Матричное уравнение ax b имеет решение: Решение матричных уравнений: теория и примеры

Содержание

Решение матричных уравнений: теория и примеры

Матричные уравнения имеют прямую аналогию с простыми алгебраическими уравнениями, в
которых присутствует операция умножения. Например,

ax=b,

где x — неизвестное.

А, поскольку мы уже умеем находить произведение матриц,
то можем приступать к рассмотрению аналогичных уравнений с матрицами, в которых буквы — это матрицы.

Итак, матричным уравнением называется уравнение вида

A ⋅ X = B

или

X ⋅ A = B,

где A и B
известные матрицы, X — неизвестная матрица, которую требуется найти.

Как решить матричное уравнение в первом случае? Для того,
чтобы решить матричное уравнение вида A ⋅ X = B,
обе его части следует умножить на обратную к A матрицу
слева:

.

По определению обратной матрицы, произведение обратной матрицы на данную исходную
матрицу равно единичной матрице: ,
поэтому

.

Так как E — единичная матрица, то
E ⋅ X = X. В результате
получим, что неизвестная матрица X равна произведению матрицы,
обратной к матрице A, слева, на матрицу B:

.

Как решить матричное уравнение во втором случае? Если дано уравнение

X ⋅ A = B,

то есть такое, в котором в произведении неизвестной матрицы X
и известной матрицы A матрица A
находится справа, то нужно действовать аналогично, но меняя направление умножения на матрицу,
обратную матрице A, и умножать матрицу B
на неё справа:

,

,

.

Как видим, очень важно, с какой стороны умножать на обратную матрицу, так как
. Обратная к
A матрица умножается на матрицу B
с той стороны, с которой матрица A умножается на неизвестную
матрицу X. То есть с той стороны, где в произведении с неизвестной
матрицей находится матрица A.

Как решить матричное уравнение в третьем случае? Встречаются случаи, когда в левой
части уравнения неизвестная матрица X находится в середине
произведения трёх матриц. Тогда известную матрицу из правой части уравнения следует умножить слева
на матрицу, обратную той, которая в упомянутом выше произведении трёх матриц была слева, и справа на
матрицу, обратную той матрице, которая располагалась справа. Таким образом, решением матричного уравнения

A ⋅ X ⋅ B = C,

является

.

Пример 1. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид A ⋅ X = B, то
есть в произведении матрицы A и неизвестной матрицы
X матрица A находится слева.
Поэтому решение следует искать в виде ,
то есть неизвестная матрица равна произведению матрицы B на матрицу,
обратную матрице A слева. Найдём матрицу, обратную матрице
A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей
A:

.

Теперь у нас есть всё, чтобы найти матрицу, обратную матрице A:

.

Наконец, находим неизвестную матрицу:

Решить матричное уравнение самостоятельно, а затем посмотреть решение


Пример 3. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X ⋅ A = B, то
есть в произведении матрицы A и неизвестной матрицы
X матрица A находится справа.
Поэтому решение следует искать в виде ,
то есть неизвестная матрица равна произведению матрицы B на матрицу,
обратную матрице A справа. Найдём матрицу, обратную матрице
A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей
A:

.

Находим матрицу, обратную матрице A:

.

Находим неизвестную матрицу:

До сих пор мы решали уравнения с матрицами второго порядка, а теперь настала очередь
матриц третьего порядка.

Пример 4. Решить матричное уравнение

.

Решение. Это уравнение первого вида: A ⋅ X = B, то
есть в произведении матрицы A и неизвестной матрицы
X матрица A находится слева.
Поэтому решение следует искать в виде ,
то есть неизвестная матрица равна произведению матрицы B на матрицу,
обратную матрице A слева. Найдём матрицу, обратную матрице
A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

Составим матрицу алгебраических дополнений:

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей
A:

.

Находим матрицу, обратную матрице A, и делаем
это легко, так как определитель матрицы A равен единице:

.

Находим неизвестную матрицу:

Пример 5. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид X ⋅ A = B, то
есть в произведении матрицы A и неизвестной матрицы
X матрица A находится справа.
Поэтому решение следует искать в виде ,
то есть неизвестная матрица равна произведению матрицы B на матрицу,
обратную матрице A справа. Найдём матрицу, обратную матрице
A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей
A:

.

Находим матрицу, обратную матрице A:

.

Находим неизвестную матрицу:

Пример 6. Решить матричное уравнение

.

Решение. Данное уравнение имеет вид A ⋅ X ⋅ B = C, то
есть неизвестная матрица X находится в середине
произведения трёх матриц. Поэтому решение следует искать в виде
. Найдём матрицу, обратную матрице
A.

Сначала найдём определитель матрицы A:

.

Найдём алгебраические дополнения матрицы A:

.

Составим матрицу алгебраических дополнений:

.

Транспонируя матрицу алгебраических дополнений, находим матрицу, союзную с матрицей
A:

.

Находим матрицу, обратную матрице A:

.

Найдём матрицу, обратную матрице
B.

Сначала найдём определитель матрицы B:

.

Найдём алгебраические дополнения матрицы B:

Составим матрицу алгебраических дополнений матрицы B:

. {-1}= \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}\rightarrow X= \begin{pmatrix} 3 & 5\\ 2 & 1 \end{pmatrix} \cdot \begin{pmatrix} -5 & 3\\ 2 & -1 \end{pmatrix}= \begin{pmatrix} -5 & 4\\ -8 & 5 \end{pmatrix}$

ax b

Вы искали ax b? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и ax b матричное уравнение, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз.
И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение.
Например, «ax b».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как ax b,ax b матричное уравнение,ax b решить матричное уравнение,деление матриц онлайн,для невырожденной квадратной матрицы а решение системы ax b имеет вид,как решить матричное уравнение онлайн,как решить уравнение матрицы,калькулятор для матриц,калькулятор для матриц онлайн,калькулятор для матрицы,калькулятор для матрицы онлайн калькулятор,калькулятор матриц,калькулятор матриц онлайн,калькулятор матриц онлайн с подробным решением,калькулятор матриц онлайн с решением,калькулятор матриц с подробным решением,калькулятор матриц с подробным решением онлайн,калькулятор матриц уравнений,калькулятор матрица,калькулятор матрицы,калькулятор матрицы онлайн,калькулятор матрицы онлайн с подробным решением,калькулятор матрицы онлайн с решением,калькулятор матрицы с решением,калькулятор матриць,калькулятор матриць онлайн,калькулятор матричний,калькулятор матричных уравнений,калькулятор матричных уравнений онлайн,калькулятор онлайн вычисление матриц,калькулятор онлайн для матриц,калькулятор онлайн матрицы,калькулятор онлайн матрицы с подробным решением,калькулятор онлайн матрицы уравнения,калькулятор онлайн по матрицам,калькулятор по матрицам онлайн,калькулятор решение матричных уравнений,калькулятор уравнение матрицы онлайн,калькулятор уравнений матриц,калькуляторы матриц,матриц калькулятор с решением,матриц онлайн калькулятор с подробным решением,матрица калькулятор,матрица калькулятор онлайн,матрица калькулятор онлайн с решением,матрица онлайн калькулятор с подробным решением,матрица онлайн калькулятор с решением,матрица решение онлайн калькулятор,матрица решение уравнений,матрица х,матрицы калькулятор,матрицы калькулятор онлайн,матрицы калькулятор онлайн с подробным решением,матрицы калькулятор онлайн уравнение,матрицы калькулятор с решением,матрицы онлайн калькулятор,матрицы онлайн калькулятор с подробным решением,матрицы онлайн калькулятор уравнения,матрицы решение онлайн калькулятор,матрицы решение уравнений онлайн,матрицы решить уравнение,матрицы уравнение онлайн,матрицы уравнения онлайн калькулятор,матричний калькулятор,матричное уравнение ax b,матричное уравнение калькулятор,матричный калькулятор,матричный калькулятор онлайн,матричный калькулятор онлайн с подробным решением онлайн,матричный калькулятор с подробным решением онлайн,матричный калькулятор с решением,матричный онлайн калькулятор с подробным решением,найти из уравнения матрицу х,найти матрицу х из уравнения,найти неизвестную матрицу x из уравнения,онлайн калькулятор для матриц,онлайн калькулятор матриц с подробным решением,онлайн калькулятор матриц с решением,онлайн калькулятор матрица с подробным решением,онлайн калькулятор матрицы,онлайн калькулятор матрицы с подробным решением,онлайн калькулятор матрицы с решением,онлайн калькулятор матрицы уравнения,онлайн калькулятор по матрицам,онлайн калькулятор решение матриц,онлайн калькулятор решение матричного уравнения,онлайн калькулятор решение матричных уравнений,онлайн калькулятор решения матриц,онлайн калькулятор решить матрицу,онлайн калькулятор с подробным решением матриц,онлайн калькулятор уравнение матрицы,онлайн калькулятор уравнения матрицы,онлайн матрица калькулятор,онлайн матрица посчитать,онлайн подробное решение матриц,онлайн подсчет матриц,подробное решение матриц онлайн,решение матриц калькулятор,решение матриц онлайн калькулятор с подробным решением,решение матриц уравнений онлайн,решение матричного уравнения,решение матричных уравнений онлайн калькулятор,решение матричных уравнений онлайн калькулятор с подробным решением,решение уравнений матриц онлайн,решение уравнений матрицы онлайн,решение уравнений с матрицами,решение уравнений с матрицами онлайн,решите матричное уравнение,решите матричное уравнение онлайн,решить матрицу калькулятор онлайн,решить матрицу онлайн калькулятор,решить матричное уравнение,решить матричное уравнение ax b,решить матричное уравнение xa b,решить матричные уравнения,решить онлайн уравнение матрицы,решить систему линейных уравнений ax b,решить уравнение матрица,решить уравнение матрица равна нулю,решить уравнение матрицы,уравнение матрицы онлайн калькулятор,уравнения матрицы онлайн,уравнения матрицы онлайн калькулятор. На этой странице вы найдёте калькулятор,
который поможет решить любой вопрос, в том числе и ax b. Просто введите задачу в окошко и нажмите
«решить» здесь (например, ax b решить матричное уравнение).

Где можно решить любую задачу по математике, а так же ax b Онлайн?

Решить задачу ax b вы можете на нашем сайте https://pocketteacher.ru. Бесплатный
онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо
сделать — это просто
ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести
вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице
калькулятора.

Axb c матрицы уравнения – Тарифы на сотовую связь