  7. Найдите площадь трапеции высотой 4,2 метра и основаниями 8,1 и 5,5 метра.
  8. Найдите площадь трапеции высотой 32,5 см и основаниями 54,6 и 41,4 см.
  9. Лорел делает знамя в форме трапеции.Высота баннера составляет 3 фута, а основания — 4 и 5 футов. Какая площадь у баннера?
  10. Нико хочет выложить плиткой пол в ванной. Пол имеет форму трапеции шириной 5 футов и длиной 5 и 8 футов. Какая площадь этажа?
  11. Терезе нужна новая столешница для кухонной стойки. Счетчик имеет форму трапеции шириной 18,5 дюйма и длиной 62 и 50 дюймов. Какая площадь прилавка?
  12. Елена вяжет шарф.Шарф будет иметь форму трапеции шириной 8 дюймов и длиной 48,2 дюйма и 56,2 дюйма. Какая площадь у шарфа?

Как найти периметр трапеции

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
или больше ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
то
информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатов), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Трапеция | Блог по математике ∞

Трапеция — это плоская форма с четырьмя прямыми сторонами. Две стороны параллельны друг другу и противоположны друг другу. Трапеция не должна быть маленькой фигурой, поскольку длина сторон и углы могут сильно различаться.В то время как некоторые люди думают, что трапеция — это термин, зарезервированный исключительно для учебников по математике, реальные примеры трапециевидных форм можно найти в сумках, опорах мостовых ферм, банках для попкорна и некоторых музыкальных инструментах, таких как гитарные цимбалы. .

Студенты иногда путаются, когда дело доходит до определения площади трапеции, просто потому, что они не знают, как правильно обозначить форму, чтобы они могли вставить правильные числа в формулу. Эти ключевые факты помогут определить правильные числа для использования в формуле определения площади трапеции:

Две стороны, идущие параллельно друг другу, называются основаниями.

Две другие стороны называются ножками.

Расстояние между двумя базами называется высотой или высотой.

При нахождении площади трапеции необходимо следовать простой формуле. Если вы укажете правильные числа в формуле и не сделаете простых ошибок при сложении, делении и умножении, вы легко сможете прийти к окончательному ответу. Формула выглядит следующим образом:

Площадь = a + b x h

2

Верхняя базовая линия обозначается как «a.”

Нижняя базовая линия обозначается буквой «b».

Высота обозначается как «h».

Пример. Предположим, у нашей трапеции есть основания длиной 6 метров и 8 метров и высотой 4 метра, поэтому наша формула будет выглядеть следующим образом.

6 м + 8 м x 4 м

2

Шаг 1: Сначала необходимо сложить две базы. Итак, мы говорим 5м + 8м = 14м.

Шаг 2: Разделите число, полученное при сложении оснований, на 2.Итак, вы скажете 14, разделенное на 2, что равно 7.

Шаг 3: возьмите 7 и умножьте на «h», что равно 4.

Ответ: Ответ на эту проблему: 28 м2

При поиске площади трапеции важно не перепутать числа и поставить их на их законное место в формуле, чтобы можно было найти нужную область. Если вы перепутаете одно число, вы получите совершенно неправильный ответ, даже если вы знаете правильную формулу.

Трапеции обычно встречаются в дизайне мебели, такой как столы, и в других объектах, таких как знаки.Есть много причин, по которым человеку может потребоваться найти область объекта, например, планирование строительного проекта, покраска и изготовление покрытия для стола.

Интересный факт:

Часто возникает путаница, когда дело доходит до значения трапеций и того, что этот термин означает в США и Великобритании. В США этот термин означает четырехугольник с одной парой параллельных сторон, в то время как в Великобритании трапеция не имеет параллельных сторон.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *