Первый закон ньютона закон инерции: формула и определение / Блог / Справочник :: Бингоскул

Содержание

формула и определение / Блог / Справочник :: Бингоскул

Кратко о 1 законе Ньютона: формула, определение и формулировка

Помни!!!

  • В основе динамики материальной точки лежат три закона Ньютона.
  • Первый закон Ньютона — закон инерции
  • Под телом подразумевают материальную точку, движение которой рассматривают в инерциальной системе отсчета.

1. Формулировка

«Существуют такие инерциальные системы отсчёта, относительно которых тело, если на него не действуют другие силы (либо действие других сил компенсируется), находится в покое либо движется равномерно и прямолинейно».

2. Определение

Первый закон Ньютона — всякая материальная точка (тело) сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит её изменить это состояние.

Первый закон Ньютона — закон инерции (Галилей вывел закон инерции)

Закон инерции: Если на тело нет внешних воздействий, то данное тело сохраняет состояние покоя или равномерного прямолинейного движения относительно Земли.

Инерциальная система отсчёта (ИСО) – система, которая либо покоится, либо движется равномерно и прямолинейно относительно какой-то другой инерциальной системы. Т.е. система отсчета, в которой выполняется 1-й закон Ньютона.

  • Масса тела – количественная мера его инертности. В СИ она измеряется в килограммах.
  • Сила – количественная мера взаимодействия тел. Сила – векторная величина и измеряется в ньютонах (Н). Сила, которая производит на тело такое же действие, как несколько одновременно действующих сил, называется равнодействующей этих сил.

3. Формула

Формулы нет. Формула первого закона Ньютона не существует.

Первый закон Ньютона содержится 2 важных утверждения:
  1. все тела обладают свойством инерции;
  2. инерциальные системы отсчета существуют.

Это интересно:

Первый закон Ньютона. Масса. Сила

Мы знаем, что тело может двигаться равномерно и прямолинейно. В таком случае его скорость постоянна и не меняется по величине и направлению. Если же скорость тела меняет величину или величину и направление, то тело движется с определенным ускорением a→.

С точки зрения кинематики нас не интересует, почему тело движется тем или иным образом. Динамика в физике, наоборот, рассматривает взаимодействие тел как причину, которая определяет характер движения. 

Динамика

Взаимодействие тел определяет характер движения. 

Динамика — раздел механики, в котором изучаются законы взаимодействия тел. 

1 закон Ньютона

Законы динамики были сформулированы Исааком Ньютоном и опубликованы в 1687 году. Три закона Ньютона составляют основу классической механики, которая на протяжении нескольких столетий (вплоть до 20 века) главенствовала, как основная научная парадигма.

Классическая механика справедлива для тел, движущихся с малыми скоростями (скоростями, которые значительно меньше скорости света). Вообще законы Ньютона были выведены путем эмпирических наблюдений и обобщения опытных фактов.

Представим изолированное тело, на которое не действуют никакие другие тела. Это самая простая механическая система. Для описания движения тела необходима система отсчета.

Напомним, что система отсчета — это тело отсчета и связанные с ним системы координат и часов (отсчета времени). Причем в разных системах отсчета движение тела будет разным.

Сформулируем первый закон Ньютона. Он говорит о существовании так называемых инерциальных систем отсчета (ИСО) и называете также законом инерции. Существуют разные определения первого закона Ньютона.

Первый закон Ньютона

Существуют системы отсчета, называемые инерциальными. В таких системах отсчета тела движутся равномерно и прямолинейно или покоятся, если на них не действуют другие тела или если их действие скомпенсировано.

Инерция — это свойство тел сохранять свою скорость при отсутствии на него воздействий со стороны других тел. Именно поэтому второе название первого закона Ньютона — закон инерции. 

Первая формулировка закона инерции была выведена еще Галилео Галилеем в 1632 году. Ньютон лишь обобщил его выводы. 

Важно!

В классической механике законы движения формулируются для инерциальных систем отсчета. 

При описании движения тел у поверхности Земли системы отсчета, связанные с Землей, можно приблизительно считать и инерциальными. Отклонения от закона инерции обнаруживаются при повышении точности экспериментов и обусловлены вращением Земли вокруг своей оси. 

Приведем пример, иллюстрирующий неинерциальность системы отсчета, связанной с Землей. Рассмотрим колебания маятника Фуко. Это массивный шар, подвешенный на длинной нити и совершающий малые колебания относительно положения равновесия. 

Плоскость колебаний маятника Фуко относительно Земли не остается неизменной вследствие вращения Земли. Проекция траектории маятника на поверхность Земли имеет вид розетки. Будь система инерциальной, плоскость качения маятника относительно Земли оставалась бы неизменной.

Еще одна система, которую можно приближенно принять за инерциальную — гелиоцентрическая система отсчета. Начало координат в ней помещено в центр Солнца, а оси направлены на отдаленные звезды. Эта система отсчета еще называется системой Коперника. Именно ее использовал Ньютон при выводе закона Всемирного тяготения (1682 г.). 

Система отсчета, связанная с поездом, который с постоянной скоростью движется по прямым рельсам, также может считаться инерциальной. Все инерциальные системы отсчета образуют класс систем, которые движутся друг относительно друга равномерно и прямолинейно.

Что является причиной изменения скорости тела в инерциальной системе отсчета? Согласно первому закону Ньютона, это взаимодействие с другими телами. Чтобы количественно описать движение тела и взаимодействие его с другими телами, необходимо ввести понятия массы и  силы.

Масса

Определение. Масса

Масса — физическая величина, мера инертности тела. Чем больше масса, тем больше инертность.

Единица измерения массы в международной системе СИ — килограмм (кг). 

Масса в физике — скалярная и аддитивная величина.  

Это значит, что если тело состоит из нескольких частей массами m1, т2, т3, .. , тn, то его общая масса будет равна сумме масс составных частей: m=m1+т2+т3+..+тn.

Вы наверняка замечали, что разные тела по-разному меняют свою скорость. Тяжелый грузовик остановить гораздо сложнее, чем игрушечную машинку, так как он обладает большей массой и, соответственно, инертностью.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

В результате взаимодействия двух тел меняются их скорости. Это значит, что в процессе взаимодействия тела приобретают ускорения. При любых воздействиях отношение ускорений двух тел остается постоянным. При этом, массы тел обратно пропорциональны ускорениям, которые они приобретают.

m1m2=-a2a1

Здесь a1 и a2  — проекции векторов ускорений a1 →и a2 →на ось OX. Знак минус означает, что ускорения тел направлены в противоположные стороны.

Какие есть способы измерения массы тела? Самый простой и очевидный — сравнить массу тела с массой эталона. В системе СИ, как уже говорилось, mэт=1 кг.

Сила

Определение. Сила

Сила — векторная физическая величина, количественная мера взаимодействия тел. 

В системе СИ сила измеряется в Ньютонах (Н).

Именно сила — причина изменения движения тела. На тело может действовать несколько сил, которые имеют различную физическую природу. Например, сила тяжести, сила трения скольжения и сила трения качения, сила упругости и т.д.

Равнодействующая сила — векторная сумма всех сил, действующих на тело. 

Как измерить силу? Необходимо установить эталон силы и найти способ сравнить другие силы с этим эталоном. 

В качестве эталона можно использовать, например, силу, с которой растянутая до определенной величины пружина действует на прикрепленное к ней тело. Способ сравнения сил очень прост: если под действием двух сил (измеряемой F→ и эталонной  F→0) тело движется равномерно или покоится, то эти силы равны по модулю. 

F=F0.

Если измеряемая сила больше эталонной, то можно добавить еще одну эталонную пружину. При соблюдении условий, указанных выше, можно сказать, что в таком случае

F=2F0.

Для сравнения сил, меньших чем 2F0, можно использовать схему, приведенную ниже.

Эталон силы (единица измерения)

За эталон силы в международной системе СИ принята сила в 1 Ньютон. Это такая сила, которая сообщает телу массой 1 килограмм ускорение, равное 1 мс2.

Прибор для измерения силы — динамометр. По сути, это пружина, откалиброванная специальным образом. При растяжении пружины приложенная сила указывается на шкале динамометра.

Урок 7. законы динамики ньютона — Физика — 10 класс

Физика, 10 класс

Урок 7. Законы динамики Ньютона

Перечень вопросов, рассматриваемых на уроке: основные характеристики массы и силы; взаимодействие тел; законы динамики Ньютона и их особенности; экспериментальная проверка справедливости законов Ньютона.

Глоссарий по теме.

Масса – одна из основных характеристик материи, определяющая ее инерциальные и гравитационные свойства.

Сила – векторная физическая величина, являющаяся мерой взаимодействия тел.

Взаимодействие – одновременное влияние (действие) тел друг на друга.

Равнодействующая сила производит на тело такое же действие (вызывает такое же действие), как несколько сил, одновременно приложенных к телу.

Инерция – явление сохранения скорости тела при отсутствии (или компенсации) действия на него других тел.

Инерциальная система отсчета – система отсчета, в которой тело, не взаимодействующее с другими телами, сохраняет состояние равномерного прямолинейного движения или покоя.

Неинерциальные системы отсчета — система отсчета, которая двигается с ускорением относительно инерциальной системы отсчета.

Список литературы:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М. : Просвещение, 2017. – С. 64 – 87.

О. Ф. Кабардин, В. А. Орлов, А. В. Паномарева. Факультативный курс физики. М.: Просвещение, 1987. – С. 188 – 200.

Открытые электронные ресурсы:

http://kvant.mccme.ru/1971/05/zadachi_na_zakony_nyutona.htm

Основное содержание урока

Масса (лат. « massa» — ком, кусочек, глыба) — физическая величина, одна из основных характеристик материи, определяющая ее инерциальные и гравитационные свойства.

Способы измерения массы:1) сравнение с эталоном; 2) взвешивание на весах. В классической механике масса — аддитивная величина; не зависит от рода взаимодействия и скорости движения тела.

Сила — мера взаимодействия тел. Атрибуты силы: точка приложения силы, линия действия силы, модуль силы.

Первый закон Ньютона (закон инерции): если на тело не действуют другие тела, то тело движется прямолинейно и равномерно.

Особенности первого закона Ньютона: указывает на существование инерциальных систем отсчета; равнодействующая всех сил равна нулю: F = 0.

Если есть одна инерциальная система отсчета, то любая другая система, движущаяся относительно неё прямолинейно и равномерно, также является инерциальной.

Второй закон Ньютон: ускорение тела прямо пропорционально силе, действующей на него, и обратно пропорционально его массе: a =F/m.

Другая запись формулы второго закона Ньютона (основное уравнение динамики): F =ma.

Формулировка второго закона Ньютона для системы тел: приращение импульса ∆Pсистемы тел равно по величине и по направлению импульсу внешних сил Fвн, действующих на тело, за то же время: ∆p =(F∆ Pсист).

Особенности второго закона Ньютона: выполняется в инерциальных системах отсчета; скорость тела мала по сравнению со скоростью света; макрообъекты; постоянная масса; справедлив для любых сил; сила — причина, ускорение – следствие; вектор ускорения а сонаправлен с вектором F.

Согласно третьему закону Ньютона тела действуют друг на друга с силами, равными по модулю и противоположными по направлению:

F12 =-F 21

Особенности третьего закона Ньютона: выполняется в инерциальных системах отсчета; силы всегда действуют парами; силы являются силами одной природы; силы не уравновешивают друг друга; выполняется для всех сил в природе

Разбор тренировочных заданий

1. Вставьте в текст пропущенные слова из следующего ряда: действие, скорость, направление, деформация, нагревание.

Сила характеризует (_____________) одного тела на другое, в результате которого изменяется (___________) тела или происходит (______________) тел.

Правильный ответ: действие; скорость, деформация

2. Автомобиль массой 0,5 т. разгоняется с места равноускоренно и достигает скорости 40 м/с  за 20 с. Равнодействующая всех сил, действующих на автомобиль равна __ кН.

Решение:

При V0=0 ускорение автомобиля равно:

a =v /∆t

Следовательно, равнодействующая сила по второму закону Ньютона равна:

F = ma = mv/∆t

Проверка размерностей: F = кг ×  м/с  × с (-1)= [ Н ]

F= 500 кг ×  (40 м/с)/(20 с)= 1000 Н = 1 кН

Ответ: F= 1 кН.

Первый закон Ньютона, теория и онлайн калькуляторы

Задание. Небольшой камешек бросают в шахту, глубина которой равна $h$, выясняется, что падая, тело отклонилось от вертикали в восточном направлении. Каково это отклонение? Сопротивлением воздуха пренебречь. Что можно сказать, в связи с результатом данного опыта, об инерциальности системы отсчета, которую связывают с Землей?

Решение. Сделаем рисунок.

Отклонение движения тела от вертикали происходит благодаря вращению Земли вокруг собственной оси. Обозначим скорость движения точек поверхности Земли как $v_1.$ Скорость движение точек дна шахты обозначим $v_2$, тогда разность этих скоростей равна:

\[\Delta v=v_2-v_1\left(2.1\right).\]

При своем падении камень отклонится от вертикали на расстояние:

\[x=\Delta vt\ \left(2.2\right),\]

где $t$ — время падения тела.

Величину $\Delta v$ найдем из периода обращения Земли вокруг своей оси (T):

\[T=\frac{2\pi R}{v}(2.3),\]

тогда

\[\Delta v=\frac{2\pi R}{T}-\frac{2\pi \left(R-h\right)}{T}=\frac{2\pi h}{T}\ \left(2.4\right),\]

где $R$ — Радиус Земли в районе экватора.

Если тело падает свободно в поле тяжести Земли, из кинематического уравнения движения имеем (движение по оси Y (рис. 2}{2}\left(2.5\right).\]

Из формулы (2.5) выразим время, которое потратил камень на падение:

\[t=\sqrt{\frac{2h}{g}}\ \left(2.6\right).\]

Подставим в выражение (2.2) время ($t$) из (2.6) и изменение скорости ($\Delta v$) из (2.4) Найдем искомое отклонение от вертикали:

\[x=\frac{2\pi h}{T}\sqrt{\frac{2h}{g}}.\]

Ответ. $x=\frac{2\pi h}{T}\sqrt{\frac{2h}{g}}.\ $ В горизонтальном направлении на камень не действуют другие тела, тем не менее, $x\ne 0$ это означает, что система отсчета, связанная с Землей, строго говоря, не является инерциальной системой отсчета, так как в ней не выполняется первый закон Ньютона (или выполняется с некоторым допущением). Это понятно уже по тому, что если система отсчета вращается, как Земля, или просто движется по криволинейной траектории, относительно любой инерциальной системы, то она не может быть инерциальной. Однако, при решении большинства задач неинерциальностью системы отсчета, связанной с Землей пренебрегают.

Первый закон Ньютона

Пользователи также искали:



4 закон ньютона,

первый закон ньютона формула 9 класс,

первый закон ньютона формулировка,

первый закон ньютона кратко,

первый закон ньютона примеры,

сформулируйте первый закон ньютона,

законы,

закон,

Ньютона,

ньютона,

первый,

Первый,

Первый закон Ньютона,

формула,

законы ньютона формулы,

закон ньютона,

сформулируйте,

формулировка,

примеры,

кратко,

класс,

формулы,

первый закон ньютона примеры,

первый закон ньютона кратко,

первый закон ньютона формула 9 класс,

сформулируйте первый закон ньютона,

4 закон ньютона,

первый закон ньютона формулировка,

первый закон ньютона формула,

первый закон ньютона формула класс,

первый закон ньютона,

именные законы и правила. первый закон ньютона,

Физические основы механики

Г. Галилей (1564–1642) справедливо считается основателем физики как науки. Ему мы обязаны развитием современного метода исследований, кратко выражающегося в цепочке: эксперимент => модель (выделение в явлении главных особенностей, то есть применение абстракции) => математическое описание => следствия модели => новый эксперимент для их проверки.

Среди прочих научных достижений, в механике им были введены два основополагающих принципа: принцип инерции и принцип относительности. Принцип инерции Галилея был повторен И. Ньютоном (1643–1727) в качестве первого закона механики.

Первый закон Ньютона гласит:

Существуют такие системы отсчета, в которых всякая материальная точка находится в состоянии покоя или равномерного прямолинейного движения до тех пор, пока это состояние не будет изменено воздействием со стороны других тел. Такие системы отсчета принято называть инерциальными.

Ответ на вопрос: «Существуют ли инерциальные системы отсчета или нет?», как всегда, дает эксперимент. По результатам современных измерений гелиоцентрическая система отсчета, в которой неподвижен центр Солнца, и оси которой направлены на неподвижные звезды, является инерциальной. Это означает следующую простую вещь: существующие акселерометры (измерители ускорения) не обнаруживают отклонений от первого закона Ньютона в гелиоцентрической системе отсчета. Покой или равномерное прямолинейное движение — это состояние с равным нулю ускорением, следовательно, если тело, не подверженное воздействиям извне, приобретает ускорение, то это означает, что движение этого тела рассматривается в неинерциальной системе отсчета. Солнечная система совершает финитное движение в пределах нашей галактики (Млечный путь), любое финитное движение есть движение с ускорением, но солнечная система далека от центра галактики — мы периферийные жители — кривизна её траектории ничтожна, наши приборы не обнаруживают ускорений и мы утверждаем, что гелиоцентрическая система отсчета инерциальна. Инерциальная система отсчета — ещё одна идеализация: в точном смысле инерциальных систем отсчета не существует. Естественно предположить, что это обстоятельство было в ряду тех, что подвигли Эйнштейна на создание общей теории относительности, в которой утверждается физическое равноправие всех вообще, а не только инерциальных, систем отсчета, а поля сил инерции эквивалентны гравитационным полям (так называемый «принцип эквивалентности» подробнее речь об этом пойдет позже).

В дальнейшем будет видно, что любая система отсчета, движущаяся поступательно с постоянной по величине и направлению скоростью относительно некоторой инерциальной системы отсчета, также инерциальна. Другими словами, существование одной инерциальной системы отсчета означает существование бесконечно большого числа таких систем.

Свойство тела сохранять состояние покоя или прямолинейного равномерного движения называется инерцией. Сам этот принцип — принцип инерции Галилея (или первый закон Ньютона) — далеко не столь очевиден.

До Галилея думали, что для движения нужна какая-то причина, движущая сила. Даже великий Леонардо да Винчи писал: «Всякое движение стремится к своему сохранению, или же каждое движущееся тело движется постоянно, пока в нем сохраняется действие его двигателя». Удивительно, но туповатый полковник фон Циллергут из книги Я. Гашека «Похождения бравого солдата Швейка», мыслил похоже: нет бензина, не работает двигатель, автомобиль останавливается. После Галилея стала возможной чеканная латинская формулировка Р. Декарта (1596–1650): «Quod in vacuo movetur, semper moveri» (что движется в пустоте, будет двигаться всегда).

Дело в том, что в природе действительно никогда не наблюдаются тела, вечно сохраняющие состояние покоя или прямолинейного равномерного движения. Нужно было проявить ту самую способность строить модели, отбрасывать несущественное, абстрагироваться, чтобы открыть принцип инерции. Изучая основные законы механики, мы идеализируем систему: пренебрегаем силами трения, считаем, что поблизости нет других тел и т. д. И тогда принцип инерции проявляет себя во всей своей красе и силе:

Для равномерного прямолинейного движения не нужно двигателя, движущая сила нужна для изменения такого вида движения тела.

Видео 3.1. Стальной шарик в поле магнита. Эксперимент, показывающий, что для искривления траектории необходима соответствующая внешняя сила.

Дополнительная информация

http://www.plib.ru/library/book/14978.html – Д.В. Сивухин Общий курс физики, том 1, Механика Изд. Наука 1979 г. – стр. 91–97 (§16): обсуждается принцип относительности Галилея, приводится дословное рассуждение самого Галилея!

http://www.gaudeamus.omskcity.com/PDF_library_natural-science_2.html – Киттель Ч., Наит У., Рудерман М. Курс общей физики. Том 1. Механика. Изд. Наука, 1975 г. – стр. 79–88 – описание ультрацентрифуги и оценка ускорений реальных систем отсчета, применяемых в механике.

Три закона Ньютона | Физика

Раздел механики, в котором изучают, как взаимодействие тел влияет на их движение, называют динамикой.

Основные законы динамики открыли итальянский ученый Галилео Галилей и английский ученый Исаак Ньютон. Вы изучали эти законы в курсе физики основной школы. Напомним их.

1. Первый закон ньютона (закон инерции)

Повторим один из опытов, которые поставил итальянский ученый Галилео Галилей.

Поставим опыт
Будем скатывать шар по наклонной плоскости и наблюдать за его дальнейшим движением по горизонтальной поверхности.
Если она посыпана песком, шар остановится очень скоро (рис. 13.1, а).
Если она покрыта тканью, шар катится значительно дольше (рис. 13.1, б).
А вот по стеклу шар катится очень долго (рис. 13.1, в).

На основании этого и подобных опытов Галилей открыл закон инерции: если на тело не действуют другие тела или действия других тел скомпенсированы, то тлело движется равномерно и прямолинейно или покоится.

Сохранение скорости тела, когда на него не действуют другие тела или действия других тел скомпенсированы, называют явлением инерции.

? 1. Почему при встряхивании мокрого зонта с него слетают капли воды?

Особенно красиво смотрится явление инерции в фигурном катании (рис. 13.2).

Закон инерции называют также первым законом Ньютона, потому что Ньютон включил его в качестве первого закона в систему трех законов динамики, которые называют «тремя законами Ньютона».

Инерциальные системы отсчета

Закон инерции выполняется с хорошей точностью в системе отсчета, связанной с Землей. Но он не выполняется, например, в системе отсчета, связанной с тормозящим автобусом: при резком торможении пассажиры отклоняются вперед, хотя на них не действуют направленные вперед силы.
Системы отсчета, в которых выполняется закон инерции, называют инерциальными.

Инерциальных систем отсчета бесконечно много. Ведь если некоторая система отсчета является инерциальной, то инерциальной будет любая другая система отсчета, движущаяся относительно нее прямолинейно и равномерно.

Сформулируем теперь первый закон Ньютона с указанием систем отсчета, в которых он выполняется.

Существуют системы отсчета (называемые инерциальными), относительно которых тела сохраняют свою скорость неизменной, если на них не действуют другие тела или действия других тел скомпенсированы.

Изучать влияние взаимодействия тел на их движение удобнее всего именно в инерциальных системах отсчета, потому что в этих системах отсчета изменение скорости тела обусловлено только действием других тел на это тело.

Принцип относительности Галилея

Как показывает опыт, во всех инерциальных системах отсчета все механические явления протекают одинаково при одинаковых начальных условиях.

Это утверждение называют принципом относительности Галилея.

В справедливости принципа относительности Галилея легко убедиться, сидя в поезде, который плавно движется с постоянной скоростью. В таком случае все опыты с механическими явлениями, поставленные в вагоне, дадут одинаковые результаты независимо от того, едет поезд или стоит: например, лежащее на столе яблоко будет покоиться, а свободно падающие предметы будут падать вертикально вниз (относительно вагона!).

Поэтому пассажир может определить, едет поезд или стоит на станции, только посмотрев в окно (рис. 13.3).

2. Второй закон ньютона

Равнодействующая

Как вы уже знаете из курса физики основной школы, силы – векторные величины: каждая сила характеризуется числовым значением (модулем) и направлением. Силы измеряют с помощью динамометров. Единицей силы в СИ является 1 ньютон (Н). Определение ньютона мы дадим позже.

Если на тело, которое можно считать материальной точкой, действуют несколько сил, то их можно заменить одной силой, которая является векторной суммой этих сил. Ее называют равнодействующей.

На рисунке 13.4 показано, как найти равнодействующую двух сил: а

? 2. К телу приложены две силы, равные по модулю 1 Н и 2 Н. Отвечая на следующие вопросы, сделайте пояснительные чертежи.
а) Какое наименьшее значение может принимать равнодействующая этих сил? Как направлены силы в этом случае?
б) Какое наибольшее значение может быть у равнодействующей этих сил? Как направлены силы в атом случае?
в) Может ли равнодействующая этих сил быть равной 2 Н?

? 3. К телу приложены две силы, равные по модулю 3 Н и 4 Н. Может ли их равнодействующая быть равной 5 Н? Если да, то чему в этом случае равен угол между приложенными силами?

? 4. К телу приложены три равные по модулю силы по 1 Н каждая. Как они должны быть направлены, чтобы:
а) равнодействующая была равна 1 Н?
б) равнодействующая была равна нулю?
в) равнодействующая была равна 2 Н?

Масса тела

В курсе физики основной школы рассказывалось также об опытах, которые доказывают, что под действием постоянной силы тело движется с постоянным ускорением.

Коэффициент пропорциональности между силой и ускорением характеризует инертные свойства тела и называется массой тела. Чем больше масса тела, тем большую силу надо приложить к телу, чтобы сообщить ему то же ускорение.

Единицей массы в СИ является 1 килограмм (кг). Это масса эталона, хранящегося в Международном бюро мер и весов (Франция). Приближенно можно считать, что одному килограмму равна масса 1 л воды.

Обозначают массу буквой m.

Второй закон Ньютона

Соотношение между равнодействующей всех сил, приложенных к телу, массой тела и его ускорением Ньютон сформулировал как второй из трех основных законов механики.

Равнодействующая всех сил, приложенных к телу, равна произведению массы тела на его ускорение:

В инерциальной системе отсчета сила является причиной ускорения, поэтому второй закон Ньютона часто записывают так:

Итак, приобретаемое телом ускорение прямо пропорционально равнодействующей приложенных к телу сил, одинаково с ней направлено и обратно пропорционально массе тела.

Заметим, что второй закон Ньютона справедлив только в инерциальных системах отсчета. Напомним: в этих системах отсчета ускорение тела обусловлено только действием на него других тел.

Единицу силы в СИ определяют на основе второго закона Ньютона: сила в 1 ньютон сообщает телу массой 1 кг ускорение 1 м/с2. Поэтому 1 Н = 1 кг * м/с2.

Сила тяжести

Как вы уже знаете, под действием притяжения Земли все тела падают с одинаковым ускорением – ускорением свободного падения . Силу притяжения, действующую на тело со стороны Земли, называют силой тяжести и обозначают т.

Когда тело свободно падает, на него действует только сила тяжести, поэтому она и является равнодействующей всех приложенных к телу сил. При атом тело движется с ускорением , поэтому из второго закона Ньютона получаем:

? 5. С какой силой Земля притягивает:
а) килограммовую гирю?
б) человека массой 60 кг?

Сила, скорость и ускорение – кто «третий лишний»?

Неочевидное следствие второго закона Ньютона состоит в том, что он утверждает: направление ускорения тела совпадает с направлением равнодействующей приложенных телу сил. Скорость же вела может быть при этом направлена как угодно!

Поставим опыт

Бросим шарик вниз, затем – вверх, а потом – под углом к горизонту (рис. 13.5)

На шарик во время всего движения действует только направленная вниз сила тяжести. Однако в первом случае (а) скорость шарика совпадает по направлению с этой силой, во втором случае (б) – скорость вначале противоположна силе тяжести, а в третьем (в) – скорость направлена под углом к силе тяжести (например, в верхней точке траектории скорость перпендикулярна силе тяжести).

? 6. Тело равномерно движется по окружности. Чему равен угол между скоростью тела и равнодействующей?

? 7. Чему равен угол между скоростью автомобиля и равнодействующей приложенных к нему сил, когда автомобиль:
а) разгоняется на прямой дороге?
б) тормозит на прямой дороге?
в) движется равномерно по дуге окружности?

3. Третий закон ньютона

Поставим опыт

Предложим первокласснику и десятикласснику посоревноваться в перетягивании каната, стоя на скейтбордах: тогда трением между колесами и полом можно пренебречь (схема опыта показана на рисунке 13.6).

Мы увидим, что оба соперника движутся с ускорением. Значит, на каждого из них действу другого. Ускорения соперников направлено противоположно, причем ускорение первоклассника намного больше ускорения десятиклассника.

Точные опыты, подобные описанном выше, показывают, что модули ускорений обратно пропорциональны массам тел:

a1/a2 = m2/m1.

Поскольку ускорения направлены противоположно,

Согласно второму закону Ньютона m11 = 1 и m22 = 2, где 1 – сила, действующая на первое тело со стороны второго, а 2 – сила, действующая на второе тело со стороны первого.

Из соотношения (5) следует, что 1 = –2. Это и есть третий закон Ньютона.

Тела взаимодействуют друг с другом с силами, равными по модулю и противоположными по направлению.

Свойстве сил, с которыми тела взаимодействуют друг с другом:
– эти силы обусловлены одним и тем же взаимодействием и поэтому имеют одну и ту же физическую природу;
– эти силы направлены вдоль одной прямой;
– эти силы приложены к разным телам и поэтому не могут уравновешивать друг друга.

Примеры проявления третьего закона Ньютона

Когда камень падает на Землю, на него действует сила тяжести 1 со стороны Земли, а на Землю – сила 2 притяжения со стороны камня (рис. 13.7, для наглядности масштаб не соблюден). Обе эти силы относятся к силам всемирного тяготения.

? 8. Согласно третьему закону Ньютона F1 = F2. Почему же ускорение камня заметно, а ускорение Земли – нет?

Когда камень лежит на Земле, на него кроме силы тяжести, которую будем обозначать теперь т, действует еще направленная вверх сила давления со стороны опоры (рис. 13.8, а). Она направлена перпендикулярно поверхности опоры, поэтому ее называют силой нормальной реакции (перпендикуляр называют часто нормалью). (Когда тело можно считать материальной точкой, все действующие на него силы желательно изображать на чертежах приложенными в одной точке.)

Когда камень покоится, его ускорение равно нулю. Значит, согласно второму закону Ньютона равнодействующая приложенных к камню сил и т, равна нулю (будем говорить, что в таком случае силы уравновешивают друг друга):

Отсюда следует:

Опора давит на камень силой , направленной вверх, а камень, по третьему закону Ньютона, давит на опору силан , направленной вниз (рис. 13.8, 6). Обе эти силы – силы упругости.

Силу, с которой тело вследствие действия на него силы тяжести давит на горизонтальную опору или растягивает вертикальный поднес, называют весом тела.

Итак, – это вес камня. По третьему закону Ньютона

Из формул (8) и (9) следует:

Итак, вес покоящегося тела равен действующей на это тело силе тяжести. Однако несмотря на это вес и сила тяжести существенно отличаются друг от друга:
– эти силы приложены к разным телам: вес действует на опору или поднес, а сила тяжести – на само тело;
– эти силы имеют разную физическую природу: вес – это сила упругости, а сила тяжести – проявление сил всемирного тяготения.

Кроме того, как мы увидим несколько позже (§ 16), вес может быть не равен силе тяжести и даже быть равным нулю.

Дополнительные вопросы и задания

9. Ускорение тела в некоторой инерциальной системе отсчета равно 3 м/с2 и направлено вдоль оси x. Чему равно ускорение этого тела в инерциальной системе отсчета, движущейся относительно заданной со скоростью 4 м/с, направленной вдоль оси y? Есть ли здесь лишние данные?

10. Брусок массой 0,5 кг соскальзывает с наклонной плоскости с углом наклона 30º. Скорость бруска увеличивается. Ускорение бруска равно 2 м/с2. Изобразите на чертеже равнодействующую приложенных к бруску сил. Чему она равна? Есть ли в задаче лишние данные?

11. Зависимость координаты x автомобиля от времени выражается в единицах СИ формулой x = 20 – 10t + t2. Ось x направлена вдоль дороги, масса автомобиля 1 т.
а) Чему равна равнодействующая приложенных к автомобилю сил?
б) Как она направлена в начальный момент – в направлении скорости автомобиля или противоположно ей?

12. Автомобиль массой 1 т едет со скоростью 72 км/ч по выпуклому мосту, имеющему форму дуги окружности радиусом 50 м. Сделайте чертеж и ответьте на вопросы.
а) Чему равна и как направлена равнодействующая сил, приложенных к автомобилю в верхней точке моста?
б) Какие силы действуют на автомобиль в этой точке? Как они направлены и чему они равны?
в) Во сколько раз вес автомобиля в верхней точке моста меньше действующей на автомобиль силы тяжести?

закон инерции | Открытие, факты и история

Закон инерции , также называемый первым законом Ньютона , в физике постулирует, что если тело находится в состоянии покоя или движется с постоянной скоростью по прямой линии, оно будет оставаться в состоянии покоя или продолжайте двигаться по прямой с постоянной скоростью, если на него не действует сила. Закон инерции был впервые сформулирован Галилео Галилеем для горизонтального движения на Земле, а затем был обобщен Рене Декартом. До Галилея считалось, что любое горизонтальное движение требует прямой причины, но Галилей вывел из своих экспериментов, что движущееся тело будет оставаться в движении, если сила (например, трение) не заставит его остановиться.Этот закон также является первым из трех законов движения Исаака Ньютона.

Британская викторина

Викторина «Все о физике»

Кто был первым ученым, проведшим эксперимент по управляемой цепной ядерной реакции? Какая единица измерения для циклов в секунду? Проверьте свою физическую хватку с помощью этой викторины.

Хотя принцип инерции является отправной точкой и фундаментальным предположением классической механики, он менее чем интуитивно очевиден для неподготовленного глаза. В механике Аристотеля и в обычном опыте объекты, которые не толкают, имеют тенденцию останавливаться. Закон инерции был выведен Галилеем из его экспериментов с шарами, катящимися по наклонным плоскостям.

Для Галилея принцип инерции был фундаментальным для его центральной научной задачи: он должен был объяснить, как это возможно, если Земля действительно вращается вокруг своей оси и вращается вокруг Солнца, мы не ощущаем этого движения. Принцип инерции помогает дать ответ: поскольку мы движемся вместе с Землей, и наша естественная тенденция состоит в том, чтобы сохранять это движение, Земля кажется нам покоящейся.Таким образом, принцип инерции далек от утверждения очевидного, а когда-то был центральным вопросом научных споров. К тому времени, когда Ньютон разобрался во всех деталях, стало возможно точно учесть небольшие отклонения от этой картины, вызванные тем фактом, что движение поверхности Земли не является равномерным движением по прямой линии. В ньютоновской формулировке обычное наблюдение, что тела, которые не толкают, имеют тенденцию приходить в состояние покоя, объясняется тем фактом, что на них действуют несбалансированные силы, такие как трение и сопротивление воздуха. В классической ньютоновской механике нет важного различия между покоем и равномерным движением по прямой: их можно рассматривать как одно и то же состояние движения, наблюдаемое разными наблюдателями: один движется с той же скоростью, что и частица, а другой движется с постоянной скоростью. скорость относительно частицы.

Первый закон движения Ньютона

В предыдущей главе исследования было описано множество способов, с помощью которых может быть описано движение (слова, графики, диаграммы, числа и т. Д.)) обсуждалось. В этом разделе («Законы движения Ньютона») будут обсуждаться способы объяснения движения. . Исаак Ньютон (ученый 17 века) выдвинул множество законов, объясняющих, почему объекты движутся (или не двигаются) именно так. Эти три закона стали известны как три закона движения Ньютона. В центре внимания Урока 1 находится первый закон движения Ньютона, который иногда называют законом инерции .

Первый закон движения Ньютона часто называют

.

Покоящийся объект остается неподвижным, а объект в движении остается в движении с той же скоростью и в том же направлении, если на него не действует неуравновешенная сила.

Два пункта и условие

В этом утверждении есть два пункта или части — один, который предсказывает поведение стационарных объектов, а другой, который предсказывает поведение движущихся объектов. Эти две части представлены на следующей диаграмме.

Поведение всех объектов можно описать, сказав, что объекты имеют тенденцию «продолжать делать то, что они делают» (если на них не действует неуравновешенная сила).Если они находятся в состоянии покоя, они будут продолжать в том же состоянии покоя. Если они движутся со скоростью 5 м / с на восток, они продолжат движение в том же состоянии (5 м / с, восток). Если они будут двигаться со скоростью 2 м / с влево, они продолжат движение в том же состоянии (2 м / с, слева). Состояние движения объекта поддерживается до тех пор, пока объект не подвергается воздействию несбалансированной силы. Все объекты сопротивляются изменениям в своем состоянии движения — они склонны «продолжать делать то, что делают».«

Существует важное условие, которое должно быть выполнено, чтобы первый закон был применим к любому данному ходатайству. Состояние описывается фразой «… если на него не действует неуравновешенная сила». Пока силы не разбалансированы, то есть пока силы уравновешены, применяется первый закон движения. Эта концепция сбалансированной и неуравновешенной силы будет обсуждаться более подробно позже в Уроке 1.

Предположим, вы наполнили форму для запекания водой до края и прошли по овальной дорожке, пытаясь пройти круг за наименьшее время.Вода имеет тенденцию выливаться из контейнера в определенных местах на трассе. В общем вода пролилась когда:

  • контейнер был неподвижен, и вы пытались его переместить
  • контейнер находился в движении, и вы пытались его остановить
  • : контейнер двигался в одном направлении, и вы попытались изменить его направление.

Вода разливается при изменении состояния движения контейнера.Вода сопротивлялась этому изменению в своем собственном состоянии движения. Вода имела тенденцию «продолжать делать то, что делала». Контейнер был переведен из состояния покоя на высокую скорость на старте; вода осталась в покое и пролилась на стол. Контейнер был остановлен около финиша; вода продолжала двигаться и пролилась через передний край контейнера. Контейнер был вынужден двигаться в другом направлении, чтобы сделать изгиб; вода продолжала двигаться в том же направлении и пролилась через край.Поведение воды во время круга по трассе можно объяснить первым законом движения Ньютона.

Повседневное применение Первого закона Ньютона

Есть много применений первого закона движения Ньютона. Рассмотрим некоторые из ваших опытов в автомобиле. Вы когда-нибудь наблюдали поведение кофе в чашке, наполненной до краев, при запуске автомобиля из состояния покоя или при переводе автомобиля в состояние покоя из состояния движения? Кофе «продолжает делать то, что делает. «Когда вы разгоняете машину из состояния покоя, дорога создает неуравновешенную силу на вращающиеся колеса, чтобы толкать машину вперед; однако кофе (который был в состоянии покоя) хочет оставаться в состоянии покоя. Пока машина ускоряется вперед, кофе остается в в том же положении; впоследствии машина разгоняется из-под кофе, и кофе разливается вам на колени. С другой стороны, при торможении из состояния движения кофе продолжает двигаться вперед с той же скоростью и в том же направлении , в конечном итоге ударившись о лобовое стекло или приборную панель.Кофе в движении остается в движении.

Испытывали ли вы когда-нибудь инерцию (сопротивление изменениям в вашем состоянии движения) в автомобиле, когда он тормозит до полной остановки? Сила дороги на заблокированные колеса обеспечивает неуравновешенную силу для изменения состояния движения автомобиля, но нет неуравновешенной силы, чтобы изменить ваше собственное состояние движения. Таким образом, вы продолжаете движение, скользя по сиденью в поступательном движении. Человек в движении остается в движении с той же скоростью и в том же направлении… если на него не действует неуравновешенная сила ремня безопасности. Да! Ремни безопасности используются для обеспечения безопасности пассажиров, движение которых регулируется законами Ньютона. Ремень безопасности обеспечивает неуравновешенное усилие, которое переводит вас из состояния движения в состояние покоя. Возможно, вы могли бы предположить, что произойдет, если ремень безопасности не используется.

Есть еще много приложений первого закона движения Ньютона.Ниже перечислены несколько приложений. Возможно, вы могли бы подумать о законе инерции и дать объяснения для каждого приложения.

  • Кровь приливает к ногам, быстро останавливаясь при езде на спускающемся лифте.
  • Головку молотка можно закрепить на деревянной ручке, ударив нижней частью ручки о твердую поверхность.
  • Кирпич безболезненно разбивают о руку учителя физики, ударив по нему молотком. (ВНИМАНИЕ: не пытайтесь сделать это дома!)
  • Чтобы вытолкнуть кетчуп со дна бутылки с кетчупом, его часто переворачивают вверх дном и толкают вниз на высокой скорости, а затем резко останавливают.
  • Подголовники устанавливаются в автомобилях для предотвращения хлыстовых травм при наезде сзади.
  • Во время езды на скейтборде (тележке или велосипеде) вы летите вперед от доски при ударе о бордюр, камень или другой объект, который резко останавливает движение скейтборда.

Попробуйте дома


Приобретите металлическую вешалку, на которую у вас есть разрешение , уничтожить . Раздвиньте плечики. Прикрепите изолентой два теннисных мяча к противоположным концам плечиков, как показано на рисунке справа.Согните вешалку так, чтобы на голове человека была плоская деталь. Концы вешалки с теннисными мячами должны свисать низко (ниже точки балансировки). Наденьте вешалку на голову и уравновесите ее. Затем быстро крутите по кругу. Что делают теннисные мячи?

Инерция и масса

Первый закон движения Ньютона гласит, что «объект в состоянии покоя остается в состоянии покоя, а объект в движении остается в движении с той же скоростью и в том же направлении, если только на него не действует неуравновешенная сила.«Объекты имеют тенденцию« продолжать делать то, что они делают ». Фактически, это естественная тенденция объектов сопротивляться изменениям в их состоянии движения. Эта тенденция сопротивляться изменениям в их состоянии движения описывается как инерция .

Инерция: сопротивление объекта изменению состояния движения.

Концепция инерции Ньютона прямо противоположна более популярным представлениям о движении. Доминирующей мыслью до дней Ньютона была естественная тенденция объектов приходить в положение покоя. Считалось, что движущиеся объекты в конечном итоге перестанут двигаться; сила была необходима, чтобы удерживать объект в движении. Но если его предоставить самому себе, движущийся объект в конце концов остановится, а покоящийся объект останется в покое; таким образом, идея, которая доминировала в мышлении людей почти за 2000 лет до Ньютона, заключалась в том, что это была естественная тенденция всех объектов принимать положение покоя.

Галилей и концепция инерции

Галилей, ведущий ученый семнадцатого века, разработал концепцию инерции. Галилей рассуждал, что движущиеся объекты в конечном итоге останавливаются из-за силы, называемой трением. В экспериментах с парой наклонных плоскостей, обращенных друг к другу, Галилей наблюдал, что шар катится по одной плоскости и поднимается по противоположной плоскости примерно на одинаковую высоту. Если бы использовались более гладкие плоскости, мяч катился бы по противоположной плоскости еще ближе к исходной высоте.Галилей рассуждал, что любая разница между начальной и конечной высотами связана с наличием трения. Галилей предположил, что если бы трение можно было полностью исключить, то мяч достиг бы точно такой же высоты.

Галилей далее заметил, что независимо от угла, под которым были ориентированы плоскости, конечная высота почти всегда была равна начальной высоте. Если бы наклон противоположного наклона был уменьшен, то мяч покатился бы на большее расстояние, чтобы достичь этой исходной высоты.

Рассуждения Галилея продолжались — если бы противоположный наклон был поднят почти на угол 0 градусов, то мяч катился бы почти бесконечно, пытаясь достичь исходной высоты. А если бы противоположный наклон вообще не был наклонен (то есть если бы он был ориентирован по горизонтали), то … движущийся объект продолжал бы движение ….

Смотрите!

Другой мысленный эксперимент Галилея объясняется в этом видео с использованием реального эксперимента, выполненного с использованием современного оборудования.

Силы не удерживают предметы в движении

Исаак Ньютон основывается на размышлениях Галилея о движении. Первый закон движения Ньютона гласит, что сила , а не , необходима для удержания объекта в движении. Переместите книгу по столу и посмотрите, как она переместится в исходное положение. Книга, движущаяся на столешнице, не приходит в положение покоя из-за отсутствия силы ; скорее это присутствие силы, которая является силой трения, которая приводит книгу в исходное положение.В отсутствие силы трения книга продолжала бы движение с той же скоростью и направлением — вечно! (Или, по крайней мере, до конца столешницы.) Для удержания движущейся книги в движении сила не требуется. На самом деле это сила, которая останавливает книгу.

Масса как мера инерции

Все объекты сопротивляются изменениям в своем состоянии движения.У всех объектов есть эта тенденция — у них есть инерция. Но имеют ли некоторые объекты большую тенденцию сопротивляться изменениям, чем другие? Абсолютно да! Тенденция объекта сопротивляться изменениям в его состоянии движения зависит от массы. Масса — это величина, равная исключительно , зависящая от инерции объекта. Чем больше инерция у объекта, тем больше у него масса. Более массивный объект имеет большую тенденцию сопротивляться изменениям в своем состоянии движения.

Предположим, что на лекционном столе по физике лежат два, казалось бы, одинаковых кубика.Однако один кирпич состоит из раствора, а другой — из пенополистирола. Не поднимая кирпичей, как вы могли определить, какой кирпич был из пенополистирола ? Вы можете дать кубикам такой же толчок, чтобы изменить их состояние движения. Кирпич с наименьшим сопротивлением — это кирпич с наименьшей инерцией — и, следовательно, кирпич с наименьшей массой (т. Е. Кирпич из пенополистирола ).

Обычная физическая демонстрация основана на том принципе, что чем массивнее объект, тем сильнее он сопротивляется изменениям в своем состоянии движения.Демонстрация выглядит следующим образом: на голову учителя кладут несколько массивных книг. Поверх книг кладут деревянную доску и молотком забивают в доску гвоздь. Из-за большой массы книг сила удара молотка имеет достаточное сопротивление (инерция). Об этом свидетельствует тот факт, что учитель не чувствует удара молотка. (Конечно, эта история может объяснить многие из наблюдений, которые вы ранее делали относительно своего «странного учителя физики».) Обычный вариант этой демонстрации включает в себя разбивание кирпича о руку учителя быстрым ударом молотка.Массивные кирпичи сопротивляются силе, и рука не болит. (ВНИМАНИЕ: не пробуйте эти демонстрации на hom

.

Смотрите!

Инструктор по физике объясняет свойство инерции с помощью демонстрации физики.

Проверьте свое понимание

1. Представьте себе место в космосе , вдали от всех гравитационных и фрикционных влияний. Предположим, вы посетили это место (представьте себе) и бросили камень. Скала будет

а. постепенно прекращать.

г. продолжать движение в том же направлении с постоянной скоростью.

2. Объект весом 2 кг движется по горизонтали со скоростью 4 м / с.Какая полезная сила требуется, чтобы удерживать объект в движении с этой скоростью и в этом направлении?

3. Мак и Тош спорят в кафетерии. Мак говорит, что если он бросит Jell-O с большей скоростью, у него будет большая инерция. Тош утверждает, что инерция зависит не от скорости, а, скорее, от массы. С кем ты согласен? Объяснить, почему.

4.Предположим, вы находитесь в космосе в невесомой среде , потребуется ли сила, чтобы привести объект в движение?

5. Фред большую часть воскресенья после обеда проводит на диване, наблюдая за профессиональными футбольными матчами и потребляя много еды. Какое влияние (если вообще есть) эта практика оказывает на его инерцию? Объяснять.

6.Бена Туклоуз преследует по лесу лось, которого он пытался сфотографировать. Огромная масса лосей-быков чрезвычайно устрашает. Тем не менее, если Бен сделает зигзагообразный узор в лесу, он сможет использовать большую массу лося в своих интересах. Объясните это с точки зрения инерции и первого закона движения Ньютона.

7. Два кирпича лежат на краю лабораторного стола.Ширли Шешорт встает на цыпочки и замечает два кирпича. У нее возникает сильное желание узнать, какой из двух кирпичей самый массивный. Поскольку Ширли препятствует вертикальному положению, она не может подняться достаточно высоко и поднять кирпичи; однако она может дотянуться достаточно высоко, чтобы толкнуть кирпичи. Обсудите, как процесс толкания кирпичей позволит Ширли определить, какой из двух кирпичей самый массивный. Какую разницу заметит Ширли и как это наблюдение может привести к необходимому выводу?

Видеоурок по физике — Первый закон Ньютона

Видеоурок по первому закону движения Ньютона

Видеоруководство по Первому закону Ньютона описывает два утверждения, связанных с Первым законом Ньютона, и одно условие, при котором эти утверждения верны.Вводится понятие инерции. Видеоурок отвечает на следующие вопросы:

  1. Какие два утверждения и одно условие сформулированы в первом законе Ньютона?
  2. Что означает первый закон Ньютона, когда дело доходит до предсказания движения объекта?

Чтобы повысить эффективность обучения, The Physics Classroom предоставил следующие инструменты:

Примечания к уроку

Заметки к уроку предназначены для распечатки и использования при просмотре видео.Они структурированы так, чтобы студенты могли следить за видео, записывать некоторые заметки и оставлять видео с документом, который можно назвать продолжением их обучения. Примечания к уроку доступны в формате PDF. Разрешается распечатать заметки или включить на них ссылку из системы управления обучением.

Просмотр заметок к уроку

Дополнительные и сопутствующие средства обучения

Обучение требует усилий. Просмотр видео — относительно пассивное занятие. Одно дело — послушать видео, представленное человеком, разбирающимся в материале.Но совсем другое дело — применить информацию из видео, чтобы лично понять материал. На этой странице перечислены различные инструменты, которые можно использовать для применения нового обучения. Инструменты включают те, которые могут использоваться учениками, и те, которые могут использоваться учителями со своими учениками в классе. Связанные ресурсы также включены в эти инструменты.

Просмотреть дополнительные средства обучения

Ресурсы для учителей

Так ты этому учишь? Может, мы сможем помочь… мы занимаемся этим некоторое время и у нас есть несколько ресурсов, которые могут вам пригодиться. Посетите страницу ресурсов для учителей и узнайте о некоторых инструментах, которые помогут вам преподавать и разрабатывать уроки по этой теме.

Просмотр ресурсов учителя

Слайды из видеоурока

Некоторым студентам полезно просматривать слайды презентации. Мы размещаем их здесь, на нашем сайте. Анимации, присутствующие в видео, преобразуются в одно статичное экранное изображение на слайдах.

Просмотреть слайды

Вы можете просмотреть это видео на YouTube или здесь, на нашем сайте:

Посмотреть видеоурок

Помогите нам Помогите вам

Это видео является частью нашей серии видеоуроков по законам Ньютона. Другие видеоуроки вы можете найти здесь, на нашем сайте. Чтобы получать самые свежие материалы из нашей серии видеоуроков по физике, мы предлагаем пользователям подписаться на канал The Physics Classroom на YouTube. Каждые лайков и каждые подписки помогает продвигать наше видео… так что спасибо за любую помощь, которую вы можете нам дать. Когда вы помогаете нам, мы можем помочь вам больше.

Первый закон движения Ньютона

Эта страница предназначена для учащихся колледжей, старших и средних школ.
Для младших школьников более простое объяснение информации на этой странице:
доступно на
Детская страница.

Сэр Исаак Ньютон впервые представил свои три закона движения
в «Principia Mathematica Philosophiae Naturalis» 1686 г. Его первый закон
заявляет, что каждый объект будет оставаться в покое или в равномерном движении по прямой
линия, если она не вынуждена изменить свое состояние под действием внешней силы.
Обычно это определение инерции . Ключевой момент здесь
состоит в том, что при наличии нетто-силы в результате несбалансированной
силы, действующие на объект (если все внешние силы нейтрализуют друг друга),
тогда объект будет поддерживать постоянную скорость .Если эта скорость равна нулю,
тогда объект остается в покое. А если приложить дополнительную внешнюю силу,
скорость изменится из-за силы. Величина изменения скорости
определяется вторым законом движения Ньютона.

Есть много прекрасных примеров первого закона Ньютона, относящегося к аэродинамике.
Движение
самолет
Когда пилот меняет положение дроссельной заслонки двигателя, описывается первым законом.Движение
мяч
падая в атмосфере,
или
модель ракеты
выбросы в атмосферу — оба примера первого закона Ньютона.
Движение
летающий змей
при смене ветра также можно описать первым законом.
Мы создали отдельные страницы, которые более подробно описывают каждый из этих примеров.
чтобы помочь вам понять этот важный физический принцип.


Действия:


Экскурсии с гидом

  • Законы движения Ньютона:


Навигация..

Руководство для начинающих Домашняя страница

Законы движения Ньютона

Эта страница предназначена для учащихся колледжей, старших и средних школ.
Для младших школьников более простое объяснение информации на этой странице:
доступно на
Детская страница.

Движение самолета по воздуху можно объяснить и описать с помощью
физические принципы, открытые более 300 лет назад сэром Исааком Ньютоном. Ньютон работал
во многих областях математики и физики. Он разработал теории гравитации
в 1666 году, когда ему было всего 23 года. Примерно двадцать лет спустя, в 1686 году, он
представил свои три закона движения в «Principia Mathematica Philosophiae»
Naturalis.»Законы показаны выше, и применение этих законов
аэродинамике даны на отдельных слайдах.

Первый закон Ньютона гласит, что каждый
объект будет оставаться в покое или в равномерном движении по прямой линии
если не вынужден изменить свое состояние под действием внешнего
сила. Обычно это определение инерции .
Ключевым моментом здесь является то, что если нет действующей силы на
объект (если все внешние силы нейтрализуют друг друга), то
объект будет поддерживать постоянную скорость .Если эта скорость равна нулю,
тогда объект остается в покое. Если приложена внешняя сила,
скорость изменится из-за силы.

Второй закон объясняет, как скорость
объект меняется, когда на него действует внешняя сила.
Закон определяет, что сила равна изменению импульса (масса
умноженная на скорость) за изменение во времени. Ньютон также разработал математическое исчисление,
и «изменения», выраженные во втором законе, наиболее точно
определяется в дифференциале
формы.(Расчет также можно использовать для определения изменений скорости и местоположения
испытываемый объектом, подвергнутым внешней силе.) Для объекта с
постоянной массы м , второй закон гласит, что
force F это продукт
массы объекта и его ускорения a :

F = m * a

Для внешнего применения
силы, изменение скорости зависит от массы объекта.Сила будет
вызвать изменение скорости; и аналогично, изменение скорости приведет к
сила. Уравнение работает в обоих направлениях.

Третий закон гласит, что для каждого действия (силы)
в природе есть равная и противоположная реакция. Другими словами, если объект
A оказывает силу на объект B, затем объект B также оказывает такое же усилие на объект
A. Обратите внимание, что силы действуют на разные объекты. Третий закон может
использоваться для объяснения создания подъемной силы крылом
и создание тяги реактивным двигателем.


Вы можете просмотреть короткий
кино
из «Орвилла и Уилбура Райтов», объясняющих, как законы движения Ньютона
описал полет своего самолета. Файл фильма может
можно сохранить на свой компьютер и просмотреть как подкаст на проигрывателе подкастов.


Действия:


Экскурсии с гидом

  • Законы движения Ньютона:


Навигация..

Руководство для начинающих Домашняя страница

Примеры инерции

Инерцию лучше всего объяснил сэр Исаак Ньютон в его первом законе движения. В основном, закон движения гласит, что неподвижный объект остается в покое, а объект в движении продолжает движение до тех пор, пока на него не действует внешняя сила. Рассмотрим несколько примеров инерции.

Закон инерции

Когда дело доходит до законов движения, инерция — одна из величайших составляющих.Инерция сопротивляется изменению движения. Объекты хотят оставаться в покое или движении, если только внешняя сила не вызовет изменения. Например, если вы катите мяч, он будет продолжать катиться, если трение или что-то еще не остановит его силой. Вы также можете подумать о том, как ваше тело продолжает двигаться вперед, когда вы нажимаете на тормоз на велосипеде. Инерция бывает разных типов, проверьте их.

Типы инерции

По инерции не бывает одного типа. Вместо этого вы найдете три разных типа инерции, включая:

  • Инерция покоя — объект остается на месте, и он будет оставаться там, пока вы или кто-то другой не переместит его.(т.е. частицы пыли остаются в покое, пока вы не встряхнете ковер.)
  • Инерция движения — Объект будет двигаться с той же скоростью, пока на него не подействует сила. (т.е. тело движется вперед, когда автомобиль останавливается.)
  • Инерция направления — Объект будет продолжать двигаться в том же направлении, если на него не действует сила. (т. е. движение тела в сторону при резком повороте автомобиля.)

Читать об инерции — это здорово, но чтобы понять один из законов движения Ньютона, вам нужно взглянуть на примеры.

Примеры инерции покоя

Теперь, когда вы знаете, что такое инерция покоя, рассмотрим несколько примеров.

  • Если быстро потянуть, скатерть можно вынуть из-под посуды. Посуда имеет тенденцию оставаться неподвижной до тех пор, пока трение от движения скатерти не слишком велико.
  • Если в остановившуюся машину ударит движущийся автомобиль сзади, пассажиры внутри могут получить хлыстовые травмы в результате движения тела вперед и отставания головы.Голова испытывает инерцию.
  • Воздушный шар в машине будет казаться движущимся, когда машина движется вперед, но на самом деле воздушный шар пытается остаться на том месте, где он был, это только машина, которая движется.
  • Когда автомобиль резко ускоряется, водители и пассажиры могут чувствовать, как будто их тела движутся назад. На самом деле инерция заставляет тело оставаться на месте, пока машина движется вперед.
  • Если учетная карточка помещена на стакан с пенни поверх нее, учетная карточка может быть быстро удалена, в то время как пенни падает прямо в стакан, поскольку пенни демонстрирует инерцию.
  • Снимая пластырь, лучше потянуть его быстро. Ваша кожа будет оставаться в покое из-за инерции, и сила сдергивает пластырь.

Примеры инерции движения

Объекты в движении остаются в движении или хотят, как в этих примерах.

  • Ремни безопасности затягиваются в автомобиле, когда он быстро останавливается.
  • Людям в космосе труднее остановиться из-за отсутствия силы тяжести, действующей против них.
  • Во время игры в футбол игрок захватили, и его голова ударилась о землю.Удар останавливает его череп, но его мозг продолжает двигаться и поражает внутреннюю часть черепа. Его мозг показывает инерцию.
  • Если машину врезать прямо в кирпичную стену, она остановится из-за силы, приложенной к ней стеной. Однако водителю требуется сила, чтобы его тело не двигалось, например, ремень безопасности. В противном случае инерция заставит его тело продолжать двигаться с исходной скоростью, пока на его тело не воздействует какая-то сила.
  • Когда бейсбольный мяч брошен, он продолжает двигаться вперед, пока на него не действует сила тяжести.Чем больше сила броска, тем тяжелее воздействовать на него гравитации.
  • Хоккейная шайба будет продолжать скользить по льду, пока на нее не будет воздействовать внешняя сила.
  • Если вы крутите педали на велосипеде, если вы перестаете крутить педали, велосипед продолжает движение, пока трение или гравитация не замедлит его.
  • Автомобиль будет двигаться, даже если вы выключите двигатель.
  • Если мяч упал на наклонную поверхность и вы отпустите его, сила тяжести заставит его скатиться по склону.Он инерционен, и если в нижней части склона есть ровная площадка, он продолжит движение.
  • При входе в здание через вращающуюся дверь, инерция позволит двери ударить вас в спину, если вы не уйдете с дороги.
  • Если вы катите тележку с чем-то сверху и ударите что-то, что заставляет тележку остановиться, то, что находится сверху, может упасть.
  • Труднее остановить большое транспортное средство, например автобус, чем меньшее транспортное средство, например мотоцикл. У большего объекта больше инерции.
  • Сотрясение мозга происходит из-за того, что ваш мозг все еще движется, а внешняя часть черепа остановлена. Это то, что вызывает травму.
  • Если вы находитесь в поезде, а поезд движется с постоянной скоростью, подброшенная в воздух игрушка поднимется вверх, а затем опустится. Это потому, что у игрушки есть инерция, как у поезда и у вас.
  • Если автомобиль движется вперед, он будет продолжать движение вперед, если только трение или тормоза не мешают его движению.

Инерция направления

Просмотрите, как объекты остаются в одном направлении, если не применяется другая сила.Изучите примеры инерции направления.

  • Судно на воздушной подушке может быть проблемой для манипулирования, потому что, в отличие от автомобилей, у них нет такого же уровня трения, поэтому инерция заставляет судно на воздушной подушке продолжать движение в том же направлении, не останавливаясь и не поворачиваясь.
  • Внезапная остановка тележки с предметом наверху приводит к его падению. Инерция вызывает это, заставляя объект продолжать движение в том направлении, в котором он был.
  • Если вы прыгаете с движущегося автомобиля или автобуса, ваше тело все еще движется в направлении транспортного средства.Когда ваши ноги касаются земли, земля воздействует на ваши ноги, и они перестают двигаться. Вы упадете, потому что верхняя часть вашего тела не остановилась, и вы упадете в том направлении, в котором двигались.
  • Когда вы перемешиваете кофе или чай и останавливаетесь, вихревое движение продолжается по инерции.
  • Объекты, которые выходят на орбиту вокруг Земли, например спутники, продолжают двигаться по своей траектории за счет инерции.
  • Если бросить камень прямо вверх, он не изменится со своего направления.
  • Инерция позволяет фигуристам скользить по льду по прямой.
  • Если дует ветер, ветки дерева двигаются. Кусок спелого плода, упавший с дерева, по инерции упадет в направлении ветра.
  • Запущены космические зонды, чтобы миновать атмосферу Земли. Затем они движутся по инерции.

Понимание инерции

Посмотрите, сможете ли вы распознать инерцию, когда она возникает в течение дня.Вы можете быть удивлены тем, как часто вы замечаете моменты инерции в своей жизни.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *