Призма параллелепипед это: 2.6. Призма, параллелепипед

2.6. Призма, параллелепипед

2.6. Призма, параллелепипед

Определение 20

Призмой называется многогранник, все вершины которого расположены в двух параллельных плоскостях, причём в этих же двух плоскостях лежат две грани призмы, представляющие собой равные многоугольники с соответственно параллельными сторонами, а все рёбра, не лежащие в этих плоскостях, параллельны.

Эти две равные грани называются основаниями призмы. Все остальные грани призмы называются боковыми, они образуют боковую поверхность призмы. Все боковые грани призмы являются параллелограммами.

Рис. 61

Рис. 62

Рёбра, не лежащие в основаниях, называются боковыми рёбрами призмы. Призму называют n-угольной, если её основаниями являются n-угольники.

На рисунке 61 изображена пятиугольная призма ABCDEA1B1C1D1E1. Здесь использован наиболее распро- странённый (стандартный) способ обозначения вершин призмы и стандартная запись: сначала в порядке обхода указывают вершины одного основания, а затем в том же порядке — вершины другого; концы каждого бокового ребра обозначают одинаковыми буквами, только вершины, лежащие в одном основании, обозначают буквами без индекса, а в другом — с индексом.

Хорошо известный параллелепипед (рис. 62) является частным случаем призмы: параллелепипед — это четырёхугольная призма, основаниями которой являются параллелограммы. Причём за основание можно взять любую грань параллелепипеда.

Призма называется прямой, если её боковые рёбра перпендикулярны основаниям.

Призма называется правильной, если она прямая, а её основания — правильные многоугольники.

Как было отмечено, параллелепипед является частным случаем призмы. Особо выделим прямоугольный параллелепипед — параллелепипед, все грани которого прямоугольники (рис. 63).

Рис. 63

Диагональ параллелепипеда — это отрезок, соединяющий его противоположные вершины. У параллелепипеда четыре диагонали.

Теорема 2.7 (свойство диагоналей параллелепипеда)

Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Точка пересечения диагоналей параллелепипеда является центром симметрии параллелепипеда, или просто центром параллелепипеда.

Уточним, что мы называем центром симметрии фигуры или тела точку, при симметрии относительно которой тело переходит само в себя. Заметим также, что образ параллелепипеда при симметрии однозначно задаётся образами его вершин. Поэтому точка пересечения диагоналей будет центром симметрии параллелепипеда (если мы докажем теорему 2.7).

Доказательство. Рассмотрим параллелепипед ABCDA1B1C1D1 (см. рис. 62). Докажем, что любые две его диагонали пересекаются и делятся точкой пересечения пополам. Возьмём, например, диагонали AC1 и CA1. Рёбра AA1 и CC1 равны и параллельны, поскольку каждое из них равно и параллельно ребру BB1. Значит, AA1C1C — параллелограмм, диагонали AC1 и CA1 которого пересекаются и делятся точкой пересечения пополам. ▼

Следствие

Параллелепипед имеет центр симметрии. Это — точка пересечения его диагоналей. Двенадцать рёбер параллелепипеда образуют три четвёрки соответственно равных между собой и параллельных отрезков.

Теорема 2.8

Диагонали прямоугольного параллелепипеда равны.

Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA1B1C1D1 (см. рис. 63). Рёбра AA1 и CC1 равны и перпендикулярны граням ABCD и A1B1C1D1, в которых лежат отрезки AC и A1C1. Следовательно, AA1C1C — прямоугольник и AC1 = CA1. То же верно для любой пары диагоналей. ▼

Теорема 2.9 (теорема Пифагора для прямоугольного параллелепипеда)

Пусть a, b и c — длины трёх непараллельных рёбер прямоугольного параллелепипеда, d — его диагональ. Тогда a2 + b2 + c2 = d 2. (Эта теорема представляет собой один из многих пространственных аналогов теоремы Пифагора.)

Доказательство. Пусть в прямоугольном параллелепипеде ABCDA1B1C1D1 (см. рис. 63) AB = a, AD = b, AA1 = c. (Такими же соответственно будут и длины параллельных им рёбер.) Так как AA1C1C — прямоугольник, то

Задачи, задания, вопросы

1.Разрежьте треугольную призму на три треугольные пирамиды.

2.Разрежьте куб на три равные четырёхугольные пирамиды.

3.Сумма трёх чисел, равных количеству вершин, рёбер и граней некоторого многогранника, равна: а) 102; б) 104. Определите вид многогранника, если известно, что это либо пирамида, либо призма.

4(в). Найдите диагональ единичного куба.

5.Три отрезка, не лежащие в одной плоскости, имеют общую точку и делятся этой точкой пополам. Докажите, что концы этих отрезков служат вершинами параллелепипеда.

6.Найдите расстояние от центра грани единичного куба до вершин противоположной грани.

7.Рёбра прямоугольного параллелепипеда равны 2, 3 и 4. Найдите угол между его диагоналями.

8.Проекции отрезка на три попарно перпендикулярные прямые равны 1, 2 и 3. Найдите длину этого отрезка.

9.Найдите расстояние между серединами непараллельных сторон разных оснований правильной треугольной призмы, все рёбра которой равны 2.

10. Покажите, что в кубе можно выбрать четыре вершины, являющиеся вершинами правильного тетраэдра, причём сделать это можно двумя способами.

11.Рассмотрим две треугольные пирамиды, вершинами которых служат вершины данного параллелепипеда. (Каждая вершина параллелепипеда является вершиной одной пирамиды.) Возможно ли, чтобы каждая вершина одной из пирамид принадлежала плоскости грани другой пирамиды, и наоборот?

12.Через точку на ребре треугольной пирамиды проведены две плоскости, параллельные двум граням этой пирамиды. Эти плоскости отсекают две треугольные пирамиды. Разрежьте оставшийся многогранник на две треугольные призмы.

13(в). Диагонали трёх различных граней прямоугольного параллелепипеда равны m, n и p. Найдите диагональ этого параллелепипеда.

14(в). Диагональ прямоугольного параллелепипеда образует с его рёбрами углы a, b и g. Докажите, что

cos2 a + cos2 b + cos2 g = 1.

15(в). В каком отношении диагональ AC1 параллелепипеда ABCDA1B1C1D1 делится плоскостью A1BD ?

16(т). В одном старом учебнике дано такое определение призмы: «Призмой называется многогранник, у которого две грани — равные многоугольники с соответственно параллельными сторонами, а все остальные грани — параллелограммы». Приведите пример многогранника, удовлетворяющего этому определению, но не являющегося призмой.

17(т). Станет ли верным определение, приведённое в предыдущей задаче, если перед словом «многогранник» поставить слово «выпуклый»?

Указание. Возьмём куб и на каждой его грани, как на основании, во внешнюю сторону построим правильную четырёхугольную пирамиду с двугранными углами при основании 45°.

18(т). Найдите ребро куба, одна грань которого лежит в плоскости основания правильной пирамиды, а четыре оставшиеся вершины — на её боковой поверхности, если сторона основания пирамиды равна a, а высота h. Решите эту задачу: а) для правильной четырёхугольной пирамиды; б) для правильной треугольной пирамиды.

19(п). Рёбра прямоугольного параллелепипеда равны a, b и c (a ⩽ b ⩽ c). Найдите: а) углы между его диагоналями; б) угол между диагональю параллелепипеда и скрещивающейся с ней диагональю грани со сторонами a и b; в) угол между скрещивающимися диагоналями двух граней с общим ребром a.

20.Пусть K, L и M — середины рёбер AD, A1B1 и CC1 прямоугольного параллелепипеда ABCDA1B1C1D1, в котором AB = a, AA1 = b, AD = c. Найдите периметр треугольника KLM.

21(т). Укажите все точки на диагонали AC1 параллелепипеда ABCDA1B1C1D1, через которые нельзя провести прямую, пересекающую прямые: а) BC и DD1; б) A1B и B1C.

22(т). Два ребра прямоугольного параллелепипеда равны 1 и 2. Плоскость, параллельная этим рёбрам, делит параллелепипед на два неравных, но подобных между собой параллелепипеда. Найдите длину ребра, отличного от данных.

23(т). На рёбрах A1B1 и A1D1 единичного куба ABCDA1B1C1D1 взяты точки K и M так, что A1K = A1M = x. Найдите x, если известно, что при повороте куба вокруг диагонали AC1 на угол a точка K переходит в M.

24(п). Постройте изображение призмы ABCA1B1C1, если на плоскости даны изображения следующих точек: а) A, B, B1 и C1; б) середин AA1, BC, CC1 и A1C1.

25.Постройте изображение параллелепипеда ABCDA1B1C1D1, если даны изображения следующих точек: а) A, B, D, A1; б) A, B, C, D1; в) A, C, B1, D1; г) середин AB1, BC1, CD, A1D1; д) A, B и центров граней A1B1C1D1 и CDD1C1.

26.Дано изображение призмы ABCA1B1C1. Постройте изображение точки M пересечения плоскостей A1BC, AB1C и ABC1. Пусть высота призмы равна h. Чему равно расстояние от точки M до оснований призмы?

27(пт). Пусть O — середина высоты правильной треугольной пирамиды. Вторая пирамида симметрична данной относительно точки O. Как называется многогранник, являющийся общей частью двух указанных пирамид? (Если вы не знаете его названия, опишите, как он устроен.) Чему равна площадь поверхности этого многогранника, если площадь боковой грани равна S ?

28(т). Рёбра прямоугольного параллелепипеда равны a, b и c (a < b < c). Некоторое сечение этого параллелепипеда является квадратом. Найдите сторону этого квадрата.

29.Проекция вершины A параллелепипеда ABCDA1B1C1D1 на некоторую плоскость лежит внутри проекции треугольника A1BD на эту плоскость. Докажите, что площадь проекции параллелепипеда в два раза больше площади проекции треугольника A1BD.

30(т). Используя результат предыдущей задачи, найдите, чему равно наибольшее значение площади проекции прямоугольного параллелепипеда с рёбрами a, b и c на некоторую плоскость.

31(т). Через центр единичного куба проведена плоскость, делящая его на два многогранника. Докажите, что в каждом из получившихся многогранников найдётся диагональ, длина которой не меньше .

32.Многогранники изучают, их свойства используют представители самых различных профессий. Например, свойствам многогранников посвящены разделы таких наук, как минералогия и кристаллография. Известный русский минералог и кристаллограф Е. С. Фёдоров (1853—1919) сделал немало замечательных открытий, связанных со свойствами многогранников. Некоторые из открытых им многогранников называют «фёдоровскими». Вот один из них.

Возьмём куб и соединим его центр со всеми вершинами. Для каждого из восьми полученных таким образом отрезков построим плоскость, перпендикулярную ему и проходящую через середину. Рассмотрим многогранник, ограниченный этими плоскостями и поверхностью куба (в него входит центр куба). Сколько граней имеет получившийся многогранник? Какими многоугольниками являются его грани? Докажите, что такими многогранниками можно заполнить всё пространство без пропусков и пересечений.

Призма и параллелепипед

Призма и параллелепипед

Содержание

Понятие призмы и виды призм

Понятие параллелепипеда

Свойства параллелепипеда

Дополнительные соотношения между элементами призмы

Задачи

Тесты

Глоссарий

Литература

Понятие призмы и виды призм

Рассмотрим два равных многоугольника и , расположенных в параллельных плоскостях и так, чтобы отрезки , соединяющие соответственные вершины многоугольников, параллельны (рис. 1).

Рис. 1

Каждый из n четырехугольников

…, (1)

является параллелограммом, так как имеет попарно параллельные противоположные стороны.

Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов (1), называется призмой.

Многоугольники и называются основаниями, а параллелограммы (1) – боковыми гранями призмы. Отрезки называются боковыми ребрами призмы. Эти ребра как противоположные стороны параллелограммов (1), следовательно приложенных друг к другу, равны и параллельны. Призму с основаниями и называют n – угольной призмой. На рисунке 2 изображены треугольная и шестиугольная призмы.

Рис. 2

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Прямая призма называется правильной, если ее основания – правильные многоугольники. У такой призмы все боковые грани – равные прямоугольники. На рисунке 2 изображена правильная шестиугольная призма. [1, 62]

Понятие параллелепипеда

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани – параллелограммы.

На рисунке 3 изображен наклонный параллелепипед, а на рисунке 4 – прямой параллелепипед.

Рис. 3

Рис. 4

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. [4, 301]

Параллелепипед, боковые ребра которого перпендикулярны к плоскости основания, называется прямым параллелепипедом. У него все боковые грани прямоугольники, а основания параллелограммы. Если все грани параллелепипеда – прямоугольники, то его называют прямоугольным параллелепипедом. Длины трех его ребер, которые выходят из одной вершины, называются измерениями прямоугольного параллелепипеда.

Прямоугольный параллелепипед, все три измерения которого равны, называется кубом. Соотношение между различными видами параллелепипеда приведено в схеме: [2, 115]

Параллелепипеды

Прямые

Наклонные

Прямоугольные

Не прямоугольные

Правильные 4-х угольные

призмы

Другие

Кубы

Не кубы

Свойства параллелепипеда

Теорема:

У параллелепипеда:

1) противолежащие грани равны и параллельны;

2) все четыре диагонали пересекаются в одной точке и делятся в ней пополам.

Доказательство:

1) Рассмотрим какие-нибудь две противоположные грани параллелепипеда, например, и (рис. 5).

Рис. 5

Поскольку все грани параллелепипеда – параллелограммы, то прямая AD параллельна прямой ВС, а прямая параллельна прямой . Отсюда следует, что плоскости рассматриваемых граней параллельны.

Из того, что грани параллелепипеда – параллелограммы, следует, что АВ, , CD и параллельны и равны. Отсюда сделаем вывод, что грань совмещается параллельным переносом вдоль ребра АВ с гранью . Следовательно, эти грани равны.

2) Возьмем две диагонали параллелепипеда (рис. 5), например, и , и проведем дополнительные прямые и . АВ и соответственно равны и параллельны ребру DC, поэтому они равны и параллельны между собою; вследствии этого фигура есть параллелограмм, в котором прямые и – диагонали, а в параллелограмме диагонали делятся в точке пересечения пополам. Аналогично мы можем доказать, что две другие диагонали пересекаются в одной точке и делятся этой точкой пополам. Точка пересечения каждой пары диагоналей лежит в середине диагонали . Таким образом, все четыре диагонали параллелепипеда пересекаются в одной точке О и делятся этой точкой пополам. Таким образом, точка пересечения диагоналей параллелепипеда является его центром симметрии. [3, 21]

Теорема:

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Доказательство:

Это выплывает из пространственной теоремы Пифагора. Если – диагональ прямоугольного параллелепипеда , то – ее проекции на три попарно перпендикулярные прямые (рис. 6). Следовательно, . [2, 116]

Рис. 6

Замечание: в прямоугольном параллелепипеде все диагонали равны.

Дополнительные соотношения между элементами призмы

Если в наклонной призме боковое ребро образует одинаковые углы со сторонами основания, которые выходят из вершины , то основание О высоты лежит на биссектрисе угла (рис. 7).

Доказательство:

Рис. 7

Проведем и отрезки Согласно теореме о трех перпендикулярах, имеем и . Прямоугольные треугольники и равны, поскольку имеют общую гипотенузу и одинаковые углы ( по условию). Следовательно, и , отсюда Таким образом, точка О равноудалена от сторон угла и, следовательно, лежит на биссектрисе угла . [3, 24]

Задачи

1. Ребро куба равно а.

Найдите:

Диагональ грани: d= a√2.

Диагональ куба: D= a√3.

Периметр основания: P= 4a.

2. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника — квадрат.

Решение

Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть , где — площадь основания призмы, — площадь боковой поверхности, содержащей основание, — площадь боковой поверхности, содержащей стороны равнобедренного треугольника. (Они равны, так как стороны основания равны в следствие того, что треугольник равнобедренный, а вторые стороны равны высоте призмы)

Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см. (основание треугольника одновременно является стороной грани).

Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь:

Катеты, соответственно равны (у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой , с каждым из катетов образует прямоугольный треугольник) по теореме Пифагора:

Таким образом:

,

3. В правильной четырёхугольной призме площадь основания 144 , а высота 14 см. Найти диагональ призмы.

Решение

Правильный четырехугольник – это квадрат.

Соответственно, сторона основания будет равна

Откуда диагональ основания правильной прямоугольной призмы будет равна

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:

Ответ: 22 см

4. Рассмотрим правильную четырехугольную призму , диагональное сечение которой – квадрат. Через вершину и середины ребер АВ и ВС проведена плоскость. Найти площадь полученного сечения, если

Решение

Построение сечения видно на рисунке, где К и L – середины сторон АВ и ВС основания призмы, Е и F – точки пересечения прямой КL соответственно с продолжениями сторон DA и DC. Сечением является пятиугольник площадь которого можно найти. Можносначала вычислить площади треугольников и а потом от площади первого треугольника вычесть удвоенную площадь второго (поскольку треугольники и равны). Однако в данном случае проще воспользоваться формулой:

Проекция пятиугольника на плоскость основания призмы есть пятиугольник , площадь которого найдем, вычитая из площади квадрата площадь треугольника ВКL:

Пусть диагональ ВD основания пересекает отрезок КL в точке О. Так как и (согласно теореме о трех перпендикулярах), то – линейный угол двугранного угла КL.

Далее находим:

Из прямоугольного треугольника по теореме Пифагора имеем:

Значит, и

5. Дана правильная призма: , . Найти высоту призмы.

Решение

Площадь основания

АВ= 2 см.

Периметр основания Р = 8 см.

Высота призмы

6. Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.

Решение

Пусть – данный параллелепипед с основаниями , и боковыми рёбрами , причём ABCD – квадрат со стороной a , вершина равноудалена от вершин A, B, C и D, а расстояние от вершины до плоскости основания ABCD равно b. Поскольку точка равноудалена от вершин квадрата ABCD, она лежит на перпендикуляре к плоскости ABCD, проходящем через центр O квадрата. Перпендикуляр, опущенный из точки O на сторону BC, проходит через её середину M. По теореме о трёх перпендикулярах , поэтому – высота грани . Из прямоугольного треугольника находим, что

.

Значит,

Аналогично,

Если S – полная поверхность параллелепипеда , то

.

7. Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.

Доказательство

У параллелепипеда 3 пары параллельных граней. Если плоскость пересекает более трёх граней, то по крайней мере две стороны многоугольника сечения лежат в противоположных гранях параллелепипеда. По теореме о пересечении двух параллельных плоскостей третьей эти две стороны параллельны.

8. В параллелепипеде грань ABCD – квадрат со стороной 5, ребро также равно 5, и это ребро образует с рёбрами AB и AD углы . Найдите диагональ .

Решение

Треугольник – равносторонний, т.к. = AB и . Поэтому . Аналогично, . Боковые рёбра треугольной пирамиды с вершиной равны между собой, значит, высота этой пирамиды проходит через центр окружности, описанной около основания ABD , а т. к. треугольник ABD прямоугольный, то точка O – середина его гипотенузы BD, т.е. центр квадрата ABCD. Из прямоугольного треугольника находим, что

Поскольку , точка равноудалена от вершин C и D, поэтому её ортогональная проекция K на плоскость основания ABCD также равноудалена от C и D, а значит, лежит на серединном перпендикуляре к отрезку CD. Поскольку || и =, четырёхугольник – прямоугольник, поэтому OK==5. Продолжим отрезок KO до пересечения с отрезком AB в точке M. Тогда M – середина AB и MK=MO+OK=. Из прямоугольных треугольников MKB и находим, что:

9. На ребре AD и диагонали параллелепипеда взяты соответственно точки M и N, причём прямая MN параллельна плоскости и AM:AD = 1:5. Найдите отношение .

Решение

Пусть P – центр параллелограмма ABCD. Плоскости и пересекаются по прямой , поэтому прямые и пересекаются в некоторой точке Q, причём

По теореме о пересечении двух параллельных плоскостей третьей плоскости α и пересекаются по прямой, проходящей через точку E параллельно . Ясно, что точка пересечения этой прямой с прямой и есть точка N (прямая MN лежит в плоскости, параллельной плоскости ). Рассмотрим параллелограмм . Так как

то

10. Три отрезка, не лежащие в одной плоскости, имеют общую точку и делятся этой точкой пополам. Докажите, что концы этих отрезков служат вершинами параллелепипеда.

Решение

Пусть O – общая середина отрезков , и . Тогда AB||и AD||. Значит, плоскости ABD и параллельны. Аналогично, плоскость параллельна плоскости . В плоскостях ABD и возьмём соответственно точки C и так, что ABCD и – параллелограммы. Так как CD||AB , AB|| и ||, то CD||. Поэтому плоскости и также параллельны. Шестигранник , образован пересечением трёх пар параллельных плоскостей. Следовательно, это параллелепипед.

Тесты

1. Найдите длину диагонали прямоугольного параллелепипеда, измерения которого равны 2 см, 3 см и 4 см.

Варианты ответов:

Решение

Длина диагонали параллелепипеда равна корню из суммы квадратов его измерений и составит

2. Сосчитайте сколько у прямоугольного параллелепипеда рёбер

Варианты ответов:

А

3. Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов …, , называется:

А) параллелепипед;

Б) призма;

В) пирамида;

Г) многогранник;

Д) конус.

4. Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется…

А) высотой призмы;

Б) ребром призмы;

В) медианой призмы;

Г) диагональю призмы;

Д) стороной призмы.

5. Прямая призма называется правильной, если ее основания…

А) равнобедренные треугольники;

Б) не правильные многоугольники;

В) параллелограммы;

Г) окружности;

Д) правильные многоугольники.

6. У параллелепипеда все грани…

А) параллелограммы;

Б) треугольники;

В) трапеции;

Г) шестиугольники;

Д) квадраты.

7. В прямоугольном параллелепипеде все ли диагонали равны?

А) нет;

Б) да.

8. У параллелепипеда противолежащие грани равны и …

А) параллельны;

Б) лежат в одной плоскости;

В) перпендикулярны;

Г) лежат в разных плоскостях;

Д) образуют между собой угол

9. У параллелепипеда все четыре диагонали пересекаются в одной точке и делятся в ней …

А) в отношении 1:2;

Б) в отношении 1:3;

В) пополам;

Г) в отношении 1:5;

  1. Чему равен квадрат диагонали прямоугольного параллелепипеда?

А) сумме квадратов трех его измерений;

Б) сумме ребер;

В) сумме трех его измерений;

Г) сумме квадратов ребер;

Д) корню из суммы трех его измерений.

Глоссарий

  • Многогранник, составленный из двух равных многоугольников и , расположенных в параллельных плоскостях, и n параллелограммов …, , называется призмой.

  • Многоугольники и называются основаниями, а параллелограммы …, – боковыми гранями.

  • Призму с основаниями и называют n – угольной призмой.

  • Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани – параллелограммы.

  • Грани параллелепипеда, не имеющие общих вершин, называются противолежащими.

  • Параллелепипед, боковые ребра которого перпендикулярны к плоскости основания, называется прямым параллелепипедом.

  • У параллелепипеда все боковые грани прямоугольники, а основания параллелограммы. Если все грани параллелепипеда – прямоугольники, то его называют прямоугольным параллелепипедом.

  • Длины трех его ребер, которые выходят из одной вершины, называются измерениями прямоугольного параллелепипеда.

  • Прямоугольный параллелепипед, все три измерения которого равны, называется кубом.

Литература

  1. Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б. и др. Учеб. для 10 – 11 кл. сред. шк. – М.: Просвещение, 1992 – 207с.

  2. Геометрія: Підруч. для учнів 10 – 11 кл. з поглибл. вивч. математики в серед. загально-освіт. закладах /Г. П. Бевз, В. Г. Бевз, В. М. Владіміров, Н. Г. Владімірова. – 2-ге вид. – К.: Освіта, 2003. – 239 с.

  3. Лосєва Н. М. Геометричні тіла: Навчальний посібник. – Донецьк: ДонНУ, 2006. – 240 с.

  4. Погорелов А. В. Геометрия: Учеб. для 7 – 11 кл. общеобразоват. учреждений. – 5-е изд. – М.: Просвещение, 1995. – 383 с.

А

Б

В

Г

Д

см

9 см

см

24 см

см

Б

В

Г

Д

8

10

12

24

6

64.

64.

64. Объем параллелепипеда

Простой подход был возможен для расчета
объем блоков, потому что эти тела можно разделить на единичных объемов одинаковой формы ; однако не проходит проверку параллелепипедов . Вы должны принять метод, аналогичный
это относилось к определению площадей параллелограммов . Из этого опыта исходит Определение:

Два
тела имеют одинаковый объем, если становятся равными
после разложения или дополнения

или в других
слова,
, если они могут быть
представлены суммой или разностью конгруэнтных тел.

В самолете определение
площадь параллелограммов стала исследованием прямоугольников . Точно так же вы можете
уменьшить объем вычислений для параллелепипедов до блоков.
Если вставить в основание прямой параллелепипед
высоте от угла до противоположной стороны и проведите через него
плоскости, вертикальной к основанию, вы отрезаете треугольную
призма. Если вы теперь переместите эту клиновидную часть на другую сторону,
вы получаете блок . Параллелепипеды
и блоки дополняют друг друга
и
вы помните, что объем блока равен V=a b c.
Так как основание G блока такое же большое
параллелепипеда и третья сторона бруска
то же, требуется
объем
V=Gh .

Можно уменьшить наклонный
параллелепипед

аналогично прямому . По сути, вы вставляете обычный разрез (то есть разрез
перпендикулярно кромке) и переложить отрезанную часть на другую
конец, чтобы получить блок , равный исходному параллелепипеду, откуда
объем снова V=Gh .

Таким же образом вы можете
уменьшить легко любой прямой,
трехгранной призмы
в параллелепипед . Любой треугольник можно рассматривать как половину параллелограмма
и две призмы, построенные над разделенными треугольниками,
конгруэнтны , потому что поворот на два прямых угла вокруг оси ММ
заставляет их покрывать друг друга. Таким образом, трехгранная призма становится
половина параллелепипеда, а так как треугольник является половиной основания
параллелепипеда, его объем равен произведению основания
треугольник и высота.

Если основание призмы представляет собой произвольную прямолинейную фигуру,
его можно разложить на треугольники, а призму разделить на
перпендикулярные плоскости на прямые трехгранные призмы, откуда
объем каждого
прямая призма равна произведению своего основания на высоту
, то есть V = Gh.

последний следующий

Prisms — Топпер A Plus

by sastry

Призмы представляют собой трехмерные замкнутые поверхности.

Призма имеет две параллельных грани, называемых основаниями , которые являются конгруэнтными многоугольниками. Боковые грани представляют собой прямоугольники в прямой призме или параллелограммы в косой призме. В прямой призме соединяемые ребра и грани перпендикулярны граням основания.
Призмы также называют многогранниками, поскольку их грани представляют собой многоугольники. Правильная призма – это куб.

Параллелепипед

Призму, имеющую в основании параллелограмм, называют параллелепипедом . Это многогранник с 6 гранями, все параллелограммы.
Ребра призмы в местах пересечения боковых граней называются ее боковыми гранями . Боковые ребра призмы конгруэнтны на и параллельны на .

  • Объем призмы равен произведению площади основания на высоту призмы.
    V = Bh
    (Объем призмы: B = площадь основания, h = высота)
  • Площадь поверхности призмы представляет собой сумму площадей оснований и площадей боковых граней. Это просто означает сумму площадей всех граней.
    Сеть — это двумерная фигура, которую можно вырезать и сложить, чтобы получить трехмерное тело.

    Площадь поверхности прямой призмы S можно найти по формуле S = 2B + ph .
    B = площадь основания, p = периметр основания, h = высота.

Примечание: Поперечное сечение геометрического тела – это пересечение плоскости и тела.

Призма имеет одинаковое поперечное сечение (параллельное основанию) по всей своей длине.
Здесь показаны поперечные сечения (в одной плоскости) двух призм одинаковой высоты. Срезы поперечного сечения обозначены красным цветом и параллельны основаниям.
Если площади этих двух срезов поперечного сечения равны, призмы будут равны по объему.
Математик XVII века Бонавентура Кавальери обобщил это понятие для твердых тел.

Принцип Кавальери: Если в двух телах одинаковой высоты поперечные сечения, выполненные плоскостями, параллельными их основаниям и находящимися на одном и том же расстоянии от их соответствующих оснований, всегда равны, то объемы этих двух тел равны.
Для Алгебры 1 вы должны знать обобщенную формулировку этого принципа:
«Две призмы будут иметь равные объемы, если их основания имеют одинаковую площадь и их высоты (высоты) равны».

Отражающие призмы

При изучении оптики призмы используются для отражения света, например, в биноклях. Призмы также используются для рассеивания света или разделения его на спектральные цвета радуги.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *