Кислотные свойства оксидов увеличиваются: Периодичность свойств простых веществ и соединений — урок. Химия, 8–9 класс.

Содержание

Периодический закон и система Д.И. Менделеева

1. Слева направо по периоду (см. Таблица Менделеева):

    • металлические свойства простых веществ ослабевают (уменьшаются)
    • неметаллические свойства усиливаются (увеличиваются)
    • радиус атома уменьшается (атомное сжатие из-за увеличения заряда ядра)
    • электроотрицательность элементов возрастает (самый ЭО элемент — фтор)
    • восстановительные свойства уменьшаются
    • окислительные свойства увеличиваются
    • основные свойства оксидов и гидроксидов уменьшаются
    • Кислотные свойства оксидов и гидроксидовусиливаются
    • идет увеличение числа электронов на внешнем уровне
    • увеличивается максимальная валентность элементов

2. Сверху вниз по группе (см. Таблица Менделеева) (для главной подгруппы):

    • металлические свойства простых веществ усиливаются
    • неметаллические свойства ослабевают
    • радиус атома увеличивается
    • электроотрицательность элементов уменьшается
    • основные свойства оксидов и гидроксидов усиливаются
    • кислотные свойства оксидов и гидроксидов убывают
    • Число электронов на внешнем уровне не меняется

3. К основным оксидам относятся оксиды металлов со степенью окисления +1 и +2

4. К кислотным оксидам относятся оксиды неметаллов и оксиды металлов со степенью окисления +5, +6, +7

5. К амфотерным оксидам относятся Al2O3, BeO, ZnO, Cr2O3

Давайте порассуждаем вместе

1. Как изменяется радиус атома в ряду Be — Mg — Ca ?

1) уменьшается

2) увеличивается

3) не изменяется

4) сначала уменьшается, потом увеличивается

 

Ответ: все элементы находятся в одной группе, сверху вниз, значит радиус атома увеличивается

2. Как изменяются металлические свойства в ряду Li — Be — B?

1) не изменяются

2) сначала усиливаются, потом уменьшаются

3) ослабевают

4) усиливаются

 

Ответ: все элементы находятся в одном периоде слева направо, значит металлические свойства ослабевают

3. Как изменяется электроотрицательность в ряду F — O — N?

1) сначала усиливается, потом ослабевает

2) уменьшается

3) не изменяется

4) усиливается

 

Ответ: все элементы находятся в одном периоде справа налево, значит электроотрицательность уменьшается.

4. Как изменяются неметаллические свойства в ряду As — P — N?

1) уменьшаются

2) не изменяются

3) сначала усиливаются, потом уменьшаются

4) усиливаются

 

Ответ: все элементы находятся в одной группе снизу вверх, значит неметаллические свойства усиливаются

5. Как изменяется число валентных электронов в ряду Li — Na — K?

1) не изменяется

2) увеличивается

3) уменьшается

4) сначала уменьшается, затем увеличивается

 

Ответ: все элементы находятся в одной группе сверху вниз, значит число валентных электронов не изменяется

6. Как изменяются окислительные свойства в ряду O — S — Se?

1) увеличиваются

2) сначала уменьшаются, затем увеличиваются

3) не изменяются

4) уменьшаются

 

Ответ: все элементы находятся в одной группе сверху вниз, значит окислительные свойства уменьшаются

7. Как изменяются восстановительные свойства в ряду Si — Al — Mg?

1) сначала уменьшаются, затем усиливаются

2) увеличиваются

3) не изменяются

4) уменьшаются

 

Ответ: все элементы находятся в одном периоде справа налево, значит восстановительные свойства усиливаются

8. Как изменяются свойства оксидов в ряду MgO -> Al2O3 —> SiO2

1) от основных к кислотным

2) от кислотных к основным

3) от кислотных к амфотерным

4) от основных к амфотерным

 

Ответ: все элементы находятся в одном периоде слева направо, значит свойства оксидов изменяются от основных к кислотным

 

Задания повышенной сложности

 

1. В главных подгруппах периодической системы с увеличением заряда ядра атомов химических элементов происходит:

1) усиление неметаллических свойств

2) усиление металлических свойств

3) высшая валентность элементов остается постоянной

4) изменяется валентность в водородных соединениях

5) уменьшается радиус атомов

 

Ответ: 2, 3

2. В главных подгруппах периодической системы  восстановительная способность атомов увеличивается по мере

1) уменьшения радиуса атома

2) увеличения числа электронных слоев в атомах

3) уменьшения заряда ядра атомов

4) увеличения числа валентных электронов

5) увеличения порядкового номера элемента

 

Ответ: 2, 5

3. В ряду химических элементов Be, Mg, Ca, Sr

1) усиливается способность атомов отдавать электроны

2) уменьшается заряд ядра атомов

3) усиливается восстановительная способность

4) уменьшаются металлические свойства

5) усиливается способность атомов принимать электроны

 

Ответ: 1, 3

4. В ряду химических элементов I, Br, Cl, F восстановительная способность атомов уменьшается, потому что

1) увеличивается радиус атома

2) увеличивается заряд ядра атомов

3) увеличивается число электронных слоев в атомах

4) уменьшается число электронных слоев в атомах

5) уменьшается способность атомов отдавать электроны

 

Ответ: 4, 5

5. В ряду химических элементов As, P, N

1) увеличивается радиус атома

2) увеличивается электроотрицательность

3) усиливаются кислотные свойства их высших оксидов

4) возрастает значение высшей степени окисления

5) увеличивается число электронов во внешнем электронном слое атомов

 

Ответ: 2, 3

6.  В ряду химических элементов  P, N, O

1) уменьшается число электронов во внешнем электронном слое

2) увеличивается электроотрицательность

3) возрастает значение высшей валентности

4) ослабевают неметаллические свойства

5) усиливается способность атомов принимать электроны

 

Ответ: 2, 5

7. В ряду гидроксидов NaOH, Ca(OH)2, Al(OH)3

1) увеличивается термическая стойкость

2) ослабевают основные свойства

3) увеличивается способность к электролитической диссоциации

4) ослабевают окислительные свойства

5) уменьшается растворимость в воде

 

Ответ: 2,5

Основное свойство — оксид — Большая Энциклопедия Нефти и Газа, статья, страница 1

Основное свойство — оксид

Cтраница 1

Основные свойства оксидов от В3О3 к Т1203 и Т12О усиливаются.
 [1]

Основные свойства оксидов и гидроксидов в подгруппе усиливаются сверху вниз, а кислотные свойства — ослабляются.
 [2]

Основные свойства оксида алюминия выражены сильнее, чем кислотные.
 [3]

Усиливаются основные свойства оксидов и гидроксидов. Следует помнить, что кислотно-основные свойства оксида или гндроксида зависят еще и от степени окисления элемента. Поэтому сравнивать следует соединения с одинаковыми степенями окисления элементов-а на логов.
 [4]

Ослабевают основные свойства оксидов и гидроксидов элементов и одновременно усиливаются их кислотные свойства.
 [5]

Усиливаются основные свойства оксидов и гидроксидов. Следует помнить, что кислотно-основные свойства оксида или гндроксида зависят еще и от степени окисления элемента. Поэтому сравнивать следует соединения с одинаковыми степенями окисления элементов-а на логов.
 [6]

Ослабевают основные свойства оксидов и гидроксидов элементов и одновременно усиливаются их кислотные свойства.
 [7]

Как изменяются основные свойства оксидов и гидроксидов s — элементов по мере увеличения порядкового номера элемента.
 [8]

Как изменяются основные свойства оксидов элементов II-A группы.
 [9]

Как изменяются кислотно — основные свойства оксидов хрома с повышением его степени окисления.
 [10]

В той же последовательности увеличиваются основные свойства оксидов и гидроксидов, причем, как обычно, соединения с низкой степенью окисления элемента менее кислотны.
 [11]

С повышением степени окисления металла основные свойства оксидов ослабевают, а кислотные усиливаются. Например: МпО — основной оксид, Мп02 проявляет кислотно-основную двойственность, Мп2О7 — кислотный оксид.
 [12]

В той же последовательности увеличива ются основные свойства оксидов и гидроксидов, причем, как обычно, соединения с низкой степенью окисления элемента менее кислотны.
 [13]

При переходе от Ti к Hf основные свойства оксидов усиливаются.
 [14]

С увеличением степени окисления марганца ослабляются основные свойства оксидов и соответствующих им гидроксидов и усиливаются кислотные. Так, МпО и Мп2О3 обладают только основными свойствами, МпО2 — амфотерным, МпОз и Мп2О7 — кислотными.
 [15]

Страницы:  

   1

   2

   3




Общие свойства кислотных оксидов — Справочник химика 21





    Исключительно важно освоить прогнозирующую роль периодического закона и периодической системы элементов Д. И. Менделеева. Тогда, даже не прибегая к учебнику, удастся многое рассказать о свойствах элементов и нх соединений. Так, по положению элемента в периодической системе можно описать строение атома — заряд и состав ядра, электронную конфигурацию атома. А по последней определить степени окисления элемента, возможность образования молекулы в обычных условиях, тип кристаллической решетки простого вещества в твердом состоянии. Наконец, можно определить формулы высших оксидов и гидроксидов элементов, изменение их кислотно-основных свойств по горизонтали и вертикали периодической системы, а также формулы различных бинарных соединений с оценкой характера химических связей. Это значительно облегчит изучение свойств элементов, простых веществ и их соединений. Начинать следует с рассмотрения общей характеристики каждой подгруппы. [c.101]









    Кислотные свойства в наибольшей степени выражены у оксидов хлора, так как разность электроотрицательностей хлора и кислорода наименьшая (разд. 35.2.1). В соответствии с общими закономерностями С /) дает наиболее сильную кислоту (табл. В.26). Следует учитывать также свойства воды как растворителя. В таблице В.26 указаны продукты, образующиеся при взаимодействии оксидов галогенов с водой. Свойство оксидов, а следовательно, и кислородных кислот образовывать соединения полимерного типа в соответствии с общими правилами (разд. 35.2.1) наиболее типично для иода. Перечень извест- [c.503]

    Среди простых соединений металлов важнейшее значение имеют оксиды. На свойствах оксидов в значительной мере сказывается химический характер металлов. В молекулах простых оксидов все атомы кислорода непосредственно связаны с атомами металла и не связаны друг с другом. Их состав выражается общей формулой МеО /2> где п — окислительное число металлического элемента. Оксиды наиболее активных металлов характеризуются основными свойствами. По мере уменьшения активности металлов свойства их оксидов изменяются от типично основных через амфотерные к кислотным. [c.261]

    Если потенциалопределяющими ионами являются ионы Н+ и ОН , то отсутствие заряда на поверхности (например, оксидов элементов) будет соответствовать определенному значению pH, называемому изоэлектрической точкой. В этой точке числа положительных и отрицательных зарядов одинаковы — общий заряд поверхности равен нулю. Очевидно, что изоэлектрическая точка зависит от кислотно-основных свойств вещества. Сродство к протону можно представить следующими константами диссоциации  [c.50]

    Общие свойства кислотных оксидов [c.150]

    На примере гидридов и оксидов типических элементов хорошо иллюстрируется корреляция между валентностью и номером группы элемента. Элементы, расположенные в левом нижнем углу периодической системы, представляют собой металлы. Они образуют ионные гидриды и оксиды, водные растворы которых обладают основными свойствами. Элементы, расположенные в верхнем правом углу периодической системы, являются неметаллами. Их соединения с водородом и оксиды представляют собой небольщие молекулы с ковалентными связями при нормальных условиях они существуют в форме жидкостей или газов и проявляют кйслотные свойства. В промежуточной части периодической таблицы между ее верхним правым и нижним левым углами находятся элементы, которые обнаруживают постепенно изменяющиеся свойства. По мере перехода от неметаллических элементов к семиметаллическим и далее к металлам их соединения с водородом становятся вместо кислотных инертными или нейтральными и далее основными (хотя эта общая закономерность осложняется многими отклонениями), а оксиды переходят более закономерным образом от кислотных к амфотерным и далее к основным. [c.323]










    Всем стеклам присущи некоторые общие свойства прозрачность, низкая теплопроводность, диэлектрические свойства, высокая химическая стойкость к кислотным реагентам. Свойства стекол зависят от их состава, от соотношения основных и кислотных оксидов. [c.316]

    Общим свойством всех кислотных оксидов является их способность взаимодействовать с основаниями с образованием соли и воды  [c.227]

    Оксид ХОз имеет кислотный характер. Он образует ряд кислот, содержащих один или несколько атомов X в молекуле (изополикислоты). Бариевые и свинцовые соли некоторых из этих кислот находят непосредственное практическое применение. Сильные окислительные свойства растворимых солей этих кислот в кислой среде широко используются в количественном анализе. Название элемента X связано с некоторым общим свойством его соединений, [c.146]

    Кинетика изомеризации парафиновых углеводородов. Во всех работах, посвященных кинетике изомеризации парафиновых углеводородов на бифункциональных катализаторах [19, 21, 24, 27-36], за исключением [11], стадией, лимитирующей общую скорость реакции изомеризации, считается алкильная перегруппировка карбкатионов. Эта точка зрения подтверждается данными о селективном действии различных промоторов и ядов на металлические и кислотные участки катализатора [19, 30]. Серии опытов по влиянию фтора, натрия, железа и платины на активность алюмоплатиновых катализаторов в реакции изомеризации к-гексана проводились при 400 °С, давлении 4 МПа и изменении объемной скорости подачи и-гексана от 1,0 до 4,0 ч [30]. Опыты на платинированном оксиде алюминия, промотированном различными количествами фтора — от О до 15% (рис. 1.7), показали, что по мере увеличения количества фтора в катализаторе до 5% наблюдался значительный рост его изомеризу-ющей активности поскольку удельная поверхность катализатора не подвергалась заметным изменениям, рост каталитической активности объясняется изменением химических свойств активной поверхности, а именно усилением кислотности. [c.17]

    Таким образом, сравнивая кислотно-основные свойства оксидов и гидроксидов мышьяка и его аналогов, можно сделать общий вывод, что в ряду Аз(+3)—5Ь(+3)—В1(+3) наблюдается нарастание основных свойств, а в ряду В (+5)—5Ь(+5)—А5(+5) нарастание кислотных свойств при одновременном увеличении стабильности производных в этих же направлениях  [c.291]

    Если подобное семейство оксидов образует неметалл (например, азот), то общая тенденция сохраняется, но свойства оксидов смещены в направлении увеличения кислотности в последовательности N 03, N 04, N 05  [c.24]

    Взаимодействие с кислотными и амфотерными сксндами (см. выше Общие свойства кислотных оксидов , Амфотерные оксиды ) растьор, ( [c.156]

    ОСНОВАНИЯ НЕОРГАНИЧЕСКИЕ -класс неорганических соединений общей формулы Ме (0Н) , где Ме — металл, п — валентность металла. Общим свойством О. н. является то, что они в водных растворах диссоциируют на положительно заряженные ионы металлов и отрицательно заряженные ионы гидроксила ОН «. О. н., растворимые в воде, называют щелочами. О. н. образуются главным образом при взаимодействии соответствующих солей со щелочами, активных металлов с водой, основных оксидов с водой и др. Нерастворимые в воде О. н. получают реакцией обмена между растворимой солью данного металла и раствором щелочи. Число гидроксильных групп в О. и., которые способны замещаться кислотными остатками с образованием солей, определяют его кислотность. Например, КОН — однокислот- [c.184]

    Общая характеристика группы. У всех элементов третьей группы высшая степень окисления в соответствии с номером группы равна трем. Этому отвечают их оксиды типа КаОз. По химическому характеру только окись бора В2О3 является кислотным оксидом оксиды алюминия А Оз, индия 1П2О3 и галлия ОэгОз обладают амфотерными свойствами, а все остальные являются основными с постепенным усилением основных свойств при переходе к элементам с ббльшей атомной массой. [c.72]

    Согласно теории электролитической диссоциации все общие щелочные свойства растворов — мыльность на ощупь, изменение цвета индикаторов, взаимодейств е с кислотами, кислотными оксидами, солями— обусловлены присутствием гидроксид-ионов ОН,  [c.75]

    Среди соединений металлов важнейшее значение имеют оксиды. Их состав выражается общей формулой МехОу, где атомы кислорода непосредственно связаны с атомами металла и не связаны друг с другом. Оксиды наиболее активных металлов характеризуются основными свойствами. По мере уменьшения активности металлов свойства их оксидов изменяются от типично основных через амфотерные к кислотным. [c.76]

    В приведенном выше ряду оксидов марганца слева направо усиливаются окислительные свойства самих оксидов и их гидроксидов, у которых изменяются и кислотно-основные свойства от основных Мп(ОН)а и Мп(ОН)з через амфотерные Мп(0Н)4 или МпО(ОН)а к кислотным HjMnOi и НМпО. Зта закономерность является общей для оксидов и для гидроксидов других элементов с изменяющимися окислительными числами (гл. V, 9). [c.184]










    Почти все элементы главных подгрупп IV—VII групп периодической системы представляют собой неметаллы, в то время как элементы побочных подгрупп — металлы. Поэтому в правой части периодической системы различия в свойствах элементов главных и побочных подгрупп проявляются особенно- резко. Однако в тех случаях, когда элементы главной и побочной подгруппы находятся в высшей степени окисленности, их аналогичные соединения проявляют существенное сходство. Так, хром, расположенный в побочной подгруппе VI группы, образует кислотный оксид СгОз, близкий по свойствам к триоксиду серы 50з. Оба эти вещества в обычных условиях находятся в твердом состоянии и образуют при взаимодействии с водой кислоты состава Н2ЭО4. Точно так же оксиды марганца и хлора, соответствующие высшей степени окисленности этих элементов, — МпгО и СЬО — обладают сходными свойствами и представляют собой ангидриды сильных кислот, отвечающих общей формуле НЭО4. [c.626]

    Кислородные соединения элементов VI группы. Сера, селен, и теллур образуют по два окисла общей формулы К02(802, ЗеОг) и К0з(50з и ТеОз), соответствующие степеням окисления + 4 и +6. Оксиды обоих типов обладают кислотными свойствами. Так, оксиды серы называются сернистым 50г и серным 50з ангидридами или соответственно диоксидом и триоксидом серы. Соответствующие им кислоты сернистая НгЗОз и серная Н2504 резко отличаются по свойствам. Сернистая кислота легко распадается на ангидрид и воду при нормальных условиях и сравнительно мало распадается на ионы. Это вызвано тем, что в сернистой кислоте меньше кислорода, чем в серной кис-.лоте и серная кислота более полярное вещество. Поэтому серная кислота устойчива в водных растворах и распадается с выделением воды при температуре выше 300 °С. Ее степень дис- [c.314]

    С кислородом элементы подгруппы азота образуют оксиды общей формулы КзОз и НаОз. Оксидам соответствуют кислоты НКО. и НКОз (и ортокислоты НзН04, кроме азота). В пределах подгруппы характер оксидов изменяется так ЫаОз— кислотный оксид Р4О6 — слабо кислотный оксид АзаОз — амфотерный оксид с преобладанием кислотных свойств ЗЬаОз — амфотерный оксид с преобладанием основных свойств В120з — основной оксид. Таким образом, кислотные свойства оксидов состава РаОз и КаОз уменьшаются с ростом порядкового номера элемента (см. табл. 10.1, п. 1). [c.183]

    В триаде Ti-Zr-Hf с валентной конфигурацией атомов 5- Т и 2г обнаруживают состояния окисления 4-2, 4- 3 и 4-4. тогда как НГ имеет только одно состояние окисления 4-4. В этом случае мы сталкиваемся с примером общей закономерности, присущей переходным металлам низшие степени окисления играют меньшую роль для переходных металлов второго и третьего рядов, потому что в их атомах валентные электроны нах.одятся на большем удалении от ядра. В условиях когда эти атомы могут терять валентные электроны, они чаще всего теряют их полностью. В низших состояниях окисления Т1 образует ионные соединения, а в состоянии окисления 4- 4 его соединения имеют более ковалентный характер и он обладает неметаллическими свойствами. Оксид титана(Н), ТЮ, представляет собой ионное соединение основного типа со структурой кристалла Na l. В отличие от этого диоксид титана, Т Ог,-белый нерастворимый пигмент, об.падающий как кислотными, так и основными свойствами. [c.440]

    Эти соединения в водных растворах проявляют слабые кислотные свойстйа кислотность и восстановительные свойства их возрастают в ряду НгЗ — НгТе, что связано с увеличением радиуса иона. В соединениях с кислородом сера, селен и теллур образуют вещества общей формулы ЭО, ЭО2 и ЭО3, в которых соответственно имеют степень окисления +2, +4 и +6. Оксиды типа ЭО2 и ЭОз образуют соответствующие кислоты НгЗОз, НгЗеОз, Н2504, Н25е04 и т. д. [c.81]

    Элементы подгруппы углерода образуют оксиды общей формулы НОг и КО, а водородные соединения — КН4. Гидраты высших оксидов углерода и кремния обладают кислотными свойствами, гидраты остальных элементов амфотерны, причем кислотные свойства сильнее выражены у гидратов германия, а основные—у гидратов свинца. От углерода к свинцу уменьшается прочность водородных соединений НН4 СН4 — прочное вещество, а РЬН4 — в свободном виде не выделено. [c.126]

    Таким образом, из рассмотрения характеристических соединений следуют общие выводы о закономерностях изменения кислотно-основных, окислительно-восстановительных свойств и стабильности соответствующих степеней окисления. Так, для железа из известных степеней окисления +2, +3 и +6 наиболее стабильна в обычных условиях степень окисления +3. При переходе к кобальту и никелю повышается стабильность низшей степени окисления, в то время как высшая степень окисления +6 для них не свойственна вовсе. Для первых двух элементов триады (Ре и Со), для которых сгабильности степеней окисления +2 и -НЗ сопоставимы, существуют смешанные оксиды Э3О4 шпинельного типа, в то время как для никеля подобный оксид неизвестен, что свидетельствует о меньшей стабильности степени окисления -Ь3 для этого элемента. [c.405]

    Элементы подгруппы углерода образуют оксиды общей формулы КОа и КО, а водородные соединения —формулы НН4. Гидраты высших оксидов углерода и кремния обладают кислотными свойствами, гидраты остальных элементов амфотерны, причем кислотные свойства сильнее выражены у гидратов германия, а основнью — у гидратов свинца. От углерода к свинцу уменьшается прочность водородных соединений КН4 СН — прочное вещество, а РЬН в свободном виде не выделено. В подгруппе с ростом порядкового номера уменьшается энергия ионизации атома и увеличивается атомный радиус (п. 3 и 6 табл. 11.1), т. е. неметаллические свойства ослабевают, а металлические усиливаются. [c.206]


Периодическая система химических элементов

Дидактический материал

Тренировочные тесты ЕГЭ по химии

 

 

Закономерности изменения свойств химических элементов и их соединений по периодам и группам. Общая характеристика металлов IA-IIIA групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов. Характеристика переходных элементов: меди, цинка, хрома, железа — по их положению в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов. Общая характеристика неметаллов VIA-VIIA групп в связи с их положением в Периодической системе химических элементов Д.И. Менделеева и особенностями строения их атомов.

 

1. В ряду          Na —>Mg —>Al —>Si

1) увеличивается число энергетических уровней в атомах

2) усиливаются металлические свойства элементов

3) уменьшается высшая степень окисления элементов

4) ослабевают металлические свойства элементов

2. У   элементов   подгруппы   углерода   с   увеличением   атомного   номера уменьшается

1) атомный радиус

2) заряд ядра атома

3) число валентных электронов в атомах

4) электроотрицательность

3. В ряду элементов        азот — кислород — фтор возрастает

1) валентность по водороду

2) число энергетических уровней

3) число внешних электронов

4) число неспаренных электронов

4. В ряду химических элементов бор — углерод — азот возрастает

1) способность атома отдавать электроны

2) высшая степень окисления

3) низшая степень окисления

4) радиус атома

5. Какой элемент имеет более выраженные неметаллические свойства, чем кремний?

1) углерод           2) германий       3) алюминий         4) бор

 

6. С ростом заряда ядра атомов кислотные свойства оксидов в ряду

N2O5 —> P2O5 —> As2O5 —>  Sb2O5

1) ослабевают

2) усиливаются

3) не изменяются

4) изменяются периодически

7. В порядке возрастания неметаллических свойств элементы расположены в ряду:

1) O,N,C,B

2) Cl,S,P,Si

3) C,Si,Ge,Sn

4) B,C,O,F

8. В порядке усиления металлических свойств элементы расположены в ряду:

1) А1,Са,К         2) Ca.Ga.Fe       3) K,Al,Mg        4) Li,Be,Mg

9. В каком ряду элементы расположены в порядке возрастания их атомного радиуса?

1) Si,P, S.C1

2) O,S,Se,Te

3) At,I,Br,Cl

4) Mg,Al,Si, P

10. Какой     элемент    образует     газообразное     водородное     соединен соответствующее общей формуле RH2?

1) бор         2) калий              3) сера               4) хром

 

11.  В    главных   подгруппах   периодической   системы   восстановительная способность атомов химических элементов растет с

1) уменьшением радиуса атомов

2) увеличением числа энергетических уровней в атомах

3) уменьшением числа протонов в ядрах атомов

4) увеличением числа валентных электронов

12. В какой группе периодической системы находится элемент Э, входящий в состав кислоты НЭО4?

1) IV                   2) V                    3) VI                  4) VII

 

13. В ряду оксидов SiO2 — Р2О5 — SO2 — Cl2O7 кислотные свойства

1)   возрастают

2)  убывают

3)  не изменяются

4) сначала уменьшаются, потом увеличиваются

 

14. В   каком   ряду   простые   вещества  расположены   в   порядке   усиления металлических свойств?

1)   Mg, Ca, Ва

2)   Na, Mg, A1

3)   K,Ca,Fe

4) Sc, Ca, Mg

 

15. По периоду слева направо уменьшается(-ются)

1)  атомный радиус элементов

2)   число валентных электронов в атомах

3)   электроотрицательность элементов

4) кислотные свойства гидроксидов

 

16. В   порядке  увеличения  электроотрицательности  химические  элементы расположены в раду:

1) С, N, О              2) Si.Al.Mg          3) Mg,Ca, Ва         4) Р, S, Si

 

17. Химический элемент расположен в IV периоде, IA группе. Распределению электронов в атоме этого элемента соответствует ряд чисел:

1)  2,8,8,2

2)  2, 8, 18, 1

3)  2, 8, 8, 1

4) 2,8, 18,2

 

18. Электроотрицательность химических элементов с возрастанием  заряда ядра атома

1)  увеличивается и в периодах, и в группах

2)  уменьшается и в периодах, и в группах

3)  увеличивается в периодах, а в группах уменьшается

4) уменьшается в периодах, а в группах увеличивается

 

19. В каком ряду химические элементы расположены в порядке возрастания их атомного радиуса?

1)  Rb,K,Na,Li

2)  Na,Mg,Al, S

3)  F, Cl, Br, I

4) C,N, О, F

 

20. Среди элементов третьего периода наименьший атомный радиус имеет

1)  натрий

2)   алюминий

3)   фосфор

4) сера

 

21. В    главных   подгруппах   периодической    системы   восстановительная способность атомов химических элементов растет с

1)  уменьшением радиуса атомов

2)  увеличением числа энергетических уровней в атомах

3)  уменьшением числа протонов в ядрах атомов

4) увеличением числа валентных электронов

 

22. По периоду слева направо уменьшается

1)  число валентных электронов в атомах

2)  атомный радиус элементов

3)  электроотрицательность элементов

4)  кислотность гидроксидов элементов

 

23. Наиболее сильное основание образует

1) цезий                 2)  натрий               3} литий                4)  цинк

 

24. Оксид с наиболее выраженными кислотными свойствами образует

1) кремний             2) фосфор              3)  сера                   4) хлор

 

25. Наиболее сильное основание образует

1) магний              2) стронций           3) барий                4) кадмий

 

26. Кислотный характер наиболее выражен у высшего оксида, образованного элементом:

1) Sn                      2)  А1                      3)  С                       4)  S

 

27. Кислотный характер наиболее выражен у высшего оксида, образованного

1) бериллием         2) бором                3) фосфором          4)  кремнием

 

28. Сила бескислородных кислот неметаллов VIIА группы соответственно возрастанию заряда ядра атомов элементов

1)

увеличивается

2)

уменьшается

3)

не изменяется

4)

изменяется периодически

 

 

29. Одинаковое значение валентности в водородном соединении и высшем оксиде имеет элемент

 

1)

хлор

2)

германий

3)

мышьяк

4)

селен

 

30. Кислотные свойства оксидов в ряду     SiO2 —> P2O5 —>SО3

 

1) ослабевают

2) усиливаются

3) не изменяются

4) изменяются периодически

 

31. Газообразные водородные соединения состава ЭН3 образуют

1) Be, Ca, Sr           2) P, As, Sb             3) Ga, Al, B         4) Te, S, Sc

 

32. В ряду элементов

Cl ® S ® P ® Si

1) уменьшается число электронных слоев в атомах

2) увеличивается число внешних электронов в а томах

3) возрастают радиусы атомов

4) усиливаются неметаллические свойства

 

33. Неметаллические свойства наиболее выражены у

1) серы            2) кислорода     3) кремния      4) фосфора    

 

34. Наибольший радиус имеет атом

1) олова                 2} кремния             3) свинца               4) углерода

 

35. В ряду химических элементов

Li —>Be —> B —> C

1)   увеличивается число валентных электронов в атомах

2)   уменьшается число электронных слоев а атомах

3)  уменьшается число протонов в ядрах атомов

4)   увеличиваются радиусы атомов

 

36.Наибольший радиус имеет атом

1) брома                 2) мышьяка          3) бария                 4) олова

 

37.Электронную конфигурацию 1s22s263.s2Зр63d1 имеет ион

1) Са2+                    2) А13+                     3) K+                      4) Sc2+

 

38. Какую электронную конфигурацию имеет атом наиболее активного металла?

 

1)

1s22s22p1

2)

1s22s22p63s1

3)

1s22s2

4)

1s22s22p63s23p1

 

39. В    порядке    увеличения    восстановительной    способности    металлы расположены в ряду:

1) K,Al,Cr,Sn

2) Sn,Cr,Al,Zn
 3) Sn,Ca,Al,K

4) Au,Al,Ca,Li

 

40. В ряду элементов:      натрий —>магний —>алюминий

возрастает их

1) атомный радиус

2) восстановительная способность

3) химическая активность

4) электроотрицательность

 

41. У магния металлические свойства выражены

1) слабее, чем у бериллия

2) сильнее, чем у алюминия

3) сильнее, чем у кальция

4) сильнее, чем у натрия

 

42. В порядке уменьшения восстановительных свойств металлы расположены в ряду:

1) Al,Zn,Fe

2) Al,Na,K
3) Fе,Zn,Mg
4) Fe,Zn,Al

 

43. Наибольший радиус имеет атом

1) лития               2) натрия            3) кальция          4) калия

44. У элементов II А группы сверху вниз

1) уменьшаются радиусы атомов,

2) увеличивается число валентных электронов в атоме

3) увеличиваются радиусы атомов

4) уменьшается число валентных электронов в атоме

 

45. Сила оснований возрастает в ряду:

1) Ве(ОН)2, Mg(OH)2, Ca(OH)2

2) Ва(ОН)2, Са(ОН)2, Ве(ОН)2

3) Са(ОН)2, Mg(OH)2, Ве(ОН)2
 
4) Sr(OH)2, Ca(OH)2, Mg(OH)2

46. У элементов I А группы сверху вниз

1) усиливаются окислительные свойства

2) ослабевают восстановительные свойства

3) увеличиваются радиусы атомов

4) уменьшаются радиусы атомов

 

47. Валентные электроны наиболее легко отдают атомы

1) алюминия        2) натрия         3) бериллия     4) магния

 

48. Восстановительные свойства наиболее выражены у

1) алюминия   2) магния        3) натрия         4) калия

 

49. Основные свойства веществ ослабевают в ряду:

1)   NaОН —> КОН —>RbOH

2)   А1(ОН)3 —>Mg(OH)2 —> NaOH

3)   Са(ОН)2 —> Mg(OH)2 —>Be(OH)2

4)  В(ОН)3 —>Ве(ОН)2 —> LiOH

 

50. Верны ли следующие суждения?

А.  И хром, и железо образуют устойчивые оксиды в степени окисления +3.

Б.  Оксид хрома (III) является амфотерным.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4)  оба суждения неверны

 

51. Верны ли следующие суждения?

А. Только s-элементы содержит IA группа.

Б. Все элементы IA группы взаимодействуют с водой при комнатной температуре.

1)  верно только А

2)  верно только Б

3)  верны оба суждения

4) оба суждения неверны

 

52. Оксид хрома (VI) является

1) основным

2) кислотным

3)   амфотерным

4) несолеобразующим

 

53. Только основные свойства проявляет

1) Сr2O3                 2) Сr(ОН)2            3) СrO3              4) Сr(ОН)3

 

54. Сильные окислительные свойства характерны для

1)   оксида меди (I)

2)   оксида железа (II)

3)   оксида хрома (III)

4) оксида хрома (VI)

 

55. Верны ли следующие суждения об оксидах железа?

А.  Степень окисления железа в высшем оксиде равна   + 3.

Б.  Высший оксид железа относится к основным оксидам.

1)   верно только А

2)   верно только Б

3)  верны оба суждения

4) оба суждения неверны

 

56.  В ряду оксидов

CrO — Сr2О3 — СrОз

происходит

1) уменьшение степени окисления хрома

2) усиление восстановительных свойств

3) увеличение массовой доли хрома

4) усиление кислотных свойств

 

57. Оцените справедливость суждений о металлах:

 

А. Чем сильнее атом удерживает валентные электроны, тем ярче

выражены металлические свойства элемента.

Б. Чем сильнее выражены металлические свойства элемента, тем

более основный характер имеет его гидроксид.

 

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

 

58. Оцените справедливость суждений о металлах:

 

А. Для атомов металлов характерно малое число валентных

электронов и слабое их притяжение к ядру.

Б. Чем выше степень окисления металла в его гидроксиде, тем

более основными свойствами обладает гидроксид.

 

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

 

59. Оцените справедливость суждений о металлах:

А. Атомы металла могут образовывать только ионные связи.

Б. Оксиды и гидроксиды металлов всегда имеют основный

характер.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

 

60. Верны ли следующие суждения о неметаллах?

А. В периодической системе химических элементов Д.И. Менделеева все неметаллы располагаются в главных подгруппах.

Б.  Все неметаллы являются р-элементами.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

61. У атомов химических элементов, расположенных в ряду:       P-S-C1, увеличивается

1) радиус

2) окислительная способность

3) восстановительная способность

4) число неспаренных электронов

 

62. Соединения состава NaHЭO3 и NaHЭO4 может образовать

1) углерод              2) сера                3) хлор                4) фосфор

63. Наиболее сильными кислотными свойствами обладает

1) НС1О4              2) H2SO3              3) Н3РО4               4) H2SiО3

64 Соединения состава КЭО2 и КЭО3 образует элемент

1) азот                2) фосфор         3) сера               4) марганец

65. Способность   атомов   химических   элементов   принимать   электроны усиливается в ряду:

1)F —>O —>N

2) N —>F —>О

3) N —>O —>F

4) O —>N —>F

66. Степени окисления хлора, брома и йода в высших оксидах и водородных соединениях соответственно равны:

1)+1и-1            2)+7и-1         3)+7и-7         4)+5и-1

 

67. Сера проявляет как окислительные, так и восстановительные свойства при взаимодействии с

1)   водородом и железом

2)  углеродом и цинком

3)   хлором и фтором

4) натрием и кислородом

 

68. В ряду:                           Si —>Р —> S —> С1

электроотрицательность элементов

1)   увеличивается

2)   уменьшается

3)   не изменяется

4) сначала уменьшается, потом увеличивается

 

69. В ряду элементов мышьяк —>селен —> бром возрастает

1)   атомный радиус

2)   число неспаренных электронов в атоме

3) число электронных слоев в атоме

4) электроотрицательность

 

70. Водородное соединение состава Н2Э2 образует

1)   углерод

2)   кремний

3)   бор

4) азот

 

71. Высшему гидроксиду элемента VIIA группы соответствует формула

1) Н2ЭО3                2) Н2ЭО4                3) НЭО3                 4) НЭО4

 

72. Фосфор проявляет окислительные свойства при реакции с

1) кальцием           2) серой                3) хлором              4) кислородом

 

73. При взаимодействии высшего оксида хлора с водой образуется кислота

1) НС1O                 2) НС1O2                3) НСlO3                4) HClO4

 

74. Характерными степенями окисления хлора в его соединениях являются:

1)   -1,  +1, +3, +5, +7

2)   — 2,  +4,  +6, +8

3)   -3,  +3,  +5

4)   -1,  +2,  +5

 

75. Кислотные свойства наиболее выражены у высшего гидроксида

1) азота

2) фосфора

3) мышьяка

4) сурьмы

 

76. Только восстановительные свойства азот проявляет в соединении

1) N2

2) NНз

3) NО2

4) НNОз

 

 

77. Верны   ли   следующие   суждения   о   свойствах   соединений   элемента, электронная конфигурация атома которого 1s22s22p6 3s2 Зр1 ?

А. Этот элемент образует гидроксид с ярко выраженными кислотными свойствами.

Б. Степень окисления этого элемента в высшем гидроксиде равна  (+ 4).

1)  верно только А

2)   верно только Б

3)   верны оба суждения

4) оба суждения неверны

 

78. Верны ли следующие суждения о соединениях натрия и бериллия?

А. Оксид натрия проявляет основные свойства

Б. Гидроксид бериллия проявляет амфотерные свойства

1)  верно только А

2)   верно только Б

3)   верны оба суждения

4) оба суждения неверны

 

 

Ответы 1-4, 2-4, 3-3, 4-2, 5-1, 6-1, 7-4, 8-1, 9-2, 10-3, 11-2, 12-4, 13-1, 14-1, 15-1, 16-1, 17-3, 18-3, 19-3, 20-4, 21-2, 22-2, 23-1, 24-4, 25-3, 26-4, 27-3, 28-1, 29-2, 30-2, 31-2, 32-3, 33-2, 34-3, 35-1, 36-3, 37-4, 38-2, 39-4, 40-4, 41-2, 42-1, 43-4, 44-3, 45-1, 46-3, 47-2, 48-4, 49-3, 50-3, 51-1, 52-2, 53-2, 54-4, 55-1, 56-4, 57-2, 58-1, 59-4, 60-1, 61-2, 62-2, 63-1,64-1, 65-3, 66-2, 67-4, 68-1, 69-4, 70-1, 71-4, 72-1, 73-4, 74-1, 74-3, 76-2, 77-4, 78-3

Урок 15. свойства оксидов неметаллов. свойства серной и азотной кислот. водородные соединения неметаллов — Химия — 11 класс

Химия, 11 класс

Урок № 15. Свойства оксидов неметаллов. Свойства серной и азотной кислот. Водородные соединения неметаллов

Перечень вопросов, рассматриваемых в теме: урок посвящён изучению соединений неметаллов: оксидам неметаллов, кислородсодержащим кислотам и водородным соединениям неметаллов.

Глоссарий

Азотная кислота – HNO3 — представляет собой бесцветную «дымящуюся» на воздухе жидкость. Приобретает на воздухе желтоватый цвет из-за разложения на двуокись азота.

Аммиак – NH3 – бинарное химическое соединение азота с водородом, бесцветный токсичный газ с резким характерным запахом, 10%-ный раствор аммиака используют в медицине, называют нашатырным спиртом.

Высшие оксиды – оксиды, в которых элементы проявляют свою наибольшую валентность

Метан – CH4 — бинарное химическое соединение водорода и углерода. Бесцветный газ без запаха, основной компонент природного газа.

Серная кислота – H2SO4 – сильная двухосновная кислота. При обычных условиях концентрированная серная кислота — тяжёлая маслянистая жидкость без цвета и запаха. В технике серной кислотой называют её смеси как с водой, так и с серным ангидридом SO3. Если молярное отношение SO3 : H2O < 1, то это водный раствор серной кислоты, если > 1 — раствор SO3 в серной кислоте (олеум). Мировое производство серной кислоты около 200 млн тонн в год. Самый крупный потребитель серной кислоты — производство минеральных удобрений.

Сернистый газ – SO2 – оксид серы IV. В нормальных условиях представляет собой бесцветный газ с характерным резким запахом (запах загорающейся спички). Токсичен. Один из основных компонентов вулканических газов.

Серный газ – SO3 – оксид серы VI. В обычных условиях легколетучая бесцветная жидкость с удушающим запахом. Весьма токсичен. При температурах ниже 16,9 °C застывает с образованием смеси различных кристаллических модификаций твёрдого SO3.

Сероводород – SH2 – бинарное химическое соединение водорода и серы. Бесцветный газ со сладковатым вкусом, обеспечивающий запах протухших куриных яиц.

Силан – SiH4 — бинарное химическое соединение водорода и кремния. Бесцветный газ с неприятным запахом.

Угарный газ – CO – монооксид углерода, оксид углерода II, бесцветный чрезвычайно токсичный газ без вкуса и запаха. Горюч. Так называемый «запах угарного газа» на самом деле представляет собой запах органических примесей. Токсическое действие оксида углерода(II) обусловлено образованием карбоксигемоглобина — значительно более прочного карбонильного комплекса с гемоглобином, по сравнению с комплексом гемоглобина с кислородом.

Углекислый газ – CO2 – диоксид углерода, оксид углерода IV, бесцветный газ, почти без запаха, но в больших концентрациях приобретает кисловатый запах, знакомый нам по газировке. Является одним из парниковых газов.

Фосфин – PH3 — бинарное химическое соединение водорода и фосфора. Бесцветный ядовитый газ без запаха, однако примеси могут дать ему запах тухлой рыбы.

Основная литература: Рудзитис, Г. Е., Фельдман, Ф. Г. Химия. 10 класс. Базовый уровень; учебник/ Г. Е. Рудзитис, Ф. Г, Фельдман – М.: Просвещение, 2018. – 224 с.

Дополнительная литература:

1. Рябов, М.А. Сборник задач, упражнений и тестов по химии. К учебникам Г.Е. Рудзитис, Ф.Г. Фельдман «Химия. 10 класс» и «Химия. 11 класс»: учебное пособие / М.А. Рябов. – М.: Экзамен. – 2013. – 256 с.

2. Рудзитис, Г.Е. Химия. 10 класс : учебное пособие для общеобразовательных организаций. Углублённый уровень / Г.Е. Рудзитис, Ф.Г. Фельдман. – М. : Просвещение. – 2018. – 352 с.

Открытые электронные ресурсы:

  • Единое окно доступа к информационным ресурсам [Электронный ресурс]. М. 2005 – 2018. URL: http://window.edu.ru/ (дата обращения: 01.06.2018).

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ САМОСТОЯТЕЛЬНОГО ИЗУЧЕНИЯ

Соединения неметаллов с кислородом и водородом

Неметаллы (углерод, кислород, азот, сера, галогены) могут образовывать соединения как с кислородом (оксиды), так и с водородом. Водородные соединения являются газами или жидкостями, например, вода, аммиак, сероводород, соляная кислота. Оксиды могут быть газами (углекислый или сернистый газ), жидкостями (оксид хлора(VI) и (VIII)) или твёрдыми телами (оксид фосфора(V)).

Оксиды неметаллов

Типичными примерами оксидов неметаллов являются:

Сернистый газ (SO2), серный газ (SO3), угарный газ (CO), углекислый газ (CO2), оксид фосфора V (P2O5), оксид азота I (NO), оксид азота II (NO2).

Оксиды неметаллов подразделяют на две группы – несолеобразующие (SiO, N2O, NO, CO, S2O, H2O) и солеобразующие (остальные).

Несолеобразующих оксидов немного, их обыкновенно образуют одновалентные и двухвалентные неметаллы.

Солеобразующие оксиды неметаллов при взаимодействии с водой дают соответствующую им кислоту. Исключение составляет оксид кремния IV, который нерастворим в воде. Соответствующую ему кремниевую кислоту получают косвенным путём — взаимодействием растворимых силикатов щелочных металлов с кислотами.

Высшие оксиды – это оксиды, в которых неметалл проявляет степень окисления, равную номеру группы.

Кислотные свойства оксидов. В пределах одного периода с увеличением номера группы наблюдается увеличение кислотных свойств высших оксидов и соответствующих им кислот. Например, для неметаллов третьего периода, кремниевая кислота является слабой, а хлорная кислота является одной из самых сильных.

Такая закономерность вытекает из периодического закона Менделеева. В периоде радиус атома неметалла уменьшается с увеличением номера группы, а заряд неметалла при этом увеличивается. Поэтому при движении по периоду слева направо связь между неметаллом и кислородом упрочняется, а связь неметалл-водород ослабевает, что даёт увеличение диссоциации кислоты.

В пределах одной главной подгруппы происходит ослабление кислотных свойств оксидов и кислот с увеличением номера периода.

Соединения неметаллов с водородом

Кроме соединений с кислородом, неметаллы образуют соединения с водородом. Например, метан (CH4), аммиак (NH3), вода (H2O), плавиковая кислота (HF), соляная кислота (HCl). Эти соединения представляют собой газы или жидкости.

В периодах слева направо кислотные свойства водородных соединений неметаллов в водных растворах усиливаются. Это связано с тем, что в этом направлении у атомов элементов увеличивается заряд ядра и уменьшается радиус.

В группах сверху вниз, по мере увеличения атомного радиуса, отрицательно заряженные анионы неметаллов всё слабее притягивают положительно заряженные ионы водорода. Таким образом, отщепление ионов водорода происходит проще и кислотность увеличивается.

Кислородосодержащие кислоты

Некоторые из рассматриваемых соединений при взаимодействии с водой образуют кислородосодержащие кислоты, такие как серная, азотная, фосфорная кислоты.

Азотная кислота также относится к кислородосодержащим кислотам, но не образуется при растворении соответствующих оксидов в воде. Для синтеза этой кислоты требуется более сложный процесс: смесь оксидов азота реагируют с водой с поглощением кислорода.

ПРИМЕРЫ И РАЗБОР РЕШЕНИЙ ЗАДАЧ ТРЕНИРОВОЧНОГО МОДУЛЯ

  1. Решение задачи на определение участников реакции.

Условие задания:

Оксид с формулой XO2 прореагировал с 14 г CaO (оксид неметалла был взят в избытке), при этом образовалось 30 г соли CaXO3.

1) Укажите порядковый номер элемента X.

2) Какая масса (в граммах) оксида неметалла прореагировала?

3) Укажите степень окисления неметалла в оксиде XO2 (без знака)

4) Укажите максимальную степень окисления элемента X (без знака)

Шаг первый:

Составим уравнение реакции оксида неметалла с основным оксидом:

XO2 + CaO → CaXO3

Стехиометрическое соотношение CaO к CaXO3 – 1:1

Шаг второй:

Определим количество вещества CaO: M(CaO) = 56 г/моль. Количество вещества n = m/M. n(CaO) = 14/56 = 0,25 моль.

Шаг третий

Определим молярную массу элемента X. Поскольку стехиометрическое соотношение CaO к CaXO3 – 1:1, то n(CaXO3) = 0,25 моль. Определим молярную массу соединения CaXO3. M = m/n. M(CaXO3) = 30/0,25 = 120 г/моль. Молярная масса CaXO3 слладывается из атомарных масс образующих соединение элементов. Получаем уравнение:

M(Ca) + M(X) + 3*M(O) = 120

40 + M(X) + 48 = 120

M(X) = 32 г/моль

Шаг четвёртый

Определяем элемент X. Находим в таблице Менделеева элемент с молярной массой 32 г/моль. Это сера, элемент с порядковым номером 16.

Шаг пятый

Определяем массу прореагировавшего XO2. Исходя из материального баланса:

m(XO2) + m(CaO) = m(CaXO3)

m(CaO) и m(CaXO3) известны из условия задачи. Определяем m(XO2).

m(XO2) = 30 – 14 = 16 г.

Шаг шестой

Определеяем степень окисления неметалла в оксиде XO2 (без знака). Степень окисления кислорода в оксидах = -2. Значит, степень окисления X = +4. Без знака: 4.

Шаг седьмой

Определяем максимальную степень окисления элемента X (без знака). Мы определили, что элемент X – это сера. Максимальную степень окисления элементы проявляют в высших оксидах. Высший оксид для серы это SO3. Степень окисления серы в нём = +6. Без знака: 6.

Ответ:

Порядковый номер элемента X – 16. Это сера.

m(XO2) = 16 г. Степень окисления неметалла в оксиде XO2 (без знака): 4. Максимальную степень окисления элемента X (без знака): 6.

  1. Решение задачи на установление соответствия между оксидами неметаллов и соответствующим им кислотам.

Условие задания:

Соедините между собой оксиды неметаллов и кислородсодержащие кислоты, соответствующие им.

Шаг первый:

Определим среди предложенных соединений оксиды неметаллов. Это Cl2O, SO2, SO3, CO2. Остальные соединения не являются оксидами.

Шаг второй:

Определим соответствующие им кислоты. Такие кислоты получаются при взаимодействии оксидов с водой:

Cl2O + H2O → 2 HClO

SO2 + H2O → H2SO3

SO3 + H2O → H2SO3

CO2 + H2O → H2CO3

Шаг четвёртый:

Соединяем между собой оксиды неметаллов и кислородсодержащие кислоты, соответствующие им.

Ответ:

11 класс Закономерности в ПСХЭ

А2 Закономерности изменения химических свойств
элементов и их соединений по периодам и группам.

 1. В ряду :         Na → Mg → Al → Si

   1) увеличивается число энергетических
уровней в атомах

   2) усиливаются металлические свойства
элементов

   3) уменьшается высшая степень окисления
элементов

  4) ослабевают металлические свойства
элементов

2. У элементов  подгруппы углерода с увеличением 
атомного номера уменьшается

    1) атомный радиус   2) заряд
ядра атома    3) число валентных электронов в атомах

    4) электроотрицательность

3. В ряду элементов       
азот — кислород — фтор     возрастает

   1) валентность по водороду       2)
число энергетических уровней

  3) число внешних электронов     4)
число неспаренных электронов

4. В ряду химических элементов бор
— углерод — азот возрастает

    1) способность атома отдавать электроны     2)
высшая степень окисления

    3) низшая степень окисления            4)
радиус атома

5. Какой элемент имеет более
выраженные неметаллические свойства, чем кремний?

    1) углерод          
2) германий      
3)
алюминий         4) бор

6. С ростом заряда ядра атомов кислотные свойства оксидов в ряду

                 N2O5 →  P2O5
→  As2O5 →  Sb2O5

   1) ослабевают    2) усиливаются     3) не изменяются    4) изменяются периодически

7. В порядке возрастания неметаллических свойств элементы
расположены в ряду:

   1) O,N,C,B     2) Cl,S,P,Si     
3) C,Si,Ge,Sn   
4) B,C,O,F

8. В порядке усиления
металлических свойств элементы расположены в ряду:

    1) А1,Са,К        
2) Ca.Ga.Fe       3) K,Al,Mg        4) Li,Be,Mg

9. В каком ряду элементы расположены в порядке возрастания их атомного радиуса?

    1) Si,P, S.C1         2)
O,S,Se,Te      3) At,I,Br,Cl       4) Mg,Al,Si, P

10. Какой    
элемент    образует    
газообразное     водородное    
соединен

      соответствующее
общей формуле RH2?

     1) бор        
2) калий             
3) сера              
4) хром

11.  В   
главных   подгруппах   периодической  
системы   восстановительная способность
  атомов химических элементов растет с

1) уменьшением радиуса
атомов      2) увеличением числа энергетических уровней в
атомах  3) уменьшением числа протонов в
ядрах атомов  4) увеличением числа валентных электронов

12. В какой группе
периодической системы находится элемент Э, входящий в состав

       кислоты НЭО4:           1) IV                   2) V                    3) VI                  4) VII

13. В ряду оксидов SiO2 — Р2О5
— SO2 — Cl2O7 кислотные
свойства:

      1) возрастают         2)убывают           3)не изменяются 

      4) сначала
уменьшаются, потом увеличиваются

14. В   каком   ряду  
простые   вещества  расположены   в  
порядке   усиления

      металлических
свойств?

    
1)   Mg, Ca, Ва        2)   Na, Mg,
A1      3)   K,Ca,Fe       4) Sc, Ca, Mg

15. По периоду слева направо
уменьшается(-ются)

     1)  атомный
радиус элементов    2)   число
валентных электронов в атомах

     3)  
электроотрицательность элементов        4)
кислотные свойства гидроксидов

16. В   порядке  увеличения 
электроотрицательности  химические  элементы расположены

      в ряду:  1) С, N,
О             
2) Si.Al.Mg          3) Mg,Ca,
Ва         4) Р, S, Si

17. Химический элемент
расположен в IV
периоде, IA группе.
Распределению электронов в атоме этого элемента соответствует ряд чисел:

    1)  2,8,8,2         2)  2, 8, 18, 1              3)  2, 8, 8, 1            4) 2,8, 18,2

18. Электроотрицательность
химических элементов с возрастанием  заряда ядра атома

    1) 
увеличивается и в периодах, и в группах  
2)  уменьшается и в периодах, и в группах

    3)  увеличивается в периодах, а в
группах уменьшается

    4) уменьшается в
периодах, а в группах увеличивается

19. В каком ряду химические
элементы расположены в порядке возрастания их атомного

     радиуса?   1)  Rb,K,Na,Li      
2)  Na,Mg,Al, S        3)  О, S,
Se, Те          4) C,N, О, F

20. Среди элементов третьего
периода наименьший атомный радиус имеет

      1)  натрий         2)   алюминий        3)   фосфор           4) сера

21. В    главных  
подгруппах   периодической    системы  
восстановительная способность

      атомов химических элементов растет с

     1) 
уменьшением радиуса атомов

     2) 
увеличением числа энергетических уровней в атомах

     3) 
уменьшением числа протонов в ядрах атомов

     4) увеличением
числа валентных электронов

22. По периоду слева направо
уменьшается

     1)  число
валентных электронов в атомах      2) 
атомный радиус элементов

     3) 
электроотрицательность элементов         
4)  кислотность гидроксидов элементов

23. Наиболее сильное основание
образует:

     1) цезий                
2) 
натрий              
3} литий               
4)  цинк

24. Оксид с наиболее выраженными
кислотными свойствами образует

     1) кремний            
2) фосфор             
3) 
сера                  
4) хлор

25. Наиболее сильное основание
образует

     1) магний             
2) стронций           3)
барий               
4) кадмий

26. Кислотный характер наиболее
выражен у высшего оксида, образованного элементом:

     1) Sn                     
2) 
А1                     
3) 
С                      
4}  S

 27. Кислотный характер наиболее выражен у
высшего оксида, образованного

     1)
бериллием         2)
бором               
3) фосфором          4) 
кремнием

28. Сила бескислородных кислот
неметаллов VIIА группы
соответственно возрастанию

      заряда ядра
атомов элементов

     1) увеличивается   2) уменьшается   3) не изменяется   4) изменяется периодически

29. Одинаковое значение
валентности в водородном соединении и высшем оксиде имеет

      элемент:            1) хлор    2) германий    3) мышьяк   
4) селен

30. Кислотные свойства оксидов в
ряду     SiO2
—> P2O5 —>SО3

      1) ослабевают      2) усиливаются       3) не изменяются     4) изменяются периодически

31. Газообразные водородные
соединения состава ЭН3 образуют

      1) Be, Ca,
Sr           2) P, As,
Sb             3)
Ga, Al, B         4) Te, S, Sc

32. В ряду элементов      
Cl →  S  → P → Si

     1) уменьшается
число электронных слоев в атомах

     2) увеличивается
число внешних электронов в а томах

     3) возрастают
радиус атомов          4) усиливаются
неметаллические свойства

33. Неметаллические свойства
наиболее выражены у

       1)
серы            2)
кислорода     3) кремния      4)
фосфора    

34. Наибольший радиус имеет атом:    1) олова       2}
кремния     3) свинца     4}
углерода

35. В ряду химических элементов   Na —>Mg
—> Al —> Si

      1)  
увеличивается число валентных электронов в атомах

      2)  
уменьшается число электронных слоев а атомах

      3) 
уменьшается число протонов в ядрах атомов

      4)  
увеличиваются радиусы атомов

36.Наибольший радиус имеет атом:     1) брома     2)
мышьяка    3) бария    4) олова

37.Электронную конфигурацию 1s22s263.s2Зр63d1 имеет ион

     1) Са2+                   
2) А13+                    
3) K+                     
4) Sc2+

 38. Какую электронную конфигурацию имеет атом наиболее
активного металла?

      1) 1s22s22p1      2) 1s22s22p63s1          3) 
1s22s2        4) 1s22s22p63s23p1

Ответы 1-4,
2-4, 3-3, 4-2, 5-1, 6-1, 7-4, 8-1, 9-2, 10-3, 11-2, 12-4, 13-1, 14-1, 15-1,
16-1, 17-3, 18-3, 19-3, 20-4, 21-2, 22-2, 23-1, 24-4, 25-3, 26-4, 27-3, 28-1,
29-2, 30-2, 31-2, 32-3, 33-2, 34-3, 35-1, 36-3, 37-4, 38-2.

Оксиды и гидроксиды металлов

Для
всех металлов известны их оксиды и гидроксиды, а у d-элементов
различные степени окисления
, поэтому они образуют множество оксидов и
гидроксидов
. Свойства этих оксидов и гидроксидов зависят от положения
металла в периодической системе, от его активности и степени окисления металла.
Таким образом, все металлы образуют солеобразующие оксиды.

Известно,
что чем ярче выражены металлические свойства, тем сильнее основные свойства
оксидов и гидроксидов.

Для
s- и p-элементов слева направо
по периоду уменьшаются металлические свойства, а значит и основные свойства оксидов
и гидроксидов металлов. В IA группе
сверху вниз увеличиваются радиусы атомов, при отдаче электронов с внешнего
уровня образуются катионы. Естественно, что степень окисления у этих элементов
не изменяется, а основный характер оксидов усиливается.

Если
рассмотреть изменение свойств оксидов элементов по периоду на примере элементов
3 периода, то следует отметить, что в атомах этих элементов количество
энергетических уровней одинаковое, но степень окисления изменяется, то есть она
возрастает, а радиус иона уменьшается, поэтому характер оксидов изменяется от
основного через амфотерные к кислотному
.

Например,
оксиды и гидроксиды щелочных и щелочноземельных металлов проявляют ярко
выраженные основные свойства, а уже оксид алюминия проявляют амфотерные свойства.

Так,
оксид натрия – это основный оксид, поэтому он будет реагировать с кислотными и
амфотерными оксидами, с кислотами. Например, в реакции оксида натрия с оксидом
углерода (IV) образуется соль – карбонат натрия, в
реакции оксида натрия с соляной кислотой образуется соль – хлорид натрия и
вода.

По
группе сверху вниз металлические свойства
s- и p-элементов усиливаются, поэтому усиливаются и основные
свойства их оксидов.

Например,
в группе II A оксид бериллия проявляет амфотерные свойства, поэтому он
легко растворяется в растворах кислот и щелочей. Например, в реакции оксида
бериллия с соляной кислотой образуется соль – хлорид бериллия и вода, в реакции
оксида бериллия с раствором гидроксида натрия образуется комплексная соль –
тетрагидроксобериллат натрия.

Соединения
бария и радия имеют уже ярко выраженные основные свойства, поэтому они будут
реагировать с кислотными и амфотерными оксидами, а также с кислотами. Так, в
реакции оксида бария с азотной кислотой образуется соль – нитрат бария и вода.

Характер
гидроксида зависит также от степени окисления и радиуса иона. Чем больше
степень окисления, тем меньше радиус иона
.

Поэтому
в ряду от гидроксида натрия до гидроксида алюминия идёт ослабление основных
свойств и усиление кислотных
, так как возрастает степень окисления и
уменьшается радиус иона
.

Например,
в I A группе сверху вниз увеличивается радиус иона, степень
окисления не изменяется, поэтому усиливаются основные свойства. В ряду от
гидроксида лития до гидроксида цезия основные свойства будут усиливаться.

Переходные
элементы, расположенные в малых периодах – это Be, Al образуют оксиды и гидроксиды, проявляющие амфотерные
свойства.

Получим
гидроксид алюминия и исследуем его свойства. Сначала в растворимую соль
алюминия добавим щелочь, в результате у нас образуется осадок – это гидроксид
алюминия.

Затем
разделим этот осадок на две части: к первой части добавим соляную кислоту, осадок
растворяется из-за образования растворимой соли – хлорида алюминия. Ко второй
части осадка добавим гидроксид калия – осадок также растворяется, потому что
образуется растворимая соль – тетрагидроксоалюминат калия.

Al(OH)3
+ 3HCl = AlCl3 + 3H2O

Al(OH)3
+ KOH = K[Al(OH)4]

Амфотерные
оксиды и гидроксиды вступают в реакции не только с растворами щелочей, но и с
твёрдыми основаниями при сплавлении
.

Например,
при сплавлении гидроксида хрома (III) с гидроксидом
калия образуется соль – метахромит калия и вода, при сплавлении гидроксида
хрома (III) с оксидом калия образуется метахромит калия
и вода, при сплавлении гидроксида хрома (III) с
карбонатом калия также образуется соль метахромит калия, вода и углекислый газ.

Аналогично
оксид и гидроксид алюминия ведёт себя: при сплавлении оксида алюминия и
гидроксида калия образуется соль – металюминат калия и вода, при сплавлении
гидроксида алюминия и гидроксида калия образуется соль – метаалюминат калия и
вода.

Оксид
и гидроксид бериллия также проявляет амфотерные свойства, потому что они реагирует
с кислотами, щелочами
. Так, в реакции оксида бериллия с соляной кислотой
образуется соль – хлорид бериллия и вода, в реакции гидроксида бериллия и
серной кислоты образуется соль – сульфат бериллия и вода.

Большое
влияние на кислотно-основные свойства оксидов и гидроксидов d-элементов
оказывает степень окисления металла, поэтому с увеличением степени окисления
металла кислотные свойства соответствующего оксида и гидроксида усиливаются.
Например, хром образует оксиды и гидроксиды, в которых атомы хрома проявляют
степени окисления +2, +3 и +6.

В
оксиде CrO и гидроксиде Cr(OH)2 степень окисления
хрома +2, поэтому этот оксид и гидроксид будут проявлять основные свойства.
В оксиде Cr2O3
и гидроксиде Cr(OH)3
окисления хрома +3, поэтому оксид и гидроксид в этой степени окисления будут
проявлять амфотерные свойства, в оксиде CrO3
и гидроксиде H2CrO4
степень окисления хрома +6 – это высшая степень окисления для атома хрома,
поэтому этот оксид и гидроксид проявляют кислотные свойства.

Тоже
самое наблюдается и в соединениях марганца. Например, в оксиде MnO и в гидроксиде Mn(OH)2 степень окисления марганца +2 – это низшая
степень оксиления, поэтому эти соединения проявляют основные свойства, в
оксиде MnO2 и гидроксиде Mn(OH)4 марганец имеет степень окисления равную +4 –
это промежуточная степень окисления, поэтому эти соединения будут проявлять амфотерные
свойства
. Если у марганца будет степень окисления +6 или +7, то его оксиды
и гидроксиды будут проявлять кислотные свойства. Это такие оксиды, как MnO3 и Mn2O7, а также их гидроксиды H2MnO4 и HMnO4.

Таким
образом, с увеличением степени окисления металла происходит уменьшение
радиуса иона металла, свойства оксидов и гидроксидов металлов изменяются от
основных через амфотерные к кислотным
.

Периодические тенденции и оксиды

Оксиды

Основные оксиды

Оксид-ион является сильно основным анионом из-за его очень маленького размера и высокого заряда. Поскольку гидроксид-ион является самым сильным основанием, которое может оставаться в воде, оксид-ион количественно реагирует с водой с образованием гидроксид-ионов. Это пример свойства выравнивания очень сильных оснований.

Согласно обобщенным правилам растворимости, в воде растворяются только оксиды металлов некислотного и слабокислого катиона.Растворение является сильно экзотермическим, с образованием гидроксида катиона. Эти водные растворы сильно щелочны. Оксиды металлов, которые проявляют такое поведение, называются основными оксидами, потому что они действуют как основания. Оксиды некислотных катионов настолько реактивны с водой, что их редко можно увидеть. Эти оксиды нельзя получить путем дегидратации гидроксида при высокой температуре.

Чаще встречаются оксиды слабокислых катионов. Известь, CaO является примером. Известь можно получить коммерчески путем термического разложения известняка.

Оксиды слабокислых катионов экзотермически реагируют с водой с образованием гидроксида.

Гидроксиды слабокислых катионов не расплываются.

Оксиды слабокислых катионов и умеренно кислых катионов нерастворимы в воде. Эти оксиды не вводят в раствор значительных количеств иона O 2-, поэтому гидроксид-ионы не образуются. Хотя эти оксиды существенно не изменяют pH воды, они по-прежнему являются основаниями и нейтрализуют сильные кислоты.

FeO + 2 H 3 O + (водн.) Fe 2+ (водн.) + 3 H 2 O

Кислотные оксиды (ангидриды кислот)

Многие ковалентные оксиды очень кислых катионов (гипотетически) обладают кислотными свойствами.
Многие из этих оксидов растворяются в воде с образованием оксоаниона, в котором элемент имеет ту же степень окисления, что и оксид.
Оксид будет растворимым, если его реакция с водой дает сильную или очень сильную кислоту, потому что эти кислоты ионизируются, полностью сдвигая равновесие в сторону растворения.Если в результате реакции с водой образуется умеренно кислая оксокислота, оксид может быть растворимым или нерастворимым. Если образующаяся оксокислота является слабокислой, оксид обычно, но не всегда, нерастворим в воде.

Некоторые кислотные оксиды, такие как оксиды серы и азота, являются загрязнителями воздуха, поскольку они вступают в реакцию с влагой воздуха с образованием кислотных дождей.
Нерастворимые в воде оксиды классифицируются как кислые, если они реагируют с основаниями с образованием солей.

Есть несколько оксидов, таких как NO 2 и ClO 2 , в которых центральный атом
степень окисления не соответствует степени окисления этого элемента в стабильной или
известная оксокислота.Такие оксиды образуют смесь оксокислот или анионов путем диспропорционирования 2 NO 2 + 2 OH NO 2 + NO 3 + H 2 O

Амфотерные оксиды

Некоторые оксиды проявляют как кислотные, так и основные свойства.

Общие правила

В общем, электроположительный характер центрального атома оксида будет определять, будет ли
оксид будет кислым или основным. Чем более электроположен центральный атом, тем щелочнее оксид.Чем электроотрицательнее центральный атом, тем кислотнее оксид. Электроположительный символ увеличивается справа
влево по периодической таблице и увеличивается вниз по столбцу.
Результирующая граница между основными и кислотными оксидами проходит по диагонали.

Свойства s — и p — Элементы блока
Li Be B С N O F
Na мг Al Si -П, S Класс
К Ca Ga Ge как SE руб.
руб. Sr В Sn Сб Te I
CS Ba Tl Пб Bi Po в
Основные оксиды Амфотерные оксиды Кислые оксиды

Есть три оксида неметаллов из верхней правой части таблицы Менделеева, CO, NO и N 2 O, которые имеют
такие низкие степени окисления для центрального атома, что они дают нейтральные водные растворы.

Поскольку кислотность катиона быстро возрастает с зарядом, d -блокирующие элементы, которые
проявлять широкий спектр степеней окисления, может иметь один или несколько оксидов, которые проявляют только
основные свойства и один или несколько оксидов, которые проявляют только кислотные свойства. Чем выше
степень окисления тем более кислый соответствующий оксид. Хром является примером такого элемента.

Оксид Окислительное число Категория
CrO Кр 2+ базовый
Cr 2 O 3 Кр 3+ амфотерный
CrO 3 Кр 6+ кислая

Основные оксиды реагируют с кислыми оксидами с образованием солей оксоанионов.

Поскольку вода не содержит солей оксоанионов, которые являются слишком основными, чтобы сохраняться в
может образоваться вода. Эти реакции кислотных и основных анионов имеют важное практическое значение.
применения, например, для контроля газообразных кислотных оксидов, которые при выбросе в атмосферу
приводят к кислотным дождям. Ca (OH) 2 + SO 2 + 1/2 O 2 CaSO 4 + H 2 O

Эти реакции также используются в производстве таких материалов, как бетон, стекло и керамика.

Оксид | химическое соединение | Британника


Полная статья

Оксид , любой из большого и важного класса химических соединений, в котором кислород сочетается с другим элементом. За исключением более легких инертных газов (гелий [He], неон [Ne], аргон [Ar] и криптон [Kr]), кислород (O) образует по крайней мере один бинарный оксид с каждым из элементов.

Как металлы, так и неметаллы могут достигать своей наивысшей степени окисления (т.е.е., отдают максимальное количество доступных валентных электронов) в соединениях с кислородом. Щелочные металлы и щелочноземельные металлы, а также переходные металлы и постпереходные металлы (в их более низких степенях окисления) образуют ионные оксиды, то есть соединения, содержащие анион O 2-. Металлы с высокой степенью окисления образуют оксиды, связи которых имеют более ковалентную природу. Неметаллы также образуют ковалентные оксиды, которые обычно имеют молекулярный характер. Плавное изменение типа связи в оксидах от ионного к ковалентному наблюдается по мере перехода таблицы Менделеева от металлов слева к неметаллам справа.Такое же изменение наблюдается в реакции оксидов с водой и, как следствие, кислотно-щелочном характере продуктов. Ионные оксиды металлов реагируют с водой с образованием гидроксидов (соединений, содержащих ион OH ) и образующихся основных растворов, тогда как большинство оксидов неметаллов реагируют с водой с образованием кислот и образующихся кислотных растворов ( см. таблицу).

Периодическое изменение свойств оксидов элементов третьего периода
группа 1 группа 2 группа 13 группа 14 группа 15 группа 16 группа 17
Источник: Источник: W.Робинсон, Дж. Одом и Х. Хольцкло-младший, Химия: концепции и модели, D.C. Heath and Co., 1992.
реакция оксидов с водой и кислотно-основной характер гидроксидов Na 2 O дает NaOH (сильное основание) MgO дает
Mg (OH) 2 (слабое основание)
Al 2 O 3 не реагирует SiO 2 не реагирует P 4 O 10 дает H 3 PO 4 (слабая кислота) SO 3 дает H 2 SO 4 (сильная кислота) Cl 2 O 7 дает HClO 4 (сильная кислота)
связь в оксидах Na 2 O ионный MgO ионный Al 2 O 3
ионный
SiO 2 ковалентный P 4 O 10 ковалентный SO 3 ковалентный Cl 2 O 7 ковалентный

Определенные органические соединения реагируют с кислородом или другими окислителями с образованием веществ, называемых оксидами.Таким образом, амины, фосфины и сульфиды образуют аминооксиды, фосфиноксиды и сульфоксиды соответственно, в которых атом кислорода ковалентно связан с атомом азота, фосфора или серы. Так называемые оксиды олефинов представляют собой циклические простые эфиры.

Оксиды металлов

Оксиды металлов — это твердые кристаллические вещества, содержащие катион металла и анион оксида. Обычно они реагируют с водой с образованием оснований или с кислотами с образованием солей.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Щелочные металлы и щелочноземельные металлы образуют три различных типа бинарных кислородных соединений: (1) оксиды, содержащие ионы оксидов, O 2-, (2) пероксиды, содержащие ионы пероксидов, O 2 2-, которые содержат ковалентные одинарные связи кислород-кислород, и (3) супероксиды, содержащие ионы супероксида, O 2 , которые также имеют ковалентные связи кислород-кислород, но с одним отрицательным зарядом меньше, чем ионы пероксида. Щелочные металлы (которые имеют степень окисления +1) образуют оксиды M 2 O, пероксиды M 2 O 2 и супероксиды MO 2 .(M представляет собой атом металла.) Щелочноземельные металлы (со степенью окисления +2) образуют только оксиды, MO и пероксиды, MO 2 . Все оксиды щелочных металлов могут быть получены нагреванием соответствующего нитрата металла с элементарным металлом.
2MNO 3 + 10M + тепло → 6M 2 O + N 2
Обычное получение оксидов щелочноземельных металлов включает нагревание карбонатов металлов.
MCO 3 + тепло → MO + CO 2
И оксиды щелочных металлов, и оксиды щелочноземельных металлов являются ионными и реагируют с водой с образованием основных растворов гидроксида металла.M 2 O + H 2 O → 2MOH (где M = металл группы 1)
MO + H 2 O → M (OH) 2 (где M = металл группы 2)
Таким образом, эти соединения часто называют основными оксидами. В соответствии со своим основным поведением они реагируют с кислотами в типичных кислотно-основных реакциях с образованием солей и воды; Например,
M 2 O + 2HCl → 2MCl + H 2 O (где M = металл группы 1).
Эти реакции также часто называют реакциями нейтрализации. Наиболее важными основными оксидами являются оксид магния (MgO), хороший проводник тепла и электрический изолятор, который используется в огнеупорном кирпиче и теплоизоляции, и оксид кальция (CaO), также называемый негашеной известью или известью, широко используемый в сталелитейной промышленности и в воде. очищение.

Периодические тренды оксидов тщательно изучены. В любой данный период связывание в оксидах прогрессирует от ионного к ковалентному, и их кислотно-основной характер изменяется от сильно основного до слабоосновного, амфотерного, слабокислого и, наконец, сильнокислого. В общем, основность увеличивается вниз по группе (например, в оксидах щелочноземельных металлов BeO 2 O 7 (который содержит Mn 7+ ) наиболее кислотным.Оксиды переходных металлов со степенью окисления +1, +2 и +3 представляют собой ионные соединения, состоящие из ионов металлов и оксидных ионов. Оксиды переходных металлов с степенями окисления +4, +5, +6 и +7 ведут себя как ковалентные соединения, содержащие ковалентные связи металл-кислород. Как правило, ионные оксиды переходных металлов являются основными. То есть они будут реагировать с водными кислотами с образованием растворов солей и воды; Например,
CoO + 2H 3 O + → Co 2+ + 3H 2 O.Оксиды со степенью окисления +5, +6 и +7 являются кислыми и реагируют с растворами гидроксида с образованием солей и воды; Например,
CrO 3 + 2OH → CrO 4 2- + H 2 O.
Эти оксиды с степенью окисления +4 обычно являются амфотерными (от греческого amphoteros, «в обоих направлениях»), что означает, что эти соединения могут вести себя либо как кислоты, либо как основания. Амфотерные оксиды растворяются не только в кислых, но и в основных растворах.Например, оксид ванадия (VO 2 ) представляет собой амфотерный оксид, растворяющийся в кислоте с образованием синего иона ванадила, [VO] 2+ , и в основании с образованием желто-коричневого гипованадат-иона, [V 4 О 9 ] 2-. Амфотеризм среди оксидов основной группы в основном обнаруживается с металлоидными элементами или их ближайшими соседями.

кислотно-основное поведение периода 3 оксидов

КИСЛОТО-ОСНОВНОЕ ПОВЕДЕНИЕ ОКСИДОВ ПЕРИОДА 3

 

На этой странице рассматриваются реакции оксидов элементов периода 3 (натрия в хлор) с водой, а также с кислотами или основаниями, где это необходимо.Очевидно, что аргон не используется, поскольку он не образует оксид.

 

Краткое описание тенденции

Оксиды

Мы будем рассматривать следующие оксиды:

Na 2 O MgO Al 2 O 3 SiO 2 P 4 O 10 SO 3 Cl 2 O 7
P 4 O 6 SO 2 Cl 2 O

Примечание: Если вы еще не были там, возможно, вам будет интересно просмотреть страницу о структурах и физических свойствах оксидов Периода 3 в качестве полезного введения, прежде чем идти дальше.

Используйте кнопку НАЗАД в браузере, чтобы быстро вернуться на эту страницу позже, если вы решите перейти по этой ссылке.


Тенденция кислотно-щелочного поведения

Тенденция кислотно-основного поведения показана в различных реакциях, но в виде простого резюме:

  • Тенденция идет от сильноосновных оксидов слева к сильнокислотным справа, через амфотерный оксид (оксид алюминия) в середине.Амфотерный оксид — это оксид, который проявляет как кислотные, так и основные свойства.

Для этой простой тенденции вы должны смотреть только на самые высокие оксиды отдельных элементов. Это те, которые находятся в верхнем ряду выше, и там, где элемент находится в максимально возможной степени окисления. Картина не так проста, если вы включите и другие оксиды.

Для оксидов неметаллов их кислотность обычно рассматривается в терминах кислотных растворов, образующихся при их реакции с водой — например, триоксид серы реагирует с образованием серной кислоты.Однако все они будут реагировать с основаниями, такими как гидроксид натрия, с образованием солей, таких как сульфат натрия.

Все эти реакции подробно рассматриваются на оставшейся части этой страницы.


Предупреждение: Остальная часть этой страницы содержит довольно много деталей о различных оксидах. Не упускайте из виду общую тенденцию в отношении самых высоких оксидов за этот период, когда смотрите на все эти детали.

Важно знать, что ваша программа говорит по этой теме, а также изучать прошлые работы и схемы отметок — иначе вы в конечном итоге увязнете в массе деталей, о которых вам действительно не нужно знать.Если вы готовитесь к экзамену в Великобритании (уровень A или его эквивалент) и у вас нет ничего из этого, перейдите по этой ссылке, прежде чем идти дальше, чтобы узнать, как их получить.


 

Химия индивидуальных оксидов

Оксид натрия

Оксид натрия — простой сильноосновной оксид. Он является основным, поскольку содержит ион оксида, O 2-, который является очень сильным основанием с высокой тенденцией к соединению с ионами водорода.

Реакция с водой

Оксид натрия экзотермически реагирует с холодной водой с образованием раствора гидроксида натрия. В зависимости от концентрации он будет иметь pH около 14.

Реакция с кислотами

Оксид натрия, как сильное основание, также вступает в реакцию с кислотами. Например, он будет реагировать с разбавленной соляной кислотой с образованием раствора хлорида натрия.

 

Оксид магния

Оксид магния также является простым основным оксидом, поскольку он также содержит ионы оксида.Однако он не так сильно щелочной, как оксид натрия, потому что ионы оксида не так свободны.

В случае оксида натрия твердое вещество удерживается вместе за счет притяжения между ионами 1+ и 2-. В случае оксида магния притяжение составляет от 2+ до 2-. Чтобы их сломать, требуется больше энергии.

Даже с учетом других факторов (таких как энергия, выделяемая, когда положительные ионы притягиваются к воде в образовавшемся растворе), общий эффект этого заключается в том, что реакции с участием оксида магния всегда будут менее экзотермическими, чем реакции оксида натрия.

Реакция с водой

Если вы встряхнете немного белого порошка оксида магния с водой, ничего не произойдет — похоже, он не вступит в реакцию. Однако, если вы проверите уровень pH жидкости, вы обнаружите, что он находится где-то около 9, что свидетельствует о слабощелочной активности.

Должна быть какая-то небольшая реакция с водой с образованием гидроксид-ионов в растворе. В реакции образуется некоторое количество гидроксида магния, но он почти нерастворим, поэтому не так много гидроксид-ионов действительно попадает в раствор.

Реакция с кислотами

Оксид магния реагирует с кислотами так же, как и любой простой оксид металла. Например, он реагирует с теплой разбавленной соляной кислотой с образованием раствора хлорида магния.

 

Оксид алюминия

Описание свойств оксида алюминия может сбивать с толку, поскольку он существует в нескольких различных формах. Одна из этих форм очень инертна.Он известен как альфа-Al 2 O 3 и производится при высоких температурах.

Далее мы предполагаем одну из наиболее реактивных форм.

Оксид алюминия амфотерный . Он вступает в реакцию как с основанием, так и с кислотой.

Реакция с водой

Оксид алюминия не реагирует с водой простым способом в том смысле, как оксид натрия и оксид магния, и не растворяется в ней.Хотя он все еще содержит ионы оксида, они слишком прочно удерживаются в твердой решетке, чтобы реагировать с водой.


Примечание: Однако некоторые формы оксида алюминия действительно очень эффективно поглощают воду. Я не смог установить, связано ли это поглощение только с такими вещами, как водородные связи, или происходит настоящая химическая реакция с образованием какого-то гидроксида. Если у вас есть какая-либо надежная информация по этому поводу, не могли бы вы связаться со мной по адресу, указанному на странице об этом сайте.


Реакция с кислотами

Оксид алюминия содержит ионы оксида и поэтому реагирует с кислотами так же, как оксиды натрия или магния. Это означает, например, что оксид алюминия будет реагировать с горячей разбавленной соляной кислотой с образованием раствора хлорида алюминия.

В этой (и подобных реакциях с другими кислотами) оксид алюминия демонстрирует основную сторону своей амфотерной природы.

 

Реакция с основаниями

Оксид алюминия также имеет кислотную сторону в своей природе, и это проявляется в реакции с основаниями, такими как раствор гидроксида натрия.

Образуются различные алюминаты — соединения, в которых алюминий находится в отрицательном ионе. Это возможно, потому что алюминий обладает способностью образовывать ковалентные связи с кислородом.

В случае натрия между натрием и кислородом существует слишком большая разница в электроотрицательности для образования чего-либо, кроме ионной связи.Но электроотрицательность увеличивается по мере прохождения периода, а разница электроотрицательностей между алюминием и кислородом меньше. Это позволяет образовывать ковалентные связи между ними.


Примечание: Если вас не устраивает электроотрицательность, вы найдете ее объяснение, если перейдете по этой ссылке.

Используйте кнопку НАЗАД в браузере, чтобы быстро вернуться на эту страницу позже.


С горячим концентрированным раствором гидроксида натрия оксид алюминия реагирует с образованием бесцветного раствора тетрагидроксоалюмината натрия.


Примечание: Вы можете найти множество других формул, приведенных для продукта этой реакции. Они варьируются от NaAlO 2 (который представляет собой дегидратированную форму той, что указан в уравнении) до Na 3 Al (OH) 6 (который представляет собой совершенно другой продукт).

То, что вы действительно получите, будет зависеть от таких вещей, как температура и концентрация раствора гидроксида натрия. В любом случае, правда почти наверняка намного сложнее, чем что-либо из вышеперечисленного.Это тот случай, когда было бы неплохо узнать, что ваши экзаменаторы цитируют в своих вспомогательных материалах или схемах выставления оценок, и придерживаться этого.

При необходимости получите такую ​​информацию от экзаменаторов (если вы изучаете курс в Великобритании), перейдя по ссылкам на странице учебных программ.


 

Диоксид кремния (оксид кремния (IV))

К тому времени, когда вы дойдете до кремния в течение периода, электроотрицательность увеличится настолько, что уже не будет достаточной разницы в электроотрицательности между кремнием и кислородом для образования ионных связей.

Диоксид кремния не имеет основных свойств — не содержит оксидных ионов и не вступает в реакцию с кислотами. Вместо этого он очень слабокислый, реагируя с сильными основаниями.

Реакция с водой

Диоксид кремния не реагирует с водой из-за сложности разрушения гигантской ковалентной структуры.

Реакция с основаниями

Диоксид кремния вступает в реакцию с раствором гидроксида натрия, но только если он горячий и концентрированный.Образуется бесцветный раствор силиката натрия.

Вы также можете быть знакомы с одной из реакций, происходящих при извлечении железа в доменной печи — в которой оксид кальция (из известняка, который является одним из сырьевых материалов) реагирует с диоксидом кремния с образованием жидкого шлака, силиката кальция. Это также пример реакции кислого диоксида кремния с основанием.

 

Важно! Что касается остальных оксидов, мы в основном будем рассматривать результаты их реакции с водой с образованием растворов различных кислот.

Когда мы говорим о повышении кислотности оксидов по мере перехода, скажем, от оксида фосфора (V) к триоксиду серы к оксиду хлора (VII), то обычно мы говорим об увеличении силы кислот, образующихся при их реакции с водой.

 

Оксиды фосфора

Мы собираемся рассмотреть два оксида фосфора, оксид фосфора (III), P 4 O 6 , и оксид фосфора (V), P 4 O 10 .

Оксид фосфора (III)

Оксид фосфора (III) реагирует с холодной водой с образованием раствора слабой кислоты H 3 PO 3 , известной как фосфористая кислота, ортофосфористая кислота или фосфоновая кислота. Его реакция с горячей водой намного сложнее.


Примечание: Обратите внимание на окончание «-ous» в первых двух именах. Это не орфографическая ошибка — это правда! Его используют, чтобы отличить его от фосфорной кислоты, которая совершенно иная (см. Ниже).

Названия фосфорсодержащих кислот просто кошмар! (На самом деле, насколько я понимаю, фосфорные кислоты в целом всегда были и продолжают быть полным кошмаром!) Не беспокойтесь об этих названиях на этом уровне. Просто убедитесь, что вы можете написать формулы, если вам это нужно — и будьте благодарны за то, что вам больше не нужно о них знать!


Чистая неионизированная кислота имеет структуру:

Водороды не выделяются в виде ионов, пока вы не добавите в кислоту воду, и даже в этом случае выделяется немного, потому что фосфористая кислота является лишь слабой кислотой.

Фосфорная кислота имеет pK a , равное 2,00, что делает ее более сильной, чем обычные органические кислоты, такие как этановая кислота (pK a = 4,76).


Примечание: Если вы знаете о pK a , но не очень уверены, вы можете перейти по этой ссылке, но это, вероятно, займет у вас много времени. Все, что вам действительно нужно знать по этой теме, это то, что чем ниже значение pK a , тем сильнее кислота.


Маловероятно, что вы когда-нибудь прореагируете напрямую оксидом фосфора (III) с основанием, но вам может потребоваться знать, что произойдет, если вы прореагируете образовавшуюся фосфористую кислоту с основанием.

В фосфористой кислоте два атома водорода в группах -ОН являются кислыми, а другой — нет. Это означает, что вы можете получить две возможные реакции, например, с раствором гидроксида натрия в зависимости от используемых пропорций.

В первом случае только один из кислых атомов водорода прореагировал с гидроксид-ионами основания. Во втором случае (с использованием вдвое большего количества гидроксида натрия) прореагировали оба.

Если бы вы реагировали непосредственно оксид фосфора (III) с раствором гидроксида натрия, а не сначала производили кислоту, вы бы получили те же возможные соли.


Примечание: Проверьте свой учебный план, прошлые работы и схемы отметок, прежде чем вы слишком увязнете в этом! Перейдите по этой ссылке, чтобы узнать, как получить их, если у вас их еще нет (только для учебных программ в Великобритании).


Оксид фосфора (V)

Оксид фосфора (V) бурно реагирует с водой с образованием раствора, содержащего смесь кислот, природа которой зависит от условий.Обычно мы просто рассматриваем одну из них, фосфорную (V) кислоту, H 3 PO 4 , также известную как фосфорная кислота или ортофосфорная кислота.

На этот раз чистая неионизированная кислота имеет структуру:

Фосфорная (V) кислота также является слабой кислотой с pK a , равным 2,15. Это делает его частично на слабее фосфористой кислоты. Растворы обеих этих кислот с концентрацией около 1 моль дм -3 будут иметь pH около 1.

И снова вы вряд ли когда-нибудь прореагируете этот оксид с основанием, но вполне можно ожидать, что вы узнаете, как фосфорная (V) кислота реагирует с чем-то вроде раствора гидроксида натрия.

Если вы посмотрите на структуру, то увидите, что она имеет три группы -ОН, и каждая из них имеет кислый атом водорода. Вы можете провести реакцию с гидроксидом натрия в три стадии, причем один за другим эти атомы водорода вступают в реакцию с ионами гидроксида.

Опять же, если бы вы реагировали непосредственно оксид фосфора (V) с раствором гидроксида натрия, а не сначала производили кислоту, вы бы получили те же возможные соли.

Это становится смешным, поэтому я приведу только один пример из возможных уравнений:


Примечание: Если на экзамене вам задают вопрос, в котором вам просто нужно написать уравнение реакции гидроксида натрия с фосфорной (V) кислотой, какое уравнение вам следует написать? Это не имеет особого значения — все они совершенно верны. В каждом случае это просто зависит от пропорций двух используемых вами реагентов.

Если вы действительно хотите быть уверенным, проверьте прошлые документы и отметьте схемы. Я нашел один вопрос о реакции между оксидом натрия и фосфорной (V) кислотой, где схема маркировки принимала любое из возможных уравнений — чего я и ожидал.

(Я знаю, что не давал вам этот конкретный набор уравнений, но их нетрудно решить, если вы понимаете принцип, и я не могу привести каждое отдельное кислотно-основное уравнение. Это уже давно страница будет длиться вечно, и все в отчаянии сдадутся задолго до конца! Вот почему вы пытаетесь понять химию, а не изучать ее как попугай.)

Пожалуйста, не тратьте время зря на изучение уравнений — или, по крайней мере, до тех пор, пока вы не узнаете и не поймете всю остальную химию, которую вам нужно знать и понимать! У любого уравнения очень мало шансов пройти экзамен, даже если оно входит в вашу конкретную программу.

Жизнь слишком коротка, чтобы тратить время на изучение уравнений. Знайте, как их решить, если вам нужно.


 

Оксиды серы

Мы будем рассматривать диоксид серы, SO 2 , и триоксид серы, SO 3 .

Диоксид серы

Диоксид серы хорошо растворяется в воде, реагируя с ней, давая раствор, известный как серная кислота, который традиционно имеет формулу H 2 SO 3 . Однако основным веществом в растворе является просто гидратированный диоксид серы — SO 2 , xH 2 O. Спорный вопрос, существует ли вообще в растворе какая-либо H 2 SO 3 как таковая.

Сернистая кислота также является слабой кислотой с pK a около 1.8 — немного сильнее, чем две указанные выше фосфорсодержащие кислоты. Достаточно концентрированный раствор сернистой кислоты снова будет иметь pH около 1.

.


Примечание: Значения pK и , указанные для серной кислоты в различных источниках, несколько различаются — от 1,77 до 1,92. У меня нет возможности узнать, что из этого правильно.

Ионизация «серной кислоты» включает ионизацию гидратированного комплекса, и вам не нужно беспокоиться об этом на этом уровне.


Диоксид серы также будет напрямую реагировать с основаниями, такими как раствор гидроксида натрия. Если диоксид серы барботируют через раствор гидроксида натрия, сначала образуется раствор сульфита натрия, а затем раствор гидрогенсульфита натрия, когда диоксид серы оказывается в избытке.


Примечание: Сульфит натрия также называют сульфатом натрия (IV).Гидросульфит натрия также является гидросульфатом натрия (IV) или бисульфитом натрия.

Обратите внимание, что уравнения для этих реакций отличаются от примеров для фосфора. В этом случае мы реагируем непосредственно оксид , с гидроксидом натрия, потому что мы, скорее всего, будем это делать именно так.


Другая важная реакция диоксида серы — с основным оксидом кальция с образованием сульфита кальция (сульфата кальция (IV)).Это лежит в основе одного из методов удаления диоксида серы из дымовых газов на электростанциях.

 

Трехокись серы

Триоксид серы бурно реагирует с водой с образованием тумана из концентрированных капель серной кислоты.


Примечание: Если вы знаете о контактном процессе производства серной кислоты, вы знаете, что триоксид серы всегда превращается в серную кислоту с помощью кругового процесса, чтобы избежать проблемы сернокислотного тумана.

Если вам интересно, вы можете найти подробную информацию о процессе обращения в другом месте на этом сайте, но это не относится к текущей теме.


Чистая неионизированная серная кислота имеет структуру:

Серная кислота — сильная кислота, и растворы обычно имеют pH около 0.

Кислота реагирует с водой, давая ион гидроксония (ион водорода в растворе, если хотите) и ион сероводорода.Эта реакция проходит практически на 100%.

Второй водород удалить труднее. На самом деле ион гидросульфата является относительно слабой кислотой, по силе сходной с кислотами, которые мы уже обсуждали на этой странице. На этот раз вы получите равновесие:

 

Серная кислота, конечно, имеет все реакции сильной кислоты, с которыми вы знакомы из вводных курсов химии. Например, нормальная реакция с раствором гидроксида натрия заключается в образовании раствора сульфата натрия, в котором оба кислых водорода реагируют с ионами гидроксида.

В принципе, вы также можете получить раствор гидросульфата натрия, используя вдвое меньше гидроксида натрия и просто реагируя с одним из двух кислых водородов в кислоте. На практике лично я никогда этого не делал — на данный момент не вижу особого смысла!

 

Сам по себе триоксид серы также вступает в непосредственную реакцию с основаниями с образованием сульфатов. Например, он будет реагировать с оксидом кальция с образованием сульфата кальция. Это похоже на реакцию с диоксидом серы, описанную выше.

 

Оксиды хлора

Хлор образует несколько оксидов, но единственными двумя, упомянутыми в любой из учебных программ уровня A Великобритании, являются оксид хлора (VII), Cl 2 O 7 , и оксид хлора (I), Cl 2 O. Хлор ( VII) оксид также известен как гептоксид дихлора, а оксид хлора (I) — как монооксид дихлора.

Оксид хлора (VII)

Оксид хлора (VII) — высший оксид хлора — хлор находится в максимальной степени окисления +7.Он продолжает тенденцию высших оксидов элементов периода 3 к тому, чтобы быть более сильными кислотами.

Оксид хлора (VII) реагирует с водой с образованием очень сильной кислоты, хлорноватой (VII) кислоты, также известной как хлорная кислота. PH типичных растворов, как и серной кислоты, будет около 0,

.

Неионизированная хлорная (VII) кислота имеет структуру:

Вероятно, вам это не понадобится для целей UK A level (или его эквивалентов), но это полезно, если вы понимаете причину, по которой хлорная (VII) кислота является более сильной кислотой, чем хлорная (I) кислота (см. Ниже) .Вы можете применить те же рассуждения к другим кислотам на этой странице.

Когда ион хлората (VII) (перхлорат-ион) образуется в результате потери иона водорода (например, когда он реагирует с водой), заряд может быть делокализован по каждому атому кислорода в ионе. Это делает его очень стабильным и означает, что хлорная (VII) кислота очень сильна.


Примечание: Это похоже на делокализацию, которая происходит в этаноат-ионе, образующемся, когда этановая кислота ведет себя как слабая кислота.Вы найдете это более подробно на странице, посвященной органическим кислотам.

Используйте кнопку НАЗАД в браузере, если вы решите перейти по этой ссылке.


Хлорная (VII) кислота реагирует с раствором гидроксида натрия с образованием раствора хлората натрия (VII).

Сам оксид хлора (VII) также реагирует с раствором гидроксида натрия с образованием того же продукта.

 

Оксид хлора (I)

Оксид хлора (I) намного менее кислый, чем оксид хлора (VII).Он до некоторой степени реагирует с водой с образованием хлорноватистой (I) кислоты HOCl, также известной как хлорноватистая кислота.


Примечание: Вы также можете найти хлорную (I) кислоту, записанную как HClO. Форма, которую я использовал, более точно отражает способ соединения атомов.


Структура хлорноватой (I) кислоты в точности такая, как показано ее формулой HOCl. У него нет атомов кислорода с двойными связями и нет способа делокализации заряда по отрицательному иону, образовавшегося в результате потери водорода.

Это означает, что образовавшийся отрицательный ион не очень стабилен и легко восстанавливает свой водород, чтобы превратиться в кислоту. Хлорная (I) кислота очень слабая (pK a = 7,43).

Хлорная (I) кислота реагирует с раствором гидроксида натрия с образованием раствора хлората натрия (I) (гипохлорита натрия).

Оксид хлора (I) также напрямую реагирует с гидроксидом натрия с образованием того же продукта.

 
 

Куда бы вы сейчас хотели отправиться?

В меню «Период 3».. .

В меню «Неорганическая химия». . .

В главное меню. . .

 

© Джим Кларк 2005 (последнее изменение — ноябрь 2015 г.)

Вопрос № ee1c0 | Socratic

Общая тенденция для оксидов периода 3 идет от основных к амфотерным и кислотным по мере продвижения слева направо.

Это увеличение кислотности может быть связано с изменением природы элементов, которые переходят от химически активных металлов к бедным металлам и, наконец, к неметаллам , а также к изменению природы связи, которые они образуют с кислородом, т.е.е. разница в электроотрицательности ( EN ) между элементами периода 3 и кислородом.

Вот таблица, которая описывает эту разницу в EN между элементами периода 3 и кислородом:

Оксид натрия и оксид магния действительно являются основными, что означает, что они образуют гидроксиды при растворении в воде. У них самая большая разница в EN с кислородом, а это означает, что их связь будет преимущественно ионной.

Все начинает меняться с оксидом алюминия # «Al» _2 «O» _3 #.Разница в EN между # «Al» # и кислородом позволит связи иметь значительный ковалентный характер, что делает оксид амфотерным, т.е. он имеет как основной (определяется ионным компонентом связи), так и кислотный (определяется ковалентной составляющей связи) свойства .

Последние четыре элемента образуют преимущественно ковалентные связи с кислородом, что определяет их кислотную природу.

Другой характеристикой, которая увеличивает кислотность оксидов периода 3, является возрастающая степень окисления элементов в их соответствующих оксидах.Вот степени окисления для высших оксидов каждого периода 3 элемента:

# «Na» _2 «O» # — степень окисления (ОС) для # «Na» #: +1 ;
# «MgO» # — ОС для # «Mg» #: +2 ;
# «Al» _2 «O» _3 # — ОС для # «Al» #: +3 :
# «SiO» _2 # — ОС для # «Si» #: +4 ;
# «P» _4 «O» _10 # — ОС для # «P» #: +5 ​​;
# «SO» _3 #: ОС для # «S» #: +6 ;
# «Cl» _2 «O» _7 #: ОС для # «Cl» #: +7 ;

Опять же, увеличение степени окисления соответствует возрастанию ковалентного характера оксида.Итак, в качестве вывода

Слева направо: пониженный металлический символ # -> # повышенный ковалентный символ # -> # повышенная кислотность для оксидов .

Какие факторы делают амфотерные оксиды способными реагировать как с кислотами, так и с щелочами?

Основные оксиды

Металлический символ увеличивается справа налево и сверху вниз в Периодической таблице.

Самые металлические элементы образуют самые основные оксиды.

Даже если оксиды нерастворимы в воде, мы все равно называем их основными оксидами, потому что они вступают в реакцию с кислотами.

# «MgO (s) + 2HCl (водн.) → MgCl» _2 «(водн.)» + «H» _2 «O» (l) «# ​​

Кислые оксиды

Неметаллический символ увеличивается слева направо и снизу вверх в Периодической таблице.

Самые неметаллические элементы образуют наиболее кислые оксиды.

Они реагируют с водой с образованием оксокислот. Например,

# «SO» _2 «(вод.)» + «H» _2 «O (l)» → «H» _2 «SO» _3 «(вод.)» #

Даже если оксид нерастворим в воде, мы все равно относим его к кислому, если он реагирует с основаниями с образованием солей.»-» «(водн.)» #

Более легкие элементы групп 2 и 13, некоторые из # «d» # — блочных элементов и более тяжелые элементы групп 14 и 15 содержат амфотерные оксиды.

Самые основные оксиды находятся в нижнем левом углу Периодической таблицы, а самые кислые оксиды — в верхнем правом углу, поэтому неудивительно, что граница между кислотными и основными оксидами проходит по диагонали.

Амфотеризм и степени окисления

Амфотеризм зависит от степени окисления оксида.

Нет простого способа предсказать, какие элементы будут амфотерными.

Амфотерный характер оксида, вероятно, отражает способность металла поляризовать окружающие ионы оксида, то есть вносить значительный ковалентный характер в связь # «M-O» #.

Эта способность увеличивается с увеличением степени окисления, поскольку положительный характер центрального атома увеличивается.

Однако в группе 15 амфотерными являются только оксиды с более низкой степенью окисления.

Оксиды с более высокой степенью окисления слишком кислые, чтобы быть амфотерными.

Многие переходные металлы образуют амфотерные оксиды, но трудно предсказать, какой из их оксидов будет амфотерным.

Можно сказать, что амфотерная природа оксида сильно зависит от степени окисления металла.

Кислотность катиона быстро повышается с увеличением заряда, поэтому переходные металлы с различными степенями окисления могут иметь кислые, основные или амфотерные оксиды.»-» #

Определение pH оксидов | Эксперимент

В этом эксперименте студенты тестируют образцы различных оксидов в воде с универсальным индикаторным раствором, наблюдая, что их pH меняется. Они основывают идею о том, что растворимые оксиды металлов являются щелочными, а оксиды неметаллов — кислотными.

Сам эксперимент довольно короткий, но до и после практической работы должно быть достаточно времени для обсуждения.

Оборудование

Аппарат

  • Защита глаз
  • Пробирки, 6 шт.
  • Штатив для пробирок
  • Таблица цветов pH

Химическая промышленность

  • Доступ к следующим решениям (см. Примечания 10 и 11 ниже):
    • Азотная (V) кислота (обозначенная как «Оксид азота и вода»), 0.2 М (РАЗДРАЖАЮЩИЙ)
    • Фосфорная (V) кислота (обозначенная как «оксид фосфора (V) и вода»), 0,2 M
    • Серная кислота (VI) (с пометкой «Двуокись серы и вода») 0,2 M
    • Гидроксид калия (обозначенный как «Оксид калия и вода»), 0,2 М (РАЗДРАЖАЮЩИЙ)
    • Гидроксид натрия (обозначенный как «Оксид натрия и вода»), 0,2 М (РАЗДРАЖАЮЩИЙ)
    • Известковая вода (с маркировкой «Оксид кальция и вода»)
    • Универсальный индикаторный раствор (ВОСПЛАМЕНЯЮЩИЙСЯ), полный диапазон, во флаконе-капельнице (или флакон с пипеткой-капельницей)

Примечания по технике безопасности, охране труда и технике

  1. Прочтите наше стандартное руководство по охране труда и технике безопасности.
  2. Во всем пользовании защитными очками.
  3. Азотная (V) кислота, HNO 3 (водный), (РАЗДРАЖАЮЩИЙ) — см. CLEAPSS Hazcard HC067 и книгу рецептов CLEAPSS RB061.
  4. Фосфорная (V) кислота, H 3 PO 4 (водн.) — см. CLEAPSS Hazcard HC072 и книгу рецептов CLEAPSS RB065.
  5. Серная (VI) кислота, H 2 SO 4 (водн.) — см. CLEAPSS Hazcard HC098a и книгу рецептов CLEAPSS RB098.
  6. Раствор гидроксида калия, КОН (водный), (РАЗДРАЖАЮЩИЙ) — см. CLEAPSS Hazcard HC091b и книгу рецептов CLEAPSS RB071.
  7. Раствор гидроксида натрия, NaOH (водн.), (РАЗДРАЖАЮЩИЙ) — см. CLEAPSS Hazcard HC091a и книгу рецептов CLEAPSS RB085.
  8. Известковая вода, Ca (OH) 2 (водн.), (Рассматривается как РАЗДРАЖЕНИЕ) — см. CLEAPSS Hazcard HC018 и CLEAPSS Recipe Book RB020.
  9. Универсальный индикаторный раствор (ЛЕГКО ВОСПЛАМЕНЯЮЩИЙСЯ) — см. CLEAPSS Hazcard HC032 и CLEAPSS Recipe Book RB000.
  10. Растворы могут быть предоставлены в небольших этикетированных капельницах или в небольших конических колбах с капельной пипеткой.Если времени мало, растворы могут быть предоставлены в промаркированных пробирках.
  11. Концентрация растворов не является критической (подходит 0,1 или 0,2 М). Однако они должны быть менее 0,5 М. При предлагаемых концентрациях растворы фосфорной и серной кислот представляют минимальную опасность. Однако может быть целесообразно обозначить растворы как РАЗДРАЖАЮЩИЕ.

Процедура

  1. Поместите 2 см 3 образцов каждого раствора «оксида и воды» в отдельные пробирки.
  2. К каждому образцу добавьте 3 капли раствора универсального индикатора. Обратите внимание на цвет индикатора в каждом образце.
  3. Запишите результаты в подходящую таблицу, указав название оксида, цвет универсального индикатора, pH и то, является ли оксид кислотным, щелочным или нейтральным в воде.

Учебные заметки

Растворы не упоминаются и не обозначаются как «раствор оксидов», поскольку оксиды не растворяются — они реагируют с водой.Подход «оксид и вода» позволяет сосредоточить внимание на основной теме обучения без необходимости охватывать другой набор реакций (хотя они могут быть рассмотрены соответствующей группой студентов).

Обычно оксиды металлов являются основными, а оксиды неметаллов — кислотными. Некоторые оксиды металлов реагируют с водой с образованием щелочных растворов. Важно отметить, что некоторые оксиды металлов не вступают в реакцию с водой. Они испытывают нейтральность в воде, потому что они нерастворимы, но они все еще являются основаниями, потому что реагируют с кислотами.Оксиды неметаллов реагируют с водой с образованием кислот.

Дополнительная информация

Это ресурс из проекта «Практическая химия», разработанного Фондом Наффилда и Королевским химическим обществом. Этот сборник из более чем 200 практических занятий демонстрирует широкий спектр химических концепций и процессов. Каждое упражнение содержит исчерпывающую информацию для учителей и технических специалистов, включая полные технические заметки и пошаговые инструкции. Практическая химия сопровождает практическую физику и практическую биологию.

© Фонд Наффилда и Королевское химическое общество

Проверено на здоровье и безопасность, 2016 г.

Кислотные свойства бинарного оксидного катализатора caosio2 и активность для кислотного катализа

  • Ai, M., «Взаимосвязь между активностью окисления и кислотно-основными свойствами Fe 2 O 3 -Смешанные оксиды на основе », J. Catal. , 52, , 16 (1975).

    Артикул

    Google Scholar

  • Байкер, А., Долленмайер, П., Глински, М., Релье, А. и Шарма, В. К., «Смешанные гели ванадия и кремнезема: структурные свойства и каталитическое поведение при селективном восстановлении оксида азота аммиаком» J. Catal. , , 111, , 273 (1988).

    Артикул
    CAS

    Google Scholar

  • Boccuzzi, F., Coluccla, S., Ghiotti, G., Mortterra, C. и Zecchina, A., «Инфракрасное исследование поверхностных мод на кремнеземе», J. Phys. Chem., 82, , 1298 (1978).

    Артикул
    CAS

    Google Scholar

  • Decanio, S. T., Sohn, J. R., Fritz, P. Q. и Lunsford, J. H., «Кислотный катализ деалюминированным цеолитом-Y», J. Catal. , , 101, , 132 (1986).

    Артикул
    CAS

    Google Scholar

  • Дзиско, В. А. Проа, «Каталитические и кислотные свойства бинарных оксидных катализаторов на основе диоксида кремния», Inertn.Congr. Катализ 3-е изд; Амстердам, 1 , 19 (1964).

    Google Scholar

  • Фармер В. К. и Рассел Дж. Д., «Инфракрасные спектры слоистых силикатов», Spectrochim. Acta , 20, , 1149 (1964).

    Артикул
    CAS

    Google Scholar

  • Хэммет, Л. П. и Дейруп, А. Дж., «Серия простых основных индикаторов. 1. Кислотные функции смесей серной и хлорной кислот с водой », J.Являюсь. Chem. Soc. , 54 , 2712 (1932).

    Google Scholar

  • Хино, М., Кобаяши, С. и Арата, К., «Реакции бутана и изобутана, катализируемые оксидом циркония, обработанным сульфат-ионом. Твердый суперкислотный катализатор », J. Am. Chem. Soc. , 101 , 6439 (1979).

    Артикул
    CAS

    Google Scholar

  • Хакнелл, Д. Дж., «Селективное окисление углеводородов», Academic Press: Лондон / Нью-Йорк, 1974.

    Google Scholar

  • Ито, М., Хаттори, Х. и Танабе, К., «Кислотные свойства TiO 2 -SiO 2 и его каталитическая активность при аминировании фенола, гидратации этилена и изомеризации». бутена », J. Catal. , 35, , 225 (1974).

    Артикул
    CAS

    Google Scholar

  • Миура, М., Кубота, Ю., Иваки, Т., Такимото, К. и Мураока, Ю., «Природа кислотных участков на поверхности кремнезема-оксида алюминия. I. Связь между кислотными свойствами участков и теплотой погружения », Bull. Chem. Soc. Jpn. , 42 , 1476 (1969).

    Артикул
    CAS

    Google Scholar

  • Niiyama, H. и Echigoya, E., «Кислотно-основные свойства силикатов щелочноземельных металлов», Kogyo Kagaku Zasshi , 74 , 560 (1971).

    CAS

    Google Scholar

  • Парри, Э. П., «Инфракрасное исследование пиридина, адсорбированного на кислых твердых телах. Определение поверхностной кислотности », J. Catal. , 2 , 371 (1963).

    Артикул
    CAS

    Google Scholar

  • Пери, Дж. Б., «Инфракрасное исследование групп OH и NH 2 на поверхности сухого аэрогеля кремнезема», J. Phys. Chem., 70 , 2937 (1966).

    Артикул
    CAS

    Google Scholar

  • Рива, А., Трифиро, Ф., Ваккари, А., Минчев, Л. и Буска, Г., «Структура и реакционная способность смешанных оксидов цинка и хрома», J. Chem. Soc. Faraday Trans. 1 , 84 , 1423 (1988).

    Артикул
    CAS

    Google Scholar

  • Schuit, G.C.A. и Reijen, van L.L., «Структура и активность катализаторов металл-на-диоксиде кремния», Adv. Катал. , 10 , 242 (1958).

    CAS
    Статья

    Google Scholar

  • Сон, Дж. Р. и Ким, Х. Дж., «Высокая каталитическая активность NiO-TiO 2 / SO 2- 4 для этилена», J. Catal. , 101, , 428 (1986).

    Артикул
    CAS

    Google Scholar

  • Зон, Дж.Р., Ким, Х. В. и Ким, Дж. Т., «Новые синтезы твердых катализаторов димеризации этилена», J. Mol. Катал. , 41, , 375 (1987).

    Артикул
    CAS

    Google Scholar

  • Зон, Дж. Р. и Джанг, Х. Дж., «Характеристика ZrO 2 -SiO 2 , немодифицированного или модифицированного с помощью H 2 SO 4 и кислотного катализа», J. Mol. Катал. , 64, , 349 (1991).

    Артикул
    CAS

    Google Scholar

  • Зон, Дж.R., Jang, HJ, Park, MY, Park, EH and Park, SE, «Физико-химические свойства TiO 2 -SiO 2 , немодифицированного и модифицированного H 2 SO 4 и активность в отношении кислотного катализа» , J. Mol. Катал. , 93, , 149 (1994).

    Артикул
    CAS

    Google Scholar

  • Сон, Дж. Р. и Одзаки, А., «Структура NiO-SiO 2 катализатора димеризации этилена по данным инфракрасного поглощения», J.Катал. , 59, , 303 (1979).

    Артикул
    CAS

    Google Scholar

  • Сон, Дж. Р. и Одзаки, А., «Кислотность силиката никеля и ее влияние на каталитическую активность димеризации этилена и изомеризации бутена», J. Catal. , 61, , 29 (1980).

    Артикул
    CAS

    Google Scholar

  • Сон, Дж. Р. и Рю, С.G., «Характеристика поверхности катализатора оксид хрома-диоксид циркония», Langmuir. , 9 , 126 (1993).

    Артикул
    CAS

    Google Scholar

  • Танабе К., «Твердые кислоты и основания», Коданша, 103 (1970).

  • Танабе К., Сумиёси Т., Шибата К., Киюра Т. и Китагава Дж. «Новая гипотеза относительно кислотности поверхности бинарных оксидов металлов», Bull Chem. Soc. Jpn. , 47, , 1064 (1974).

    Артикул
    CAS

    Google Scholar

  • Vogt, ETC, Boot, H.

  • Добавить комментарий

    Ваш адрес email не будет опубликован.