Кислоты и соли все: Таблица названий (наименований) кислот и их солей.

Содержание

Таблица названий (наименований) кислот и их солей.

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Химический справочник / / «Химический алфавит (словарь)» — названия, сокращения, приставки, обозначения веществ и соединений.  / / Таблица названий (наименований) кислот и их солей.

Таблица названий (наименований) кислот и их солей.






































Формула кислоты

Название кислоты

Название соответствующей соли

HAlO2

Метаалюминиевая Метаалюминат

HBO2

Метаборная Метаборат

h4BO3

Ортоборная Ортоборат

HBr

Бромоводородная Бромид

HCOOH

Муравьиная Формиат

HCN

Циановодородная Цианид

H2CO3

Угольная Карбонат

H2C2O4

Щавелевая Оксолат

H4C2O2

(CH3COOH)

Уксусная Ацетат

HCl

Хлороводородная Хлорид

HClO

Хлорноватистая Гипохлорит

HClO2

Хлористая Хлорит

HClO3

Хлорноватая Хлорат

HClO4

Хлорная Перхлорат

HCrO2

Метахромистая Метахромит

HCrO4

Хромовая Хромат

HCr2O7

Двухромовая Дихромат

HI

Иодоводородная Иодид

HMnO4

Марганцевая Перманганат

H2MnO4

Марганцовистая Манганат

H2MoO4

Молибденовая Молибдат

HNO2

Азотистая Нитрит

HNO3

Азотная Нитрат

HPO3

Метафосфорная Метафосфат

HPO4

Ортофосфорная Ортофосфат

H4P2O7

Двуфосфорная (Пирофосфорная) Дифосфат (Пирофосфат)

H3PO3

Фосфористая Фосфит

H3PO2

Фосфорноватистая Гипофосфит

H2S

Сероводородная Сульфид

H2SO3

Сернистая Сульфит

H2SO4

Серная Сульфат

H2S2O3

Тиосерная Тиосульфат

H2Se

Селеноводородная Селенид

H2SiO3

Кремниевая Силикат

HVO3

Ванадиевая Ванадат

H2WO4

Вольфрамовая Вольфрамат

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.

TehTab.ru

Реклама, сотрудничество: [email protected]ru

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Таблица растворимости солей, кислот и оснований

Содержание:

Таблица растворимости вместе с
таблицей Менделеева
являются основным теоретическим материалом при изучении химии! Растворимость — способность вещества образовывать с другими веществами
однородные системы — растворы, в которых вещество находится в виде отдельных атомов, ионов, молекул или частиц.

Если при изучении материала на данной странице у Вас возникнут вопросы, Вы всегда можете задать их на нашем
форуме. Также на Вам помогут
решить задачи по химии,
теории вероятности, математике,
геометрии и многим другим предметам!

Полная таблица растворимости солей, кислот и оснований

Условные обозначения таблицы растворимости:
Р — вещество хорошо растворимо в воде;
М — вещество малорастворимо в воде;
Н — вещество практически нерастворимо в воде, но легко растворяется в слабых или разбавленных кислотах;
РК — вещество нерастворимо в воде и растворяется только в сильных неорганических кислотах;
НК — вещество нерастворимо ни в воде, ни в кислотах;
Г — вещество полностью гидролизуется при растворении и не существует в контакте с водой;
— вещество не существует.

Стандартная (школьная) таблица растворимости

Таблица растворимости используют для проверки условий протекания реакции, так как одним из условий протекания
реакции является образование осадка (необратимость протекания реакции), то по таблице расворимости можно проверить образование осадка и тем самым определить,
протекает реакиция или нет.

Помимо таблицы растворимости на сайте Вы можете посмотреть
тригонометрические формулы,
таблицу производных и
таблицу интегралов. Пользуйтесь на здоровье!

Слишком сложно?

Таблица растворимости солей, кислот и оснований не по зубам? Тебе ответит эксперт через 10 минут!

Названия и формулы кислот — Абросимова Елена Владимировна учитель химии и биологии

кислота

соли

Название

Формула

Кислотный остаток

Название аниона

КИСЛОРОДСОДЕРЖАЩИЕ кислоты и их соли

Азотная

HNO3

NO3

Нитрат

Азотистая

HNO2

NO2

Нитрит

Алюминиевая (орто)

H3AlO3

AlO33-

Орто-алюминат

Алюминиевая (мета)

HAlO2

AlO2

Мета-алюминат

Бериллиевая

H2BeO2

BeO22-

Бериллат

Борная (орто)

H3BO3

BO33-

Орто-борат

Борная (мета)

HBO2

BO2

Мета-борат

Борная (тетра)

H2B4O7

B4O72-

Тетраборат

Висмутовая

HBiO3

BiO3

Висмутат

Вольфрамовая

H2WO4

WO42-

Вольфрамат

Железная

H2FeO4

FeO42-

Феррат

Железистая (мета)

HFeO2

FeO2

Феррит

Кремниевая (орто)

H4SiO4

SiO44-

Орто-силикат

Кремниевая (мета)

H2SiO3

SiO32-

Мета-силикат

Марганцовая

HMnO4

MnO4

Перманганат

Марганцовистая

H2MnO4

MnO42-

Манганат

Марганцоватистая

H2MnO3

MnO32-

Манганит

Молибденовая

H2MoO4

MoO42-

Молибдат

Мышьковая (орто)

H3AsO4

AsO43-

Орто-арсенат

Мышьяковая (мета)

HAsO3

AsO3

Мета-арсенат

Димышьяковая

H4As2O7

As2O74-

Диарсенат

Оловянная (орто)

H4SnO4

SnO44-

Орто-станнат

Оловянная (мета)

H2SnO3

SnO32-

Мета-станнат

Оловянистая

H2SnO2

SnO22-

Станнит

Селеновая

H2SeO4

SeO42-

Селенат

Селенистая

H2SeO3

SeO32-

Селенит

Свинцовая (орто)

H4PbO4

PbO44-

Орто-плюмбат

Свинцовая (мета)

H2PbO3

PbO32-

Мета-плюмбат

Свинцовистая

H2PbO2

PbO22-

Плюмбит

Серная

H2SO4

SO42-

Сульфат

Дисерная

H2S2O7

S2O72-

Дисульфат

Надсерная

H2S2O8

S2O82-

Пероксодисульфат

Тиосерная

H2S2O3

S2O32-

Тио-сульфат

Дитионовая

H2S2O6

S2O62-

Дитионат

Тетратионовая

H2S4O6

S4O62-

Тетратионат

Сернистая

H2SO3

SO32-

Сульфит

Сурьмяная (орто)

H3SbO4

SbO43-

Орто-антимонат

Сурьмяная (мета)

HSbO3

SbO3

Мета-антимонат

Теллуровая

H2TeO4

TeO42-

Теллурат

Угольная

H2CO3

CO32-

Карбонат

Муравьиная

HCOOH

HCOO

Формиат

Уксусная

CH3COOH

CH3COO

Ацетат

Фосфорная (орто)

H3PO4

PO43-

Орто-фосфат

Фосфорная (мета)

HPO3

PO3

Мета-фосфат

Дифосфорная

H4P2O7

P2O74-

Дифосфат

Фосфористая (орто)

H3PO3

Н2PO3иHPO32-

Ди- и ГИДРО-фосфиты

Фосфористая (мета)

HPO2

PO2

Мета-фосфит

Фосфорноватистая

H3PO2

H2PO2

Дигидро-гипо-фосфит

Хромовая

H2CrO4

CrO42-

Хромат

Дихромовая

H2Cr2O7

Cr2O72-

Дихромат

Хромистая (орто)

H3CrO3

CrO33-

Орто-хромит

Хромистая (мета)

HCrO2

CrO2

Мета-хромит

ОКСО-кислоты и -соли элементов Cl,Br,I– ПОДОБНЫ.

Хлорная

HClO4

ClO4

Пер-хлорат

Хлорноватая

HClO3

ClO3

Хлорат

Хлористая

HClO2

ClO2

Хлорит

Хлорноватистая

HClO

ClO

Гипо-хлорит

Бромная

HBrO4

BrO4

Пер-бромат

Бромноватая

HBrO3

BrO3

Бромат

Бромристая

HBrO2

BrO2

Бромит

Бромноватистая

HBrO

BrO

Гипо-бромит

Иодная

HIO4

IO4

Пер-иодат

Иодноватая

HIO3

IO3

Иодат

Иодистая

HIO2

IO2

Иодит

Иодноватистая

HIO

IO

Гипо-иодит

БЕСКИСЛОРОДНЫЕ кислоты и их соли

Фтороводородная

HF

F

Фторид

Хлороводородная

HCl

Cl

Хлорид

Бромоводородная

HBr

Br

Бромид

Иодоводородная

HI

I

Иодид

Циановодородная

HCN

CN

Цианид

Тиоциановодородная

HSCN

SCN

Тио-цианид

Селеноводородная

H2Se

Se2-

Селенид

Сероводородная

H2S

S2-

Сульфид

Теллуроводородная

H2Te

Te2-

Теллурид

Названия основных неорганических кислот и солей.

Неорганические кислоты, соли

Формулы кислот Названия кислот Названия соответствующих солей
HClO4 хлорная перхлораты
HClO3 хлорноватая хлораты
HClO2 хлористая хлориты
HClO хлорноватистая гипохлориты
H5IO6 иодная периодаты
HIO3 иодноватая иодаты
H2SO4 серная сульфаты
H2SO3 сернистая сульфиты
H2S2O3 тиосерная тиосульфаты
H2S4O6 тетратионовая тетратионаты
HNO3 азотная нитраты
HNO2 азотистая нитриты
H3PO4 ортофосфорная ортофосфаты
HPO3 метафосфорная метафосфаты
H3PO3 фосфористая фосфиты
H3PO2 фосфорноватистая гипофосфиты
H2CO3 угольная карбонаты
H2SiO3 кремниевая силикаты
HMnO4 марганцовая перманганаты
H2MnO4 марганцовистая манганаты
H2CrO4 хромовая хроматы
H2Cr2O7 дихромовая дихроматы
HF фтороводородная (плавиковая) фториды
HCl хлороводородная (соляная) хлориды
HBr бромоводородная бромиды
HI иодоводородная иодиды
H2S сероводородная сульфиды
HCN циановодородная цианиды
HOCN циановая цианаты

Напомню кратко на конкретных примерах, как следует правильно называть соли.

Пример 1. Соль K2SO4 образована остатком серной кислоты (SO4) и металлом К. Соли серной кислоты называются сульфатами. K2SO4 — сульфат калия.


Пример 2. FeCl3 — в состав соли входит железо и остаток соляной кислоты (Cl). Название соли: хлорид железа (III). Обратите внимание: в данном случае мы не только должны назвать металл, но и указать его валентность (III). В прошлом примере в этом не было необходимости, т. к. валентность натрия постоянна.

Важно: в названии соли следует указывать валентность металла только в том случае, если данный металл имеет переменную валентность!

Пример 3. Ba(ClO)2 — в состав соли входит барий и остаток хлорноватистой кислоты (ClO). Название соли: гипохлорит бария. Валентность металла Ва во всех его соединениях равна двум, указывать ее не нужно.


Пример 4. (NH4)2Cr2O7. Группа NH4 называется аммоний, валентность этой группы постоянна. Название соли: дихромат (бихромат) аммония.


В приведенных выше примерах нам встретились только т. н. средние или нормальные соли. Кислые, основные, двойные и комплексные соли, соли органических кислот здесь обсуждаться не будут.

Для тренировки рекомендую вам самостоятельно назвать следующие соединения: LiF, NaClO3, Al2(SO4)3, Ni(NO3)2, KMnO4, AgBr, ZnCO3, (NH4)3PO4.

Если вас интересует не только номенклатура солей, но и методы их получения и химические свойства, рекомендую обратиться к соответствующим разделам справочника по химии: «Химические свойства неорганических соединений» и «Методы получения неорганических соединений».

Реакции ионного обмена — материалы для подготовки к ЕГЭ по Химии

Автор статьи — профессиональный репетитор И. Давыдова (Юдина).

Реакции ионного обмена – наиболее знакомая для большинства людей тема из курса химии. H2O, H2SO4, C2H5OH и то, что реакция идет, если выделяется газ, осадок или вода – вот «багаж знаний», которым обладает среднестатистический выпускник.
На самом деле все, конечно, несколько сложнее. Рассмотрим вопрос подробнее.
Реакции обмена – это процессы вида AB + CD → AD + CB, в которых участвуют оксиды и гидроксиды, обладающие кислотными или основными свойствами (амфотерные соединения могут выступать как в роли кислоты, так и в роди основания), а так же соли.
1) Взаимодействие основного или амфотерного (оксида или гидроксида) с кислотным называется реакцией нейтрализации. Но не каждая пара кислота + основание вступают в реакцию друг с другом.
а) Растворимые гидроксиды – щелочи и гидроксид аммония – взаимодействуют с любой кислотой и кислотным оксидом. Для нерастворимой кремниевой кислоты реакция возможна только при нагревании.
NaOH + HCl → NaCl + H2O
LiOH + CH3COOH → CH3COOLi + H2O
Ba(OH)2 + CO2 → BaCO3↓ + H2O .
Также щелочи взаимодействуют с амфотерными оксидами и гидрокидами с образованием комплексных солей (в растворе) и смешанных оксидов, которые можно отнести и к классу солей (при сплавлении):

б) Нерастворимые основания и амфотерные гидроксиды не взаимодействуют со слабыми кислотами. Правило, действующее в большинстве случаев: реакция протекает, если предполагаемый продукт растворим. Исключение – взаимодействие с фосфорной кислотой, с ней реагируют даже оксиды и гидроксиды металлов, образующих нерастворимые ортофосфаты.

Mg(OH)2 + 2HCL → MgCl2 + 2H2O
Ag2 O+2CH3COOH → 2CH3COOAg+H2O

CuO + H2S реакция не идет, так как H2S – слабая кислота и сульфид меди нерастворим.

2) Обменные процессы с участием солей:
а) Растворимые соли взаимодействуют с другими растворимыми солями и гидроксидами, если в результате образуется газ или осадок:

2Na3PO4+3CuSO4 → 3Na2SO4+Cu3(PO4)2
FeCl3+3NaOH → 3NaCl+Fe(OH)3

BaSO4 + K2CO3 реакция не идет, так как реагент сульфат бария нерастворим
MnSO4 + KNO3 реакция не идет, так как не образуется ни газа, ни осадка, ни малодиссоциирующего вещества.

б) Соли взаимодействуют с кислотами, если в результате сильная кислота может вытеснить из соли слабую или нелетучая ‑ летучую:

CH3COONa + HCl → NaCl+CH3COOH
CaCO3 + H2SO4 → CaSO4 + H2O + CO2
CaSO4 + HCl реакция не идет, так как серная кислота – сильная и вытеснить ее из соли другой кислотой нельзя.

в) Соли многоосновных кислот взаимодейсвуют с той же кислотой с образованием кислых солей:

CaCO3 + H2O + CO2 → Ca(HCO3 )2

г) Растворимые кислые соли нейтрализуются щелочами:
KHCO3 + KOH → K2CO3 + H2O

Итого:
если вещество растворимо, оно легко вступает в реакцию обмена.
Если же нерастворимо, то оно вступает в обменный процесс только в агрессивной среде: сильная кислота или щелочь (только для амфотерных соединений).
Потренируйтесь:
Закончить уравнения реакций ионного обмена (внимание, идут не все реакции!)

Код ТН ВЭД 2918130000. Соли и сложные эфиры винной кислоты. Товарная номенклатура внешнеэкономической деятельности ЕАЭС

Позиция ТН ВЭД

  • 28-38

    VI. Продукция химической и связанных с ней отраслей промышленности (Группы 28-38)

  • 29

    Органические химические соединения

  • VII. КИСЛОТЫ КАРБОНОВЫЕ И ИХ АНГИДРИДЫ, ГАЛОГЕНАНГИДРИДЫ, ПЕРОКСИДЫ, ПЕРОКСИКИСЛОТЫ И ИХ ГАЛОГЕНИРОВАННЫЕ, СУЛЬФИРОВАННЫЕ, НИТРОВАННЫЕ ИЛИ НИТРОЗИРОВАННЫЕ ПРОИЗВОДНЫЕ

  • 2918 …

    Кислоты карбоновые, содержащие дополнительную кислородсодержащую функциональную группу, и их ангидриды, галогенангидриды, пероксиды и пероксикислоты; их галогенированные, сульфированные, нитрованные или нитрозированные производные

  • 2918 1 . ..

    кислоты карбоновые, содержащие спиртовую группу, но не содержащие другую кислородсодержащую функциональную группу, их ангидриды, галогенангидриды, пероксиды, пероксикислоты и их производные

  • 2918 13 000 0

    соли и сложные эфиры винной кислоты

Позиция ОКПД 2

  • 20. 14.34

    Кислоты поликарбоновые ароматические и кислоты карбоновые с дополнительными кислородсодержащими функциональными группами, их производные, кроме кислоты салициловой и ее солей

Таможенные сборы — ИМПОРТ

Базовая ставка таможенной пошлины 5%
реш.54
Акциз Не облагается
НДС

Жизненно необходимая медтехника

Кислоты карбоновые. . (НДС Лек.средства):

Постановление 688 от 15.09.2008 Правительства РФ

 

10% — Лекарственные средства (Регистрационное удостоверение)

20% — Прочие

 

Освобождение и льготы

Органические химические соединения (НДС Прод.товары):

Постановление 908 от 31. 12.2004 Правительства РФ

 

10% — сахарозаменители для людей, больных сахарным диабетом, для использования в пищевых целях и кормовых целях (в том числе предназначенных для проведения сертификационных испытаний, проверок, экспериментов)

20% — прочие

Рассчитать контракт

Кислоты — классификация, получение и свойства » HimEge.ru

Кислоты — электролиты, диссоциирующие с образованием катионов водорода и анионов кислотного остатка

Общая формула кислот HnAc, где n – число атомов водорода, равное заряду иона кислотного остатка, Ac — кислотный остаток.

 

Сила кислот убывает в ряду:

HI > HClO4 > HBr > HCl > H2SO4 > HNO3 > H2SO3 > H3PO4 > HF > HNO2 >H2CO3 > H2S > H2SiO3

Кислородосодержащие  кислоты и соответствующие кислотные оксиды

Многие кислоты, например серная, азотная, соляная – это бесцветные жидкости. известны также твёрдые кислоты: ортофосфорная, метафосфорная HPO3, борная H3BO3. Почти все кислоты растворимы в воде. Пример нерастворимой кислоты – кремниевая H2SiO3.

1) Взаимодействие простых веществ
(получают бескислородные кислоты)
H2 + Cl2 = 2HCl,

H2 + S = H2S.

2) Взаимодействие кислотных оксидов с водой
(получают кислородсодержащие кислоты)
 SO3 + H2O = H2SO4,

3) Взаимодействие солей с растворами сильных кислот
(получают слабые кислоты)
Na2SiO3 + 2HCl = H2SiO3 + 2NaCl,

SiO32- + 2H+ = H2SiO3.

4) Электролиз водных растворов солей

2CuSO4 + 2H2O = 2Cu + O2 + 2H2SO4.

1) Растворы кислот кислые на вкус, изменяют окраску индикаторов:
лакмуса в красный цвет,  метилового оранжевого – в розовый, цвет фенолфталеина не изменяется.

В водном растворе растворимые кислоты диссоциируют, образуя ион водорода, и кислотный остаток:

HCl = H+ + Cl.

Многоосновные кислоты диссоциируют ступенчато:

H2SO4 = H+ + HSO4,

HSO4 = H+ + SO42-.

Суммарное уравнение:

H2SO4 = 2H+ + SO42-

2) Взаимодействие с металлами

Ca + 2HCl = CaCl2 + H2

Водород из кислот-неокислителей могут вытеснять только металлы, стоящие в электрохимическом ряду напряжений металлов до водорода.

Кислоты-окислители — азотная и серная конц., реагируют с металлами по-другому, потому что в качестве окислителя выступает элемент кислотного остатка, а не водород!

Cu + 4HNO3 = Cu(NO3)2+ 2NO2↑+2H2O

Cu +2H2SO4  конц = CuSO4+SO2↑ + 2H2O

3) Взаимодействие с основными оксидами

CaO + 2HCl = CaCl2 + H2O

(если образуется растворимая соль)

4) Взаимодействие с основаниями (реакция нейтрализации)

H2SO4 + 2KOH = K2SO4 + 2H2O,

2H+ + 2OH = 2H2O

2HCl + Cu(OH)2 = CuCl2 + 2H2O,

Cu(OH)2 + 2H+ = Cu2+ + 2H2O.

Многоосновные кислоты образуют кислые и средние соли:

H2SO4 + NaOH = NaHSO4 + H2O,

H2SO4 + 2NaOH = Na2SO4 + 2H2O.

5) Взаимодействие с солями

Реакции с солями происходят только в том случае, если в результате химического превращения образуется малодиссоциирующее вещество, выделяется газ или выпадает осадок.

Na2CO3 + 2HCl = 2NaCl + CO2↑ + H2O,

CO32- + 2H+ = CO2 + H2O.

В этом случае выделяется углекислый газ и образуется малодиссоциирующее вещество – вода.

Na2SiO3 + H2SO4 = H2SiO3↓ + Na2SO4,

SiO32- + 2H+ = H2SiO3.

Реакция происходит, так как образуется осадок.

6) Специфические свойства кислот

Связаны с окислительно-восстановительными реакциями, бескислородные кислоты в растворе могут только окисляться (проявлять восстановительные свойства):

2KMn+7O4 + 16HCl = Cl20 + 2KCl + 2Mn+2Cl2 + 8H2O,

H2S-2 + Br20 = S0 + 2HBr.

Кислородсодержащие кислоты могут окисляться (проявлять восстановительные свойства), только когда центральный атом в них находится в промежуточной степени окисления, как, например, в сернистой кислоте:

H2S+4O3 + Cl20 + H2O = H2S+6O4 + 2HCl.

Если центральный атом находится в максимальной степени окисления, то кислоты проявляют окислительные свойства, например, взаимодействие с металлами и неметаллами:

C0 + 2H2S+6O4 = C+4O2 + 2S+4O2 + 2H2O,

3P0 + 5HN+5O3 + 2H2O = 3H3P+5O4 + 5N+2O.

7.2: Кислоты, основания и соли

Существует три основных классификации веществ, известных как кислоты или основания. Определение Аррениуса гласит, что кислота производит H + в растворе, а основание дает OH . Эта теория была разработана Сванте Аррениусом в 1883 году. Позже были предложены две более сложные и общие теории. Это определения кислот и оснований Бренстеда-Лоури и Льюиса. Теория Льюиса обсуждается в другом месте.

Рис. \ (\ PageIndex {1} \) Теории кислотно-основных реакций как модели надмножества и подмножества.- \)) ионы при растворении в воде, высвобождая тем самым ионы OH в раствор.

Кислоты Аррениуса — это вещества, которые производят ионы водорода в растворе, а основания Аррениуса — вещества, которые производят ионы гидроксида в растворе.

Ограничения теории Аррениуса

Теория Аррениуса имеет гораздо больше ограничений, чем две другие теории. Теория не объясняет слабый щелочной аммиак (NH 3 ), который в присутствии воды выделяет гидроксид-ионы в раствор, но сам не содержит ОН-.Кроме того, определение кислоты и основания по Аррениусу ограничивается водными (т.е. водными) растворами.

Теория кислот и оснований Бренстеда-Лоури

В 1923 году датский химик Йоханнес Бронстед и английский химик Томас Лоури независимо друг от друга предложили новые определения кислот и оснований, в которых основное внимание уделяется переносу протона. Кислота Бренстеда-Лоури — это любой вид, который может передавать протон (H + ) другой молекуле. Основание Brønsted-Lowry — это любой вид, который может принимать протон от другой молекулы.Короче говоря, кислота Бренстеда-Лоури является донором протонов (PD) , а основание Бренстеда-Лоури является акцептором протонов (PA) .

Кислота Бренстеда-Лоури является донором протонов, а основание Бренстеда-Лоури является акцептором протонов.

Давайте воспользуемся реакцией аммиака в воде, чтобы продемонстрировать определения кислоты и основания по Бренстеду-Лоури. {-} (водн.)} \ Label {Eq1} \]

В этой реакции произошло то, что исходная молекула воды подарила ион водорода исходной молекуле аммиака, которая, в свою очередь, приняла ион водорода.Проиллюстрируем это следующим образом:

Поскольку молекула воды отдает ион водорода аммиаку, это кислота Бренстеда-Лоури, а молекула аммиака, которая принимает ион водорода, является основанием Бренстеда-Лоури. Таким образом, аммиак действует как основание как в смысле Аррениуса, так и в смысле Бренстеда-Лоури.

Является ли кислота Аррениуса, подобная соляной кислоте, все еще кислотой в смысле Бренстеда-Лоури? Да, но это требует от нас понимания того, что на самом деле происходит, когда HCl растворяется в воде.Напомним, что атом водорода представляет собой отдельный протон, окруженный одним электроном. Чтобы сделать ион водорода , мы удаляем электрон, оставляя голый протон. Действительно ли у нас есть голые протоны, плавающие в водном растворе? Нет, мы не. На самом деле происходит то, что ион H + присоединяется к H 2 O, образуя H 3 O + , который называется ионом гидроксония . Для большинства целей H + и H 3 O + представляют собой один и тот же вид, но запись H 3 O + вместо H + показывает, что мы понимаем, что нет плавающих голых протонов. в растворе.{-} (aq)} \ label {Eq2} \]

Мы можем изобразить этот процесс с помощью электронных точечных диаграмм Льюиса:

Теперь мы видим, что ион водорода передается от молекулы HCl к молекуле H 2 O, образуя ионы хлора и ионы гидроксония. В качестве донора ионов водорода HCl действует как кислота Бренстеда-Лоури; в качестве акцептора иона водорода H 2 O является основанием Бренстеда-Лоури. Итак, HCl — это кислота не только в смысле Аррениуса, но и в смысле Бренстеда-Лоури. Более того, согласно определениям Бренстеда-Лоури, H 2 O является основанием при образовании водной HCl. +} \) акцептор

Все кислоты и основания Аррениуса также относятся к кислотам и основаниям Бренстеда-Лоури.Однако не все кислоты и основания Бренстеда-Лоури являются кислотами и основаниями Аррениуса.

Пример \ (\ PageIndex {1} \)

Анилин (C 6 H 5 NH 2 ) плохо растворяется в воде. У него есть атом азота, который может принимать ион водорода от молекулы воды, как это делает атом азота в аммиаке. Напишите химическое уравнение этой реакции и определите кислоту и основание Бренстеда-Лоури.

РЕШЕНИЕ

C 6 H 5 NH 2 и H 2 O являются реагентами.{+}} \]

Ответ
Кислота Бренстеда-Лоури: H 2 PO 4 ; База Бренстеда-Лоури: H 2 O

Упражнение \ (\ PageIndex {2} \)

Какое из следующих соединений является основанием Бренстеда-Лоури?

  1. HCl
  2. HPO 4 2
  3. H 3 PO 4
  4. NH 4 +
  5. CH 3 NH 3 +
Ответ:

Основание Бренстеда-Лоури является акцептором протонов, что означает, что оно будет принимать H + . {-} (aq)} \ nonumber \]

В этом случае HPO 4 2 является основанием, поскольку он принимает протон из воды с образованием H 2 PO 4 и OH . Таким образом, HPO 4 2 представляет собой кислоту и основание вместе, что делает его амфотерным.

Поскольку HPO 4 2 — единственное соединение из вариантов, которое может выступать в качестве основы, ответ: (b) HPO 4 2-.

Сводка

  • Кислота Аррениуса — это соединение, которое увеличивает концентрацию ионов H + , а основание Аррениуса — это соединение, которое увеличивает концентрацию ионов OH в водном растворе.
  • Кислота Бренстеда-Лоури является донором протонов; Основание Бренстеда-Лоури является акцептором протона.
  • Все кислоты и основания Аррениуса также относятся к кислотам и основаниям Бренстеда-Лоури. Однако не все кислоты и основания Бренстеда-Лоури являются кислотами и основаниями Аррениуса.

Реакция кислот — Кислоты, основания и соли — (CCEA) — GCSE Chemistry (Single Science) Revision — CCEA

1. Кислотные реакции с металлами

Кислоты реагируют с металлами с образованием соли и водорода.

кислота + металл → соль + водород

Пример:

соляная кислота + магний → хлорид магния + водород

2HCl (водный) + Mg (s) → MgCl 2 (водный) + H Наблюдения: серый твердый магний исчезает, образуется бесцветный раствор, выделяется тепло, пузыри.

Водород в этих реакциях можно проверить. Тест для водорода :

  • наложите светящуюся шину
  • результаты хлопка

2. Кислотные реакции с основаниями

Кислоты реагируют с основаниями с образованием соли и воды.

кислота + основание → соль + вода

Пример:

серная кислота + оксид меди (II) → сульфат меди (II) + вода

H 2 SO 4 (водный) + CuO (s) → CuSO 4 (водн.) + H 2 O (l)

Наблюдения: черный твердый оксид меди (II) исчезает, образуется голубой раствор.

3. Кислотные реакции с карбонатами и гидрокарбонатами

Кислоты реагируют с карбонатами и гидрокарбонатами металлов одинаковым образом. Эти реакции производят соль, воду и углекислый газ.

кислота + карбонат → соль + вода + диоксид углерода

или

кислота + гидрокарбонат → соль + вода + диоксид углерода

Пример — карбонат:

соляная кислота + карбонат меди (II) → хлорид меди (II) + вода + диоксид углерода

2HCl (водн.) + CuCO 3 (т) → CuCl 2 (водн.) + H 2 (г)

Наблюдения: зеленый твердый карбонат меди (II) исчезает, образуется голубой раствор, выделяется тепло, пузыри.

Пример — гидрокарбонат:

соляная кислота + гидрокарбонат натрия → хлорид натрия + вода + диоксид углерода

HCl (водн.) + NaHCO 3 (с) → NaCl (водн.) + H 2 O (л ) + CO 2 (г)

Наблюдения: твердый белый гидрокарбонат натрия исчезает, образуется бесцветный раствор, пузырьки.

Газообразный диоксид углерода, образующийся в этих реакциях, можно проверить. Тест на диоксид углерода :

  • пузырьковый газ в бесцветной известковой воде (раствор гидроксида кальция)
  • раствор изменится с бесцветного на молочный, если газ представляет собой диоксид углерода

4.Кислотные реакции с аммиаком

Кислоты реагируют с аммиаком с образованием соли.

кислота + аммиак → соль аммония

Пример:

серная кислота + аммиак → сульфат аммония

H 2 SO 4 (водн.) + 2NH 3 (г) → (NH 4 ) 2 SO 4 (водн.)

Обозначение солей — Кислоты, щелочи и соли — AQA — GCSE Chemistry (Single Science) Revision — AQA

Кислоты нейтрализуются основаниями, включая щелочи, и карбонатами металлов.

Реакции с основаниями, в том числе с щелочами

Кислота + оксид металла → соль + вода

Например:

Серная кислота + оксид меди → сульфат меди + вода

H 2 SO 4 (водный) + CuO (s) → CuSO 4 (водн.) + H 2 O (l)

Щелочи — растворимые основания. Когда кислоты реагируют со щелочами, образуются соль и вода.Обычно:

Например:

Азотная кислота + гидроксид натрия → нитрат натрия + вода

HNO 3 (водн.) + NaOH (водн.) → NaNO 3 (водн. ) + H 2 O (l)

Реакции с карбонатами

При реакции кислоты с карбонатами образуются соль, вода и диоксид углерода. Обычно:

Кислота + карбонат → соль + вода + диоксид углерода

Например:

2HCl (водн.) + CuCO 3 (s) → CuCl 2 (водн.) + H 2 O (л) + CO 2 (г)

Обозначение солей

Название соли состоит из двух частей.Первая часть происходит из основания, карбоната щелочного металла или металла. Вторая часть происходит от кислоты:

  • соляная кислота дает хлоридные соли
  • азотная кислота дает нитратные соли
  • Вопрос

    Предскажите название соли, образующейся при реакции оксида меди с азотная кислота.

    Показать ответ

    Образовавшаяся соль — нитрат меди.

    Выведение формул солей

    У соли нет общего заряда, так как сумма зарядов на их ионах равна нулю.Формулы некоторых общих ионов приведены ниже:

    2

    Заряд на ионе Примеры
    +1 K + , Na + , Li +
    2+ , Ca 2+ , Cu 2+ , Fe 2+
    +3 Al 3+ , Fe 3+
    1 — , Br , I , NO 3
    -2 SO 4 2-
    4 3-

    Обратите внимание, что ионы элементов группы 1 имеют заряд +1, а ионы элементов группы 2 имеют заряд +2.Ионы элементов 7-й группы имеют заряд -1, а ионы элементов 6-й группы имеют заряд -2.

    Пример

    Какова формула сульфата алюминия?

    Формулы ионов: Al 3+ и SO 4 2-.

    Сумма зарядов ионов нейтральной соли должна быть равна нулю. Два иона Al 3+ имеют общий заряд +6, а три иона SO 4 2- имеют общий заряд -6.

    Итак, формула Al 2 (SO 4 ) 3 .

    Вопрос

    Какова формула хлорида магния?

    Выявить ответ

    2

    кислотно-щелочная реакция | Определение, примеры, формулы и факты

    Кислотно-основная реакция , тип химического процесса, типичным примером которого является обмен одного или нескольких ионов водорода, H + , между частицами, которые могут быть нейтральными (молекулы, такие как вода , H 2 O; или уксусная кислота, CH 3 CO 2 H) или электрически заряженные (ионы, такие как аммоний, NH 4 + ; гидроксид, OH ; или карбонат, CO 3 2−).Он также включает аналогичное поведение молекул и ионов, которые являются кислотными, но не отдают ионы водорода (хлорид алюминия, AlCl 3 и ион серебра AG + ).

    сульфат натрия

    Сульфат натрия, также называемый глауберовской солью, является, как и другие соли, продуктом кислотно-щелочной реакции.

    Martin Walker

    Популярные вопросы

    Что такое кислоты и основания?

    Кислоты — это вещества, содержащие один или несколько атомов водорода, которые в растворе выделяются в виде положительно заряженных ионов водорода.Кислота в водном растворе имеет кислый вкус, меняет цвет голубой лакмусовой бумаги на красный, вступает в реакцию с некоторыми металлами (например, с железом) с выделением водорода, реагирует с основаниями с образованием солей и способствует определенным химическим реакциям (кислотный катализ). Основания — вещества, которые имеют горький вкус и меняют цвет красной лакмусовой бумаги на синий. Основания реагируют с кислотами с образованием солей и способствуют определенным химическим реакциям (щелочной катализ).

    Как измеряются кислоты и основания?

    Кислотам и основаниям присваивается значение от 0 до 14, значение pH, в зависимости от их относительной силы.Чистая вода, которая является нейтральной, имеет pH 7. Раствор с pH менее 7 считается кислым, а раствор с pH более 7 считается щелочным или щелочным. Сильные кислоты имеют более высокую концентрацию ионов водорода, и им присваиваются значения, близкие к 0. И наоборот, сильные основания имеют более высокие концентрации гидроксид-ионов, и им присваиваются значения, близкие к 14. Более слабые кислоты и основания ближе к значению pH 7, чем их более сильные собратья.

    Что происходит во время кислотно-щелочной реакции?

    Кислотно-основная реакция — это тип химической реакции, которая включает обмен одним или несколькими ионами водорода, H + , между частицами, которые могут быть нейтральными (молекулы, такие как вода, H 2 O) или электрически заряженные (ионы, такие как аммоний, NH 4 + ; гидроксид, OH ; или карбонат, CO 3 2−).Он также включает аналогичные процессы, которые происходят в молекулах и ионах, которые являются кислотными, но не отдают ионы водорода.

    Как кислоты и основания нейтрализуют друг друга (или нейтрализуют друг друга)?

    Различные реакции дают разные результаты. Реакции между сильными кислотами и сильными основаниями более полно разлагаются на ионы водорода (протоны, положительно заряженные ионы) и анионы (отрицательно заряженные ионы) в воде. Для слабой кислоты и слабого основания нейтрализация более подходящим образом включает прямой перенос протонов от кислоты к основанию.Если один из реагентов присутствует в большом избытке, реакция может привести к образованию соли (или ее раствора), которая может быть кислой, основной или нейтральной в зависимости от силы кислот и оснований, взаимодействующих друг с другом.

    Кислоты — это химические соединения, которые в водном растворе проявляют резкий вкус, разъедающее действие на металлы и способность окрашивать некоторые синие растительные красители в красный цвет. Основания — это химические соединения, которые в растворе становятся мыльными на ощупь и окрашивают красные растительные красители в синий цвет. При смешивании кислоты и основания нейтрализуют друг друга и образуют соли, вещества с солоноватым вкусом и без характерных свойств кислот или оснований.

    Идея о том, что одни вещества являются кислотами, а другие — основаниями, почти так же стара, как и химия, а термины кислота , основание и соль встречаются очень рано в трудах средневековых алхимиков. Кислоты, вероятно, были первыми из них, которые были распознаны, очевидно, из-за их кислого вкуса. Английское слово acid , французское acide , немецкое Säure и русское kislota происходит от слов, означающих кислый (латинское acidus , немецкое sauer , древнескандинавское sūur и Русский кислый ).К другим свойствам, которые в свое время связывали кислоты, относились их растворяющее или коррозионное действие; их действие на растительные красители; и вспенивание, возникающее при нанесении их на мел (образование пузырьков углекислого газа). Основания (или щелочи) характеризовались в основном своей способностью нейтрализовать кислоты и образовывать соли, причем последние довольно слабо характеризовались как кристаллические вещества, растворимые в воде и имеющие соленый вкус.

    Несмотря на их неточный характер, эти идеи служили для корреляции значительного диапазона качественных наблюдений, и многие из самых обычных химических материалов, с которыми сталкивались ранние химики, можно было классифицировать как кислоты (соляная, серная, азотная и угольная кислоты), основания (сода, калий, известь, нашатырный спирт) или соли (поваренная соль, нашатырный спирт, селитра, квасцы, бура).Отсутствие какой-либо очевидной физической основы для рассматриваемого явления затрудняло количественный прогресс в понимании кислотно-основного поведения, но способность фиксированного количества кислоты нейтрализовать фиксированное количество основания была одним из первых примеров химической эквивалентности. : идея о том, что определенная мера одного вещества в некотором химическом смысле равна разному количеству второго вещества. Кроме того, довольно рано было обнаружено, что одна кислота может быть вытеснена из соли другой кислотой, и это позволило расположить кислоты в приблизительном порядке силы.Также вскоре стало ясно, что многие из этих смещений могут происходить в любом направлении в соответствии с экспериментальными условиями. Это явление свидетельствует о том, что кислотно-основные реакции обратимы, то есть продукты реакции могут взаимодействовать, чтобы регенерировать исходный материал. Он также ввел концепцию равновесия в кислотно-щелочную химию: эта концепция гласит, что обратимые химические реакции достигают точки баланса или равновесия, при которой исходные материалы и продукты регенерируются каждой из двух реакций так же быстро, как и они. потребляются другим.

    Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
    Подпишитесь сейчас

    Помимо теоретического интереса, кислоты и основания играют большую роль в промышленной химии и в повседневной жизни. Серная кислота и гидроксид натрия входят в число продуктов, производимых в наибольших количествах химической промышленностью, и большой процент химических процессов включает кислоты или основания в качестве реагентов или катализаторов. Почти каждый биологический химический процесс тесно связан с кислотно-щелочным равновесием в клетке или в организме в целом, и кислотность или щелочность почвы и воды имеют большое значение для растений или животных, живущих в них.И идеи, и терминология кислотно-щелочной химии проникли в повседневную жизнь, и термин соль является особенно распространенным.

    Кислотная соль — обзор

    14.2.3 Безводные нанокомпозиты с твердой кислотой

    Соли суперпротонных кислот — хорошо известные протонные проводники с общим составом M m H n (XO 4 ) (m + N) / 2 (M = K, Rb, NH 4 или Cs; X = S или Se) и CsH 2 (RO 4 ) (R = P или As).По структуре они делятся на нормальные кислоты и нормальные соли и содержат оксианионы, связанные водородными связями. Они претерпевают структурный фазовый переход при определенной температуре, и голые протоны подвижны в безводных состояниях из-за существования динамически неупорядоченной сети Н-связей (Баранов и др. , 1989) (рис. 14.11). Таким образом, суперпротонные фазы характеризуются быстрой диффузией протонов и интенсивными колебаниями тетраэдров XO 4 или RO 4 .Таким образом, протонная проводимость является внутренним свойством из-за идеальной кристаллической решетки, и любые структурные дефекты уменьшают протонную проводимость. Эти соединения не содержат в своей структуре молекул воды, поэтому обладают высокой термической и электрохимической стабильностью. Их проводимость не зависит от влажности воздуха и может быть увеличена за счет получения неорганических композитов с оксидами металлов с большой площадью поверхности (Пономарева и др. , 1996; Пономарева, Лаврова, 1998).

    14.11. Структурно-фазовый переход твердых кислот.

    Наиболее известным соединением является CsHSO 4 , структура которого показана на рис. 14.12 2. Оно демонстрирует высокую протонную проводимость 10 -2 См / см при температурах> 141 ° C, где происходит фазовый переход и он суперпротонный. Как показано в Таблице 14.5 и на Рис. 14.13, температура суперпротонного перехода обычно составляет 70–250 ° C, и эти материалы обладают очень высокой проводимостью (от 10 –3 до 10 –1 См / см).Это делает эти материалы очень перспективными для применения в топливных элементах, работающих при средних температурах (100–250 ° C). Для получения более низкой температуры суперпротонного перехода и высокой проводимости были приготовлены новые твердые соединения, например, CsHSO 4 • CsH 2 PO 4 и CsHSO 4 • CsH 2 PO 4 (Crisholm and Haile , 2000; Haile et al. , 1995).

    14.12. Кристаллическая структура твердой кислоты CsHSO 4 : (а) моноклинная фаза II и (б) тетрагональная фаза III, где каждая позиция кислорода имеет половинное заполнение, а атомы водорода расположены в середине неупорядоченных водородных костей (пунктирные линии) .

    Таблица 14.5. Различные твердые кислоты и их свойства

    Соединения Температура перехода (° C) Протонная проводимость (См / см) Структура суперпротонной фазы Ссылка
    KHSO 4 4 900 177 10 −1 выше 177 ° C Баранов и др. , 2005
    RbHSO 4 ~ 10 −2 Баранов и др., 2005
    RbHSeO 4 172 ~ 10 −2 Баранов и др. , 2005
    CsHSO 4 140 4 × 10 −2 при 200 ° C Haile et al. , 2001
    CsHSeO 4 124 ~ 10 −2 Haile et al. , 2001
    Х3ПО 4 178 7 × 10 −5 при 185 ° C Моноклинический Ортиз и др., 1999
    RbH 2 PO 4 71 6,8 × 10 −2 при 340 ° C Моноклинический Ortiz et al. , 1999
    CsH 2 PO 4 230 2,2 × 10 −2 при 240 ° C Кубический Баранов и др. , 1989
    NH 4 H 2 PO 4 160 4 × 10 −2 при 180 ° C Кубический Баранов и др., 1989
    K 3 H (SO 4 ) 2 205 4 × 10 −3 при 208 ° C Boysen et al. , 2004
    K 3 H (SeO 4 ) 2 117 ~ 10 −3 при 127 ° C Ромбоэдрический Синицын и др. , 2000
    Rb 3 H (SeO 4 ) 2 174 2 × 10 −4 при 186 ° C Ромбоэдрический Синицын и др., 2000
    Cs 3 H (SeO 4 ) 2 182 ~ 2 × 10 −4 при 187 ° C Boysen et al. , 2004
    (NH 4 ) 3 H (SeO 4 ) 2 27 4 × 10 −3 при 110 ° C Boysen et al. al. , 2004

    14,13. Протонная проводимость твердых кислот при разных температурах.

    Твердые кислоты являются хорошими кандидатами в протонпроводящие мембраны из-за их высокой протонной проводимости в безводном состоянии, что устраняет деликатную проблему управления водными ресурсами. Тем не менее, они также обладают серьезными недостатками, такими как хрупкость, узкий температурный диапазон для суперпротонной фазы (между температурой перехода и температурой плавления) (Piao et al. , 2009), химическая нестабильность (Baranov et al. , p. 2005), растворимость в воде и плохие механические свойства (Boysen et al., 2004). Поэтому их композиционные материалы направлены на объединение преимуществ твердых кислот для устранения этих недостатков. Однако этот тип нанокомпозитного материала до сих пор мало изучен по сравнению с другими типами неорганических наполнителей. В литературе можно найти только предварительные исследования полимерных композитов на основе CsHSO 4 и поливинилиденфторида (PVDF) (Boysen et al. , 2000) и CsHSO 4 с поли (акрилонитрилом) (Andronie и другие., 2008).

    Первый отчет о применении CsHSO 4 в топливном элементе был в 2001 году (Haile et al. , 2001). Эта система могла работать при 150–160 ° C в конфигурации H 2 / O 2 с напряжением холостого хода 1,1 В и плотностью тока короткого замыкания 44 мА / см 2 . Он также был стабильным во влажной среде, но по своим характеристикам был значительно ниже, чем у эквивалентных композитных полимерных мембран, работающих при 130–140 ° C (Costamagna et al., 2002). Позже те же группы использовали электролитную мембрану CsH 2 PO 4 в топливном элементе, работающем при 250 ° C. Ячейка работала стабильно, и пиковая и максимальная плотности мощности составляли 48,9 мВт / см 2 и 301 мА / см 2 (короткое замыкание), соответственно. Это был очень положительный результат, но проводимость CsH 2 PO 4 при низких температурах (<140 ° C) была очень низкой (10 -6 См / см). Следовательно, вполне вероятно, что эти топливные элементы могут иметь ряд проблем с запуском при использовании в циклических приложениях (например, в автомобилях).

    Было проведено больше исследований смеси твердых кислот с частицами оксидов. Гетерогенное легирование высокодисперсными инертными оксидами показало заметное увеличение протонной проводимости для некоторых твердых кислот, в частности, при температурах ниже, чем температура суперпротонов (Otomo et al. , 2008; Saito et al. , 2009). В этих композитах имело место сильное поверхностное взаимодействие компонентов, которое привело не только к стабилизации новой фазы на поверхности оксида, но и к изменению объемных свойств солей (Лаврова, Пономарева, 2008). ).Часто используемые оксидные частицы являются пористыми, и влияние их пористости на проводимость было изучено. Однако низкотемпературная протонная проводимость этих композитов остается неясной, но часто утверждают, что твердая кислота принимает аморфную фазу с высокой протонопроводящей способностью в мезопорах при более низких температурах (Лаврова и Пономарева, 2008). Другое объяснение может заключаться в существовании метастабильной фазы во время охлаждения композитов, вызванной упругими силами сдвига (Otomo et al., 2008). Окончательное объяснение будет заключаться в том, что изменение кристаллической структуры и усиление межфазного взаимодействия между двумя фазами в композите приводит к более низкой температуре плавления для твердой кислоты в композите, чем для чистой твердой кислоты (Piao et al. , 2009 ).

    Наблюдалось, что диспергирование частиц SiO 2 в твердо-кислотной матрице улучшает механические свойства мембраны (Бондаренко и др. , 2009). Введение CsH 2 PO 4 в пористые мембраны из анодного оксида алюминия дало высокую выходную мощность при комнатной температуре, и, кроме того, опора мембраны из анодного оксида алюминия гарантирует работу топливного элемента с хорошей воспроизводимостью без какой-либо внешней поддержки (Bocchetta et al. ., 2009 г.).

    Безводные кислоты обычно страдают плохими механическими свойствами и растворимостью в воде, а также чрезмерной пластичностью и объемным расширением при повышении температуры. Однако, когда они включены в каналы полимерной мембраны, они могут быть очень полезны при высоких температурах, поскольку их проводимость не зависит от влажности. Однако до того, как твердые кислоты можно будет использовать в топливных элементах, все еще остаются технологические проблемы: (а) изготовление тонких, непроницаемых твердокислотных мембран, (б) улучшение характеристик электрода и (в) конструкция системы для защиты электролита. от жидкой воды во время отключения топливных элементов (Haile et al., 2004).

    Соли

    ЦЕЛИ:

    • Распознавать соли как продукты кислотно-основных реакций
    • Определите, будет ли водный раствор соли кислым, основным или нейтральным
    • Понять, как pH может влиять на растворимость

    Список ингредиентов почти любого домашнего продукта обязательно должен включать по крайней мере одно соединение, которое химики классифицируют как соль. Хотя вы можете думать о соли как о белых гранулах, используемых для ароматизации пищевых продуктов (известных химиками как хлорид натрия, NaCl), химики классифицируют многие соединения как соли.Для химиков соль — это любое ионное соединение, которое могло образоваться в результате кислотно-щелочной реакции. Хлорид натрия подходит под это определение, поскольку он может быть образован реакцией соляной кислоты и гидроксида натрия:

    HCl + NaOH
    NaCl + H 2 O

    При объединении любой кислоты и основания происходит обмен
    реакция

    происходит, производя соль и воду. Общее уравнение для этого процесса
    показано ниже:

    HA + BOH
    BA + H 2 O

    Отрицательный ион соли (A ) является сопряженным основанием кислоты HA, а положительный ион соли (B + ) является сопряженной кислотой основания BOH.В зависимости от силы кислоты и основания полученный раствор может быть кислым, основным или нейтральным.

    Если известны силы исходной кислоты (HA) и основания (BOH), можно определить силу их сопряженной кислоты и основания, поскольку константы ионизации сопряженных кислотно-основных пар связаны:

    K a x K b = K w = 1,0 x 10 -14

    Завершено
    следующие заявления:

    Хорошо!
    Эта взаимосвязь также наблюдается с основаниями и их сопряженными кислотами.Если BOH — очень сильное основание, B + будет очень слабой кислотой.
    и не повлияет на pH раствора. Если BOH — слабая база, B +
    будет слабой кислотой и вызовет снижение pH раствора.
    Эти отношения кратко описаны в таблице ниже:

    Пример Основание конъюгата Сила основания конъюгата Влияние на pH
    Сильная кислота HNO 3 НЕТ 3 Очень слабая Нет
    Слабая кислота HCO 2 H HCO 2 Слабая Увеличение
    Пример Кислота конъюгированная Сила конъюгированной кислоты Влияние на pH
    Крепкое основание КОН К + Очень слабая Нет
    Слабая база NH 3 NH 4 + Слабая Уменьшение

    А
    сильная кислота — это кислота, которая полностью ионизируется в воде.Его ионизация
    константа слишком велика для измерения. В этом случае сопряженная
    база будет иметь константу ионизации, которая невероятно мала (слишком
    малы по размеру!) и могут быть отнесены к категории очень слабых.

    Предположим
    слабая кислота имеет константу ионизации 1,0 x 10 -4 . В
    Константа ионизации его сопряженного основания будет 1,0 x 10 -10 .
    Как бы вы классифицировали силу этой базы? А теперь предположим слабый
    кислота имеет константу ионизации 1.0 х 10 -11 . Ионизация
    Константа его сопряженного основания будет 1,0 x 10 -3 . Было бы
    сила этой базы должна быть в той же классификации, что и первая
    пример?

    Помните
    что основание (если только оно не очень слабое) вызовет pH
    раствор для увеличения.

    А
    очень слабое основание не повлияет на pH раствора.

    Сравнение эффектов текстов концептуальных изменений, реализованных после и до обучения, на понимание учащимися средних школ кислотно-основных концепций

    Вопрос: Вышеуказанные стаканы содержат хлор аммония, хлор натрия и раствор бикарбоната натрия соответственно. Что вы думаете о значениях pH этих солевых растворов? Объясните

    Заблуждения: Хотя многие студенты считают, что все солевые растворы нейтральны или имеют pH 7, некоторые полагают, что они не имеют никакого значения pH или pH 0.

    Как вы знаете, когда соли растворяются в воде, они распадаются на составляющие их катионы и анионы. Реакции ионов солей с молекулами воды с образованием ионов H 3 O + или OH называются реакциями гидролиза солей. В реакции молекула воды принимает участие в реакции как один из реагентов. Из этого следует, что солевые растворы могут быть кислыми, основными или нейтральными. Если бы все солевые растворы были нейтральными, pH в эквивалентной точке всех титрований был бы 7.Но мы знаем, что pH в эквивалентных точках может быть меньше или больше 7. Причина этого в том, что образовалась своего рода соль.

    Можно ли предсказать, образует ли реакция гидролиза соли кислый раствор (содержащий ионы H 3 O + ) или щелочной раствор (содержащий ионы OH )?

    Самый простой способ — изучить кислоту и основание, из которых образована соль. Есть четыре возможности: (i) соли сильных кислот и сильных оснований: например, NaCl — это соль, образованная в результате реакции нейтрализации между NaOH и HCl.

    Ионы в растворе NaCl: Na + и Cl . Оба являются ионами сильной кислоты (HCl) и сильного основания (NaOH). Таким образом, ни Na, ни H 3 O + не гидролизуются. Его водный раствор нейтрален и имеет pH = 7 при 25 0 ° C, то есть не является ни кислым, ни основным .

    (ii) соли сильных кислот и слабых оснований: например, NH 4 Cl представляет собой соль, образованную реакцией нейтрализации между NH 3 и HCl.

    Водный раствор этой соли слабокислый или имеет pH ниже 7, потому что ион Nh5 + отдает воде ионы H + . Этот процесс называется гидролизом соли . Поскольку Cl представляет собой конъюгированное основание с HCl (сильная кислота), у него нет сродства к ионам H + . Это просто ион-наблюдатель в этой реакции

    (iii) соли слабых кислот и сильных оснований: растворов этих солей являются основными и имеют pH менее 7.Например, CH 3 COONa представляет собой соль, образованную реакцией нейтрализации между CH 3 COOH (слабая кислота) и NaOH (сильное основание).

    Его водный раствор является основным, поскольку ион CH 3 COO (этаноат) в растворе является основанием Бренстеда-Лоури и реагирует с водой с образованием этановой кислоты (уксусной кислоты) и гидроксид-ионов. Ион Na + является просто ионом-наблюдателем в реакции.

    , и (iv) соли слабых кислот и слабых оснований: Водные растворы этих солей могут быть нейтральными, кислотными или основными в зависимости от относительной силы кислоты и основания.В этом случае гидролизу подвергаются как катион, так и анион соли. Является ли солевой раствор кислым, основным или нейтральным, оценивается путем сравнения значений Ka (константа диссоциации кислоты) и Kb (константа диссоциации основания). Если K a (катион)> K b (анион), раствор соли будет кислым. Если K a (катион) = K b (анион), раствор соли нейтрален. Если K a (катион) < K b (анион), раствор соли является основным.Например, если основание NH 3 имеет K b = 1,6 x 10 -5 , а кислотная HClO имеет Ka 3,4 x 10 -8 , то водный раствор HClO и Nh4 будет основной, потому что Ka HClO меньше Ka NH 3 .

    Таким образом, если кислота слабая, то есть слабо ионизированная, а щелочь сильная, то есть сильно ионизированная, водный раствор соли будет иметь щелочную реакцию в результате гидролиза. В противном случае, если основание слабое, соль будет иметь кислую реакцию в водном растворе.

    Кроме того, по молекулярным формулам солей можно определить, являются ли их водные растворы основными, кислотными или нейтральными. Соли состоят из катиона (кроме H + ) и аниона (кроме OH или оксида, O 2–). Формула соли указывает кислоту и основание, из которых получается соль. Катион происходит от основания; анион является производным кислоты. Например, предположим, будет ли водный раствор каждой из следующих солей кислотным, основным или нейтральным:

    (a) NaCO 3 — соль сильного основания, NaOH и слабой кислоты, H 2 CO 3 .Ион Na + не будет гидролизоваться, но ион CO 3 -2 будет. Основным будет водный раствор NaCO 3 . (b) Na 2 SO 4 представляет собой соль сильного основания NaOH и сильной кислоты h3SO4. Ни ион Na + , ни ион SO 4 -2 не гидролизуются. Водный раствор Na 2 SO 4 будет нейтральным. (c) NH 4 NO 3 представляет собой соль слабого основания NH 3 и сильной кислоты HNO 3 .Ион NH 4 + гидролизуется, а ион NO 3 -1 — нет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *