Как занести под корень число: § Как внести под корень

Содержание

Внесение множителя под знак корня: правила, примеры, решения

В этой статье мы продолжим говорить о том, как преобразовывать иррациональные выражения, а конкретно о том, как внести множитель под знак корня. Сначала поясним, в чем состоит смысл такого преобразования, приведем теоретические обоснования и сформулируем основные правила, после чего проиллюстрируем их на примерах решений задач.

Понятие внесения множителя под знак корня

Начнем с определения этого преобразования.

Определение 1

Внесение множителя под знак корня представляет собой преобразование произведения B·Cn, где B и C являются числами или выражениями, а n – натуральным числом, в тождественно равное выражение Bn·Cn или -Bn·Cn.

Первое знакомство с этим видом преобразования, как правило, происходит сразу после изучения понятия квадратного корня и его свойств в рамках школьного курса алгебры. При этом определение берется только для n, равного 2, то есть для выражений с квадратным корнем. Позже, когда начинают изучаться корни n-ной степени, разбираются и случаи с более сложными выражениями.

Учитывая все сказанное выше, легко понять, почему данное преобразование называется именно так: в его результате множитель B перемещается под знак корня. Также очевидно, что изменить таким образом можно не любые выражения, а только конкретные произведения некоторых чисел (выражений) и корней, под знаками которых также расположено некоторое число или выражение. В качестве примера можно привести 5·3, -0,7·x+2·y3, x-2·1-x4 и  т.д.

В результате мы должны прийти к выражению вполне определенного вида. Так, указанные выше примеры после преобразования будут выглядеть так: 52·3, -0,73·x+2·y3, -x-24·1-x4. Возможно и дальнейшее упрощение этих выражений, если такая необходимость есть.

После того, как мы определились, что из себя представляет внесение множителя под знак корня, можно перейти к теоретическим обоснованиям преобразования. В следующем пункте мы объясним, когда -Bn·Cn следует заменять на Bn·Cn, а когда Bn·Cn на -Bn·Cn.

Теоретические основы внесения множителя под корень

Ранее, когда мы объясняли, как можно изменить иррациональные выражения, применяя основные свойства корня, у нас получился ряд важных результатов. Здесь нам потребуются два из них:

Определение 2

  1. Выражение A можно заменить на Ann в случае нечетного n. Если же n является четным числом, то возможна замена на Ann для всех значений переменных, которые принадлежат области допустимых значений для данного выражения и при которых A не будет отрицательным (это условие можно записать как A≥0). То есть если n – нечетное число, то A=Ann, A≥0,-Ann, A<0.
  2. Выражение An·Bn заменяется на A·Bn при условии, что n – натуральное число.

Воспользовавшись этими правилами, мы можем внести множитель под знак радикала (корня) после следующих преобразований:

  • при нечетном n – B·Cn=Bnn·Cn=Bn·Cn
  • при четном n– B·Cn=Bnn·Cn=Bn·Cn, B≥0,-Bnn·Cn=-Bn·Cn, B<0

Допустим, B представляет из себя число, большее 0, либо выражение, которое будет неотрицательным при любых значениях переменных из области допустимых значений. Тогда B·Cn=Bnn·Cn=Bn·Cn. А если B будет отрицательным числом или его значения не будут положительны при любых переменных, то B·Cn=-Bnn·Cn=-Bn·Cn.

В следующем пункте мы сформулируем эти положения в виде правил, которые будем в дальнейшем применять для решения задач.

Основные правила внесения множителя под знак радикала

Выше мы уже рассказывали, что действия, которые нужно предпринять для внесения множителя под корень, будут зависеть от значения показателя n, точнее от того, четный он или нечетный, а также от вида самого выражения. Запишем несколько правил для всех возможных случаев.

Определение 3

Если показателем корня является нечетное число, то необходимые преобразования будут выглядеть следующим образом: B·Cn=Bnn·Cn=Bn·Cn.

Определение 4

Если показателем корня является четное число, а B является некоторым выражением с неотрицательным значением (x2, 5·x4+3·y2·z2+7 и др.) или же просто положительным числом, то нам нужно действовать так: B·Cn=Bnn·Cn=Bn·Cn.

Определение 5

Если показателем корня будет четное число, но B при этом будет числом, меньшим 0, или выражением с неположительными значениями (к примеру, −2·x2, −(x2+y2+1) и т.п.), то вносить множитель под корень нужно так: B·Cn=-Bnn·Cn=-Bn·Cn.

Определение 6

Если показатель корня четный, однако по выражению B невозможно сразу сказать, какие значения оно примет на области допустимых значений, нам нужно:

  • решить неравенства B≥0 и B<0 на области допустимых значений исходного выражения;
  • получив некоторые множества решений, выполнить на первом из них преобразование B·Cn=Bnn·Cn=Bn·Cn, а на втором B·Cn=-Bnn·Cn=-Bn·Cn.

Теперь посмотрим, как правильно применять эти положения на практике.

Решения задач на внесение множителя под корень

Для начала рассмотрим наиболее простой случай с нечетным показателем корня.

Пример 1

Условие: преобразуйте выражения 2·35,  -0,25·-384·x·y-13·y23 и x-1·x+1x-167, внеся множитель под знак корня.

Решение

Во всех трех выражениях корни имеют нечетные показатели. Тогда мы можем представить вносимые множители в виде корней и перейти от произведения корней к корню произведения. Подсчитаем каждый пример отдельно.

  1. 2·35=255·35=25·35. Результат можно еще упростить, выполнив нужные действия под корнем: 25·35=32·35=965.
  2. Здесь сначала нужно преобразовать десятичную дробь в обыкновенную, чтобы упростить дальнейшие вычисления. После этого вносим множитель под знак корня и получаем:-0,25·-384·x·y-13·y23==-14·-384·x·y-13·y23==-1433·-384·x·y-13·y23==-14·-384·x·y-13·y23==6·x·y-13·y23=6·x·y-2·y23
  3. Здесь выполняем преобразования сразу:

x-1·x+1x-167=(x-1)77·x+1(x-1)67==(x-1)7·x+1x-167

Полученному выражению можно придать еще более простой вид, преобразовав рациональное выражение под корнем, которое получилось после внесения множителя. Сделаем это:

x-17·x+1x-167=x-17·x+1(x-1)67==(x-1)·x+17=x2-17

Ответ: 2·35=965, -0,25·-384·x·y-13·y23=6·x·y-2·y23, x-1·x+1x-167=x2-17

Далее переходим к задачам, в которых нужно преобразовать корень с четным показателем.

Пример 2

Условие: внесите множитель под знак радикала в выражениях 5·3, 12·16·q4-q4 и x2+1·1x·(x2+1), а потом по возможности упростите выражения.

Решение

Первое выражение мы уже приводили в качестве примера в первом пункте. Проверим получившийся результат 52·3. Поскольку здесь у нас квадратный корень, а множитель перед ним является положительным числом, то нам нужно выполнить следующие действия: 5·3=52·3=52·3. Все, что нам осталось, – это упростить полученный результат: 52·3=75.

Во втором случае показатель корня является четным числом, а вносимое число больше 0, значит, сразу переходим к преобразованиям:

12·16·q4-q4=1244·16·q4-q4==124·16·q4-q4=q4-q4=0

В третьем случае очевидно, что x2+1будет принимать значения больше 0 при любых значениях переменной x (поскольку при сложении неотрицательной при любом значении переменной выражения x2и единицы мы получим положительное число), значит:

x2+1·1x·x2+1=x2+12·1x·x2+1==x2+12·1x·x2+1=(x2+1)2x·x2+1=x2+1x

Ответ: 5·3=75, 12·16·q4-q4=0, x2+1·1x·x2+1=x2+1x.

Нужна помощь преподавателя?

Опиши задание — и наши эксперты тебе помогут!

Описать задание

Пример 3

Условие: преобразуйте выражения -102·(0,1)7·a4 и 2·-3-y2·x, внеся множитель под знак корня.

Решение

Первое выражение имеет четный показатель корня и отрицательный множитель, который надо внести. Значит, для решения нам надо использовать третье правило, сформулированное в предыдущем пункте:

-102·0,17·a4=-10244·0,17·a4==-1024·0,17·a4=-108·0,17·a4=-10·a4

Во втором выражении показатель корня тоже является четным числом. Выражение 2·(−3−y2) будет отрицательно при любом y, поскольку произведение положительного и отрицательного числа есть число также отрицательное. Значит, можно записать следующее:

2·-3-y2·x=-2·-3-y22·x==-2·-3-y22·x=-22·-3-y22·x==-4·y4+6·y2+9·x=-4·x·y4+24·x·y2+36·x

Ответ: -102·0,17·a4=-10·a4, 2·-3-y2·x=-4·x·y4+24·x·y2+36·x.

Еще один случай, который нам надо разобрать, – работа с четным показателем корня и переменными, способными принимать произвольные значения. Вообще такие преобразования лежат за пределами школьного курса алгебры, поскольку они относятся к задачам повышенной сложности, однако мы все же решим одну такую задачу.

Пример 4

Условие: даны выражения x-2·1-x4 и x+6x-4·x2+x-2. Выполните внесение множителя под знак корня.

Решение

Первое выражение мы уже приводили в качестве примера в первом пункте. Проверим получившийся результат и поясним ход преобразования. Поскольку в x-2·1-x4 есть четный показатель корня (4), а выражение x−2 может принять разные значения (больше 0, меньше 0, равные 0), то нам придется использовать последнее правило из предыдущего пункта. Область допустимых значений x будет определена условием 1−x≥0. Как мы узнаем, когда переменная примет положительное, а когда отрицательное значение? Для этого нам надо составить и решить две системы неравенств: x-2≥01-x≥0⇔x≥2x≤1⇔∅ и x-2<01-x≥0⇔x<2x≥1⇔x≤1.

Решений у первой системы нет. Значит, наше выражение x−2 не может быть положительным ни при каких значениях переменной. А вот вторая система имеет решение в виде множества x≤1, совпадающее с областью допустимых значений. Поэтому можно записать следующее:

x-2·1-x4=-x-244·1-x4==-(x-2)4·1-x4

Во втором выражении x+6x-4·x2+x-2 имеется четный показатель корня, а выражение x+6x-4 на первый взгляд может принимать любые значения. Выясним, когда они будут положительными, а когда отрицательными. Как и в примере выше, составим и решим две системы неравенств: x+6x-4≥0x2+x-2≥0 и x+6x-4<0x2+x-2≥0.

Первую систему можно решить, используя метод интервалов, а вторую – любым способом решения квадратных неравенств.

x+6x-4≥0x2+x-2≥0⇔(-∞, -6]∪[4, +∞)(-∞, -2]∪[1, +∞)⇔⇔(-∞, -6]∪[4, +∞)x+6x-4<0x2+x-2≥0⇔(-6, 4)(-∞, -2]∪[1, +∞)⇔⇔(-6, -2]∪[1, 4)

Следовательно, значение выражения  x+6x-4 будет неотрицательным при x∈(−∞, −6]∪[4, +∞), и x+6x-4·x2+x-2=x+6x-42·x2+x-2==x+6x-42·x2+x-2

А отрицательным значение будет при x∈(−6, −2]∪[1, 4), и x+6x-4·x2+x-2=-x+6x-42·x2+x-2==-x+6x-42·x2+x-2

Выражение, которое получилось в итоге, может быть приведено к виду рациональной дроби.

Ответ: x-2·1-x4=-(x-2)4·1-x4 и

x+6x-4·x2+x-2==x+6x-42·x2+x-2, x∈(-∞, -6]∪[4, +∞)-x+6x-42·x2+x-2, x∈(-6, -2]∪[1, 4)

В заключении отметим, что вносить число под знак корня часто требуется в случаях, когда нужно сравнить значения выражений с корнями. Также советуем вам прочесть материал, посвященный противоположному преобразованию – вынесению множителя из-под корня.

Внесение множителя под знак корня

Внесение числа под знак корня — арифметическая операция, полезная при необходимости сравнения нескольких чисел, каждое из которых находится под знаком корня. Также операция занесения числа под знак корня необходима для получения более точного ответа, так как в случае умножения приближённого числа, полученного после извлечения корня, на множитель, стоящий перед знаком корня, ошибка увеличивается на значение этого множителя.

Для того чтобы разобраться в том, как совершать операцию внесения множителя под знак корня, вспомним необходимые правила и определения, которые могут пригодиться для этого.

Арифметические действия, используемые для внесения множителя под корень

Определение 1

Сочетательный закон умножения

Произведение нескольких сомножителей не изменится, если какую-нибудь группу рядом стоящих сомножителей заменить их произведением:
$(xz)y=z(xy)$

Помощь со студенческой работой на тему

Внесение множителя под знак корня

Определение 2

Распределительный закон умножения по отношению к сложению

Для умножения суммы нескольких чисел на какое-либо число необходимо умножить каждое слагаемое на это число, а затем полученные произведения сложить между собой:

$(x+z)y = xy + zy$

Также освежим в памяти определение корня.

Определение 3

Корень $n$-ой степени из числа $m$ — это число, при возведении которого в $n$-нную степень получается число $m$. Получение числа $m$ называется извлечением корня n-нной степени. Если $n=2$ — то корень называется квадратным.2)}$

Внесение (вынесение) множителя из-под знака корня

Сегодня рассмотрим следующую тему: как вносить или выносить множитель из-под знака корня. Именно множитель (!!!) в предыдущей публикации были слагаемые — их никуда выносить нельзя. Я рассмотрю данную тему на примере квадратного корня, однако аналогичные преобразования могут быть выполнены с корнями любой четной степени.

x≤0 означает, что переменная x неположительна.

Никакой знак минус перед переменной не укажет вам на знак переменной! Запись —x>0 является всего лишь линейным неравенством с одной переменной, решая которое (умножаем обе части неравенства на -1, меняем знак неравенства на противоположный), получаем x<0, что говорит о том, что переменная отрицательна. 

Вынесение из-под знака корня.

Здесь нам пригодится уже знакомое тождество

Пример: Вынести множитель из-под знака корня:

Выполняем следующую цепочку преобразований, главная цель которой заключается в том, чтобы у максимального числа множителей под знаком корня выделить вторую степень (т.3≥0, значит b≥0, а значит -2b≤0. Получили, что множитель перед знаком корня отрицательный, поэтому знак минус оставляем перед корнем, внося под корень положительный множитель:

 Внести под знак корня

Естественная область определения: —a≥0, значит a≤0, а значит 3a≤0. Множитель перед знаком корня отрицательный, поэтому знак минус оставляем перед корнем, внося под корень положительный множитель:

 Внести под знак корня

Естественная область определения: a-5≥0, значит 5-a≤0. Множитель перед знаком корня отрицательный, поэтому знак минус оставляем перед корнем, внося под корень положительный множитель:

Корни и степени. Квадратный корень, кубический корень.

Степенью называется выражение вида .

Здесь  — основание степени,  — показатель степени.

Степень с натуральным показателем

Проще всего определяется степень с натуральным (то есть целым положительным) показателем.

По определению, .

Выражения «возвести в квадрат» и «возвести в куб» нам давно знакомы.
Возвести число в квадрат — значит умножить его само на себя.

.

Возвести число в куб — значит умножить его само на себя три раза.

.

Возвести число в натуральную степень  — значит умножить его само на себя раз:

Степень с целым показателем

Показатель степени может быть не только натуральным (то есть целым положительным), но и равным нулю, а также целым отрицательным.

По определению,

.

Это верно для . Выражение 00 не определено.

Определим также, что такое степень с целым отрицательным показателем.

Конечно, все это верно для , поскольку на ноль делить нельзя.

Например,

Заметим, что при возведении в минус первую степень дробь переворачивается.

Показатель степени может быть не только целым, но и дробным, то есть рациональным числом. В статье «Числовые множества» мы говорили, что такое рациональные числа. Это числа, которые можно записать в виде дроби , где  — целое,  — натуральное.

Здесь нам понадобится новое понятие — корень -степени. Корни и степени — две взаимосвязанные темы. Начнем с уже знакомого вам арифметического квадратного корня.

Арифметический квадратный корень из числа  — это такое неотрицательное число, квадрат которого равен .

Согласно определению,

В школьной математике мы извлекаем корень только из неотрицательных чисел. Выражение    для нас сейчас имеет смысл только при .

Выражение всегда неотрицательно, т.е. . Например, .

Свойства арифметического квадратного корня:

Кубический корень

Аналогично, кубический корень из  — это такое число, которое при возведении в третью степень дает число .

Например, , так как ;

, так как ;

, так как .

Обратите внимание, что корень третьей степени можно извлекать как из положительных, так и из отрицательных чисел.

Теперь мы можем дать определение корня -ной степени для любого целого .

Корень -ной степени

Корень -ной степени из числа  — это такое число, при возведении которого в -ную степень получается число .

Например,

Заметим, что корень третьей, пятой, девятой — словом, любой нечетной степени, — можно извлекать как из положительных, так и из отрицательных чисел.

Квадратный корень, а также корень четвертой, десятой, в общем, любой четной степени можно извлекать только из неотрицательных чисел.

Итак, — такое число, что . Оказывается, корни можно записывать в виде степеней с рациональным показателем. Это удобно.

По определению,

в общем случае .

Сразу договоримся, что основание степени больше 0.

Например,

Выражение по определению равно .

При этом также выполняется условие, что больше 0.

Например,

Запомним правила действий со степенями:

— при перемножении степеней показатели складываются

— при делении степени на степень показатели вычитаются

— при возведении степени в степень показатели перемножаются

Ты нашел то, что искал? Поделись с друзьями!

Покажем, как применяются эти формулы в заданиях ЕГЭ по математике:

1.

Внесли все под общий корень, разложили на множители, сократили дробь и извлекли корень.

2.

3.

Здесь мы записали корни в виде степеней и использовали формулы действий со степенями.

Как вынести число за корень

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

В предыдущем уроке мы разобрались, что такое квадратный корень. Пришла пора разобраться, какие существуют формулы для корней, каковы свойства корней, и что со всем этим можно делать.

Формулы корней, свойства корней и правила действий с корнями – это, по сути, одно и то же. Формул для квадратных корней на удивление немного. Что, безусловно, радует! Вернее, понаписать всяких формул можно много, но для практической и уверенной работы с корнями достаточно всего трёх. Все остальное из этих трёх проистекает. Хотя и в трех формулах корней многие плутают, да.

Начнём с самой простой. Вот она:

Напоминаю (из предыдущего урока): а и b – неотрицательные числа! Иначе формула смысла не имеет.

Это свойство корней, как видите простое, короткое и безобидное. Но с помощью этой формулы корней можно делать массу полезных вещей! Разберём на примерах все эти полезные вещи.

Полезная вещь первая. Эта формула позволяет нам умножать корни.

Как умножать корни?

Да очень просто. Прямо по формуле. Например:

Казалось бы, умножили, и что? Много ли радости?! Согласен, немного. А вот как вам такой пример?

Из множителей корни ровно не извлекаются. А из результата – отлично! Уже лучше, правда? На всякий случай сообщу, что множителей может быть сколько угодно. Формула умножения корней всё равно работает. Например:

Так, с умножением всё ясно, зачем нужно это свойство корней – тоже понятно.

Полезная вещь вторая. Внесение числа под знак корня.

Как внести число под корень?

Предположим, что у нас есть вот такое выражение:

Можно ли спрятать двойку внутрь корня? Легко! Если из двойки сделать корень, сработает формула умножения корней. А как из двойки корень сделать? Да тоже не вопрос! Двойка – это корень квадратный из четырёх!

Корень, между прочим, можно сделать из любого неотрицательного числа! Это будет корень квадратный из квадрата этого числа. 3 – корень из 9. 8 – корень из 64. 11 – корень из 121. Ну, и так далее.

Конечно, расписывать так подробно нужды нет. Разве что, для начала. Достаточно сообразить, что любое неотрицательное число, умноженное на корень, можно внести под корень. Но – не забывайте! – под корнем это число станет квадратом самого себя. Это действие – внесение числа под корень – можно ещё назвать умножением числа на корень. В общем виде можно записать:

Процедура простая, как видите. А зачем она нужна?

Как и любое преобразование, эта процедура расширяет наши возможности. Возможности превратить жестокое и неудобное выражение в мягкое и пушистое). Вот вам простенький пример:

Как видите, свойство корней, позволяющее вносить множитель под знак корня, вполне годится для упрощения.

Кроме того, внесение множителя под корень позволяет легко и просто сравнивать значения различных корней. Безо всякого их вычисления и калькулятора! Третья полезная вещь.

Как сравнивать корни?

Это умение очень важно в солидных заданиях, при раскрытии модулей и прочих крутых вещах.

Сравните вот эти выражения. Какое из них больше? Без калькулятора! С калькулятором каждый. э-э-э. короче, каждый справится!)

Так сразу и не скажешь. А если внести числа под знак корня?

Запомним (вдруг, не знали?): если число под знаком корня больше, то и сам корень – больше! Отсюда сразу правильный ответ, безо всяких сложных вычислений и расчётов:

Здорово, да? Но и это ещё не всё! Вспомним, что все формулы работают как слева направо, так и справа налево. Мы пока формулу умножения корней слева направо употребляли. Давайте запустим это свойство корней наоборот, справа налево. Вот так:

И какая разница? Разве это что-то даёт!? Конечно! Сейчас сами увидите.

Предположим, нам нужно извлечь (без калькулятора!) корень квадратный из числа 6561. Кое-кто на этом этапе и падёт в неравной борьбе с задачей. Но мы упорные, мы не сдаёмся! Полезная вещь четвёртая.

Как извлекать корни из больших чисел?

Вспоминаем формулу извлечения корней из произведения. Ту, что я чуть выше написал. Но где у нас произведение!? У нас огромное число 6561 и всё. Да, произведения здесь нет. Но если нам надо – мы его сделаем! Разложим это число на множители. Имеем право.

Для начала сообразим, на что делится это число ровно? Что, не знаете!? Признаки делимости забыли!? Зря. Идите в Особый раздел 555, тема «Дроби», там они есть. На 3 и на 9 делится это число. Потому, что сумма цифр (6+5+6+1=18) делится на эти числа. Это один из признаков делимости. На три нам делить ни к чему (сейчас поймёте, почему), а вот на 9 поделим. Хотя бы и уголком. Получим 729. Вот мы и нашли два множителя! Первый – девятка (это мы сами выбрали), а второй – 729 (такой уж получился). Уже можно записать:

Улавливаете идею? С числом 729 поступим аналогично. Оно тоже делится на 3 и 9. На 3 опять не делим, делим на 9. Получаем 81. А это число мы знаем! Записываем:

Всё получилось легко и элегантно! Корень пришлось по кусочкам извлекать, ну и ладно. Так можно поступать с любыми большими числами. Раскладывать их на множители, и – вперёд!

Кстати, а почему на 3 делить не надо было, догадались? Да потому, что корень из трёх ровно не извлекается! Имеет смысл раскладывать на такие множители, чтобы хотя бы из одного корень хорошо извлекался. Это 4, 9, 16 ну, и так далее. Делите своё громадное число на эти числа поочерёдно, глядишь, и повезёт!

Но не обязательно. Может и не повезти. Скажем, число 432 при разложении на множители и использовании формулы корней для произведения даст такой результат:

Ну и ладно. Всё равно мы упростили выражение. В математике принято оставлять под корнем самое маленькое число из возможных. В процессе решения все зависит от примера (может и без упрощения всё посокращается), а вот в ответе надо дать результат, который уже дальнейшему упрощению не поддаётся.

Кстати, знаете, что мы с вами сейчас с корнем из 432 сделали?

Мы вынесли множители из-под знака корня! Вот так называется эта операция. А то попадётся задание – «вынести множитель из-под знака корня» а мужики-то и не знают. ) Вот вам ещё одно применение свойства корней. Полезная вещь пятая.

Как вынести множитель из-под корня?

Легко. Разложить подкоренное выражение на множители и извлечь корни, которые извлекаются. Смотрим:

Ничего сверхъестественного. Важно правильно выбрать множители. Здесь мы разложили 72 как 36·2. И всё получилось удачно. А могли разложить иначе: 72 = 6·12. И что!? Ни из 6, ни из 12 корень не извлекается. Что делать?!

Ничего страшного. Или поискать другие варианты разложения, или продолжать раскладывать всё до упора! Вот так:

Как видим, всё получилось. Это, кстати, не самый быстрый, но самый надёжный способ. Раскладывать число на самые маленькие множители, а затем собирать в кучки одинаковые. Способ успешно применяется и при перемножении неудобных корней. Например, надо вычислить:

Перемножать всё – сумасшедшее число получится! И как потом из него корень извлекать?! Опять на множители раскладывать? Не, лишняя работа нам ни к чему. Сразу раскладываем на множители и собираем одинаковые по кучкам:

Вот и всё. Конечно, раскладывать до упора не обязательно. Всё определяется вашими личными способностями. Довели пример до состояния, когда вам всё ясно, значит, можно уже считать. Главное – не ошибаться. Не человек для математики, а математика для человека!)

Применим знания к практике? Начнём с простенького:

В данном материале мы продолжим рассказывать о том, как преобразовывать рациональные выражения, а конкретно о том, как правильно выносить множитель из-под знака корня. В первом пункте объясним, зачем нужно такое преобразование, далее покажем, как именно оно делается и сформулируем общее для всех случаев правило. Далее покажем, какие существуют методы, чтобы привести подкоренное выражение к удобному для преобразования виду, и разберем примеры решений задач.

Что такое вынесение множителя из-под знака корня

Чтобы лучше понять суть подобного преобразования, нужно сначала сформулировать, что такое вообще вынесение множителя из-под знака корня. Сформулируем определение:

Вынесение множителя из-под знака корня представляет собой замену выражения B n · C n на произведение B · C n с условием, что n – нечетное число, или же на произведение B · C – где n – четное число, а B и C – другие числа и выражения.

Если мы имеем в виду только квадратный корень, то есть число n равно двум, то процесс вынесения множителя можно свести к замене выражения B 2 · C на произведение B · C . Отсюда и название данного преобразования: после того, как оно было проведено, множитель B y оказывается свободным от знака корня.

Приведем примеры, поясняющие данное определение. Так, допустим, у нас есть выражение 2 2 · 3 . Оно аналогично B 2 · C , где B равно двум, а C – трем. Заменив данный корень на произведение 2 · 3 и опустив знаки модулей (это можно сделать, поскольку оба множителя являются положительными числами), мы получим 2 · 3 . Мы вынесли множитель 2 2 из-под знака корня.

Приведем еще один пример подобного преобразования. У нас есть выражение ( x 2 – 3 · x · y · z ) 2 · x = x 2 – 3 · x · y · z · x . Здесь из-под корня был вынесен не просто числовой множитель, а целое выражение с переменными ( x 2 − 3 · x · y · z ) 2 .

Оба примера относятся к случаю вынесения множителя из-под квадратного корня. Можно также производить данные преобразования и для корней n -ной степени. Вот пример с кубическим корнем: ( 3 · a 2 ) 3 · 2 · a 2 3 = 3 · a 2 · 2 · a 2 3

Пример с корнем шестой степени: 1 2 · x 2 + y 2 6 · 5 · ( x 2 + y 2 ) 6 можно преобразовать в произведение 1 2 · x 2 + y 2 · 5 · ( x 2 · y 2 ) 6 , которое, в свою очередь, упрощается до 1 2 · ( x 2 + y 2 ) · 5 · ( x 2 + y 2 ) 6 . В данном случае мы выносим множитель 1 2 · x 2 + y 2 6 .

Мы выяснили, что такое вынесение множителя из-под знака корня. Теперь перейдем к доказательствам, т.е. поясним, почему произведение, полученное в итоге данного преобразования, равнозначно исходному выражению.

Почему возможно заменить корень на произведение

В этом пункте мы будем разбираться, как возможна такая замена и почему корень B n · C n равнозначен произведениям B · C n и B · C n . Обратимся к ранее изученным теоретическим положениям.

Когда мы разбирали преобразование иррациональных выражений, у нас получились некоторые важные результаты, которые мы собрали в таблицу. Здесь нам будут нужны только два из них:

1. Выражение A · B n при условии нечетности n может быть заменено на A n · B n , а для четных n – A n · B n .

2. Выражение A n n при нечетном значении n может быть преобразовано в A , а при четном – в | A | .

Используя эти результаты и зная основные свойства модуля, мы можем вывести следующее:

  • при четном n : B n · C n = B n n · C n = B · C n ;
  • при нечетном n : B n · C n = B n n · C n = B n n · C n = B · C n .

Эти выражения лежат в основе преобразований, которые мы проводим, вынося множитель из-под знака корня.

Следовательно, можно вывести две формулы:

  • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для нечетного n ;
  • B 1 n · B 2 n · . . . · B k n · C n = B 1 · B 2 · . . . · B k · C n для четного n .

Здесь B 1 , B 2 , и др. могут быть как числами, так и выражениями.

С помощью данных формул можно выполнить вынесение из-под корня сразу нескольких множителей.

Основное правило вынесения множителя из-под корня

Когда нам нужно решать примеры с подобными преобразованиями, чаще всего приходится предварительно приводить подкоренное выражение к виду B n · C . С учетом этого момента мы можем записать следующие правила.

Для вынесения множителя из-под корня в выражении A n нужно предварительно привести корень к виду B n · C n и после этого перейти к произведению B · C n (при нечетном показателе) или к B · C n (при четном показателе, при необходимости раскрываем модули).

Таким образом, схема решения подобных задач выглядит следующим образом:

A n → B n · C n → B · C n , е с л и n – н е ч е т н о е B · C n , е с л и n – ч е т н о е

Если нам надо вынести несколько множителей, то действуем так:

A n → B 1 n · B 2 n · . . . · B k n · C n → B 1 · B 2 · . . . · B k · C n , е с л и n – н е ч е т н о е B 1 · B 2 · . . . · B k · C n , е с л и n – ч е т н о е

Теперь можно переходить к решению задач.

Задачи на вынесение множителя из-под знака корня

Условие: выполните вынесение множителя за знак корня в трех выражениях: 2 2 · 7 , – 1 2 3 2 · 5 , ( – 0 , 4 ) 7 · 11 7 .

Решение

Мы видим, что подкоренные выражения во всех трех случаях уже имеют нужный нам вид. Поскольку в первых двух примерах показателем корня является четное число, а в третьем – нечетное, записываем следующее:

  1. Показатель корня равен 2 . Берем правило вынесения множителя для четного показателя и вычисляем: 2 2 · 7 = 2 · 7 = 2 · 7
  2. Во втором выражении показатель тоже четный, значит, – 1 2 3 2 · 5 = – 1 2 3 · 5 = 1 2 3 · 5
    В этом случае мы можем сначала преобразовать выражения, исходя из основных свойств корня:
    – 1 2 3 2 · 5 = – 1 2 · 1 2 3 2 · 5 = 1 2 3 2 · 5
    А потом уже выносить множитель: 1 2 3 2 · 5 = 1 2 3 · 5 = 1 2 3 · 5 .
  3. Последнее выражение имеет нечетный показатель, поэтому нам понадобится другое правило: ( – 0 , 4 ) 7 · 11 7 = – 0 , 4 · 11 7 .
    Возможен и такой вариант расчета:
    – 0 , 4 7 · 11 7 = ( – 1 ) 7 · 0 , 4 7 · 11 7 = = – 0 , 4 7 · 11 7 = – 0 , 4 7 · 11 7 = – 0 , 4 · 11 7
    ​​​​​​Или такой:
    – 0 , 4 7 · 11 7 = ( – 1 ) 7 · 0 , 4 7 · 11 7 = = – 0 , 4 7 · 11 7 = 0 , 4 7 · – 11 7 = 0 , 4 · – 11 7 = – 0 , 4 · 11 7

Ответ: 1 ) 2 · 7 ; 2 ) 1 2 3 · 5 ; 3 ) – 0 , 4 · 11 7 .

Условие: преобразуйте выражение ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 .

Решение:

При помощи схемы, приведенной во втором пункте статьи, мы можем вынести из-под корня сразу три множителя.

( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = – 2 · 0 , 3 · 7 · 11 4 = 4 , 2 · 11 4

Можно сделать преобразование в несколько шагов, вынося множителя по одному, но так будет гораздо дольше.

Есть и другой способ. Преобразуем само выражение, приведя его к виду B n · C . После этого уже будем выносить множители:

( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = = ( – 2 · 0 , 3 · 7 ) 4 · 11 4 = ( – 4 , 2 ) 4 · 11 4 = = – 4 , 2 · 11 4 = 4 , 2 · 11 4

Ответ: ( – 2 ) 4 · ( 0 , 3 ) 4 · 7 4 · 11 4 = – 4 , 2 · 11 4 = 4 , 2 · 11 4 .

Разберем более подробно тот случай, когда подкоренное выражение требует предварительного преобразования. Здесь есть несколько моментов, которые нужно дополнительно пояснить.

Предварительное преобразование подкоренного выражения

Мы уже отмечали, что выражение под корнем не всегда имеет удобный для нас вид. Часто корень дан как A n , и множитель, который нужно вынести, не представлен в явном виде. Иногда это обозначено в условии, но довольно часто множитель приходится определять самостоятельно. Посмотрим, как надо действовать в этих случаях.

Допустим, нам надо вынести заранее определенный множитель B . Естественно, подкоренное выражение должно быть таким, чтобы эта операция была возможна. Тогда для преобразования A n в B n · C n достаточно определить второй множитель, т.е. вычислить значение C из выражения A = B n · C .

Условие: есть выражение 24 · x 3 . Вынесите из-под знака корня множитель 2 3 .

Решение

Здесь мы имеем n = 3 , A = 24 · x , B 3 = 2 3 . Тогда из A = B n · С вычисляем C = A : ( B n ) = 24 · x : ( 2 3 ) = 3 · x .

Значит, 24 · x 3 = 2 3 · 3 · x 3 . Подкоренное выражение имеет нужный нам вид, и мы можем воспользоваться правилом для нечетного показателя и подсчитать: 24 · x 3 = 2 3 · 3 · x 3 = 2 · 3 · x 3 .

Ответ: 24 · x 3 = 2 · 3 · x 3 .

А как быть в случае, если множитель, который нужно вынести, не указан? Тогда у нас есть определенная свобода выбора, и мы можем использовать несколько подходов к решению задачи.

Допустим, нам дано выражение, под корнем у которого стоит степень или произведение нескольких степеней. В таком случае, зная основные свойства степени, мы можем преобразовать выражение в удобный для нас вид с очевидно указанными множителями для вынесения.

Условие: необходимо вынести множитель из-под корня в трех выражениях – 2 4 · 5 4 , 2 7 · 5 4 , 2 22 · 5 4 .

Решение

Преобразование первого выражения не представляет особой сложности, т.к. подобные примеры мы уже разбирали. Сразу вычисляем: 2 4 · 5 4 = 2 · 5 4 = 2 · 5 4 .

Во втором примере легко догадаться, как преобразовать подкоренное выражение: нужно просто представить 2 7 как 2 4 · 2 3 .

2 7 · 5 4 = 2 4 · 2 3 · 5 4 = 2 4 · 40 4 = 2 · 40 4 = 2 · 40 4

В последнем примере также нужно начать с преобразования подкоренного выражения. Сразу отметим, что итоговый вид будет таким:

2 5 4 · 2 2 · 5 4

Теперь покажем, как именно прийти к этому виду. Сначала выполняем деление 22 на 4 , получаем 5 с остатком 2 (если нужно, повторите, как правильно выполнять деление с остатком). Иначе говоря, 22 можно рассматривать как 4 · 5 + 2 . Используя свойства степени, можем записать:

2 22 + 2 5 · 4 + 2 = 2 5 · 4 · 2 2 = ( 2 5 ) 4 · 2 2

2 22 · 5 4 = ( 2 5 ) 4 · 2 2 · 5 4 = ( 2 5 ) 4 · 20 4 = = 2 5 · 20 4 = 32 · 20 4

Ответ: 1 ) 2 4 · 5 4 = 2 · 5 4 , 2 ) 2 7 · 5 4 = 2 · 40 4 , 3 ) 2 22 · 5 4 = 32 · 20 4 .

Если выражение под корнем не является степенью или произведением степеней, надо попробовать представить его в таком виде. Чаще всего встречаются следующие случаи.

Подкоренное выражение – натуральное составное число. Тогда мы сразу можем увидеть нужные множители, которые надо вынести из-под знака корня, предварительно разложив данное число на простые множители.

Условие: выполните вынесение множителя из-под знака корня в следующих выражениях: 1 ) 45 ; 2 ) 135 ; 3 ) 3456 ; 4 ) 102 .

  1. Выполняем разложение 45 на простые множители.

45 15 5 1 3 3 5

То есть 45 = 3 · 3 · 5 = 3 2 · 5 , а 45 = 3 2 · 5 . В этом выражении видно, что выносить мы будем множитель 3 2 . Вычисляем:

3 2 · 5 = 3 · 5 = 3 · 5

  1. Теперь представим в нужном виде число 135 и получим: 135 = 3 · 3 · 3 · 5 = 3 3 · 15 . Иначе можно записать, что 3 2 · 3 · 5 = 3 2 · 15 . Следовательно, 135 = 3 2 · 15 . Мы видим, что вынесению из-под знака корня подлежит множитель 3 2 :

3 2 · 15 = 3 · 15 = 3 · 15

  1. Разложим на простые множители число 3456 :

3456 1728 864 432 216 108 54 27 9 3 1 2 2 2 2 2 2 2 3 3 3

У нас получилось, что 3456 = 2 7 · 3 3 , а 3456 = 2 7 · 3 3 . Поскольку 2 7 = 2 3 · 2 + 1 = ( 2 3 ) 2 · 2 и 3 3 = 3 2 · 3 , то 2 7 · 3 3 = ( 2 3 ) 2 · 2 · 3 2 · 3 = ( 2 3 ) 2 · 3 2 · 6 = = 2 3 · 3 · 6 = 24 · 6

  1. Представим натуральное число 102 как произведение простых множителей и получим 2 · 3 · 17 . Видим, что все множители имеют показатель, равный единице, а показатель корня в этом примере равен двум. Следовательно, в данном примере ни один множитель не нужно выносить из-под знака корня, то есть такое действие для 102 нецелесообразно.

Ответ: 1 ) 45 = 3 · 5 ; 2 ) 135 = 3 · 15 ; 3 ) 3456 = 24 · 6 ; 4 ) 102 .

Теперь разберем, как решать примеры, у которых подкоренное выражение представлено в виде обыкновенной дроби. В этом случае следует числитель и знаменатель разложить на простые множители и посмотреть, можно ли вынести какие-то из них за знак корня. Если у нас есть десятичная дробь или смешанное число, предварительно заменяем их обыкновенными дробями, после чего переходим от корня отношения к отношению корней.

Условие: выполните вынесение множителя за корень в выражении 200 · 0 , 000189 · x 3 и упростите его.

Решение

Для начала перейдем от десятичной дроби к обыкновенной и разложим ее числитель и знаменатель на простые множители.

0 , 189 = 189 1000000 = 3 3 · 7 2 6 · 5 6

Используя свойства степени, перепишем выражение в следующем виде:

3 2 2 · 5 2 3 · 7

Подставим получившееся выражение в исходное и получим:

200 · 0 , 000189 · x 3 = = 200 · 3 2 2 · 5 2 3 · 7 · x 3 = = 200 · 3 2 2 · 5 2 · 7 · x 3 = 6 · 7 · x 3

К такому же ответу можно прийти и с помощью других преобразований:

200 · 0 , 000189 · x 3 = = 200 · 189 1000000 · x 3 = 200 · 189 1000000 3 · x 3 = = 200 · 189 3 1000000 3 · x 3 = 200 · 3 3 · 7 3 100 3 3 · x 3 = = 200 · 3 · 7 3 100 · x 3 = 6 · 7 3 · x 3 = 6 · 7 · x 3

Ответ: 200 · 0 , 000189 · x 3 = 6 · 7 · x 3 .

Иными словами, для обнаружения множителя, который можно вынести за знак корня, можно преобразовывать подкоренное выражение любыми допустимыми способами.

Условие: выполните упрощение иррационального выражения 2 · ( 3 + 2 · 2 ) .

Решение

Мы можем преобразовать выражение в скобках как 2 + 2 · 2 + 1 и далее как 2 2 + 2 · 2 · 1 + 1 2 .

То, что у нас получилось, можно свернуть в квадрат суммы с помощью формулы сокращенного умножения: 2 2 + 2 · 2 · 1 + 1 = 2 + 1 2 .

В итоге: 2 · 3 + 2 · 2 = 2 · 2 + 1 2 . Теперь выносим 2 + 1 2 за знак корня и упрощаем выражение:

2 · 2 + 1 2 = 2 · 2 + 1 = = 2 · 2 + 1 = 2 + 2

Ответ: 2 · 3 + 2 · 2 = 2 + 2 .

Теперь посмотрим, как вынести из-под знака корня выражение, содержащее переменные. В целом можно сказать, что для этого используются те же методы, что и при работе с числами.

Условие: вынесите множитель из-под знака корня в выражениях ( x – 5 ) 5 4 и ( x – 5 ) 6 4 .

Решение

  1. Выполняем преобразование в первом примере.

( x – 5 ) 5 4 = ( x – 5 ) 4 · x – 5 4 = x – 5 · x – 5 4

Знак модуля можно опустить. Посмотрим, каким условием определяется область допустимых значений переменной для исходного выражения. Таким условием будет неравенство ( x − 5 ) 5 ≥ 0 . Для его решения выбираем метод интервалов и получаем x ≥ 5 . Если значение x принадлежит области допустимых значений, то значением выражения x – 5 будет неотрицательное число. Значит, можем записать следующее:

x – 5 · x – 5 4 = x – 5 · x – 5 4

  1. ( x – 5 ) 6 4 = ( x – 5 ) 4 · x – 5 2 4 = = x – 5 · ( x – 5 ) 2 4 = x – 5 · x – 5 2 4

Выполним сокращение показателей корня и степени на два. Обратимся к таблице результатов из статьи о преобразовании иррациональных выражений, о которой мы говорили выше. Возьмем из нее следующий результат: выражение A m n · m можно заменить на A n при условии, что m и n – натуральные числа. Следовательно,

x – 5 · x – 5 2 4 = x – 5 · x – 5

Нужно ли здесь убирать знак модуля? Посмотрим на область допустимых значений данного выражения: ее составляют все действительные числа, поскольку ( x − 5 ) 6 ≥ 0 для любого x . При этом значения x − 5 могут быть больше 0 , если x > 5 , равными 0 или отрицательными. Значит, оставляем выражение в виде x – 5 · x – 5 или представляем его в виде системы уравнений

( x – 5 ) · x – 5 , x ≥ 5 ( 5 – x ) · 5 – x , x 5

Ответ: 1 ) ( x – 5 ) 5 4 = ( x – 5 ) · x – 5 4 ; 2 ) ( x – 5 ) 6 4 = x – 5 · x – 5 .

Условие: выполните упрощение выражения x 5 + 2 · x 4 · y + x 3 · y 2 .

Решение

Выносим за скобки x 3 и получаем x 3 · ( x 2 + 2 · x · y + y 2 ) . Выражение в скобках можно представить в виде квадрата суммы: x 3 · ( x 2 + 2 · x · y + y 2 ) = x 3 · ( x + y ) 2 .

Теперь видим множители, подлежащие вынесению из-под корня: x 3 · ( x + y ) 2 = x 2 · x · ( x + y ) 2 = x · x + y · x

Также мы можем убрать знаки модуля, в которых находится x, поскольку область допустимых значений будет определена условием x 5 + 2 · x 4 · y + x 3 · y 2 ≥ 0 . Оно равносильно x 3 · ( x + y ) 2 ≥ 0 , а из него можно сделать вывод, что x ≥ 0 . У нас получилось, что x · x + y · x .

Ответ: x 5 + 2 · x 4 · y + x 3 · y 2 = x · x + y · x .

Это все, что мы хотели бы вам рассказать о вынесении множителя за знак корня. В следующей статье мы разберем обратное действие – внесение множителя под корень.

Как выносить из под корня число

Часто вынесение множителя (числа) из под знака корня может быть необходимо для совершения каких-либо арифметических операций, например, для сокращения дроби или вынесения общего множителя и дальнейшего преобразования выражения.

Давайте рассмотрим основные арифметические правила и определения, необходимые для того, чтобы понять, как вынести число из под корня.

Необходимые операции и определения

Разложение выражения на множители — это преобразование этого числа в произведение нескольких сомножителей без изменения значения исходного выражения.

Это довольно частая операция, необходимая для вынесения множителя из-под знака корня.

Для разложения на множители используются следующие приёмы:

  • Вынесение за скобки общего множителя;
  • Группировка множителей;
  • Применение формул сокращённого умножения;
  • Комбинация вышеизложенных методов.2$.

    Оба продемонстрированных выше метода можно комбинировать.

    Свойства корня

    Теперь перейдём к более детальному рассмотрению корня.

    Корнем $n$-нной степени из числа $b$ называют число, которое нужно возвести в $n$-нную степень чтобы получить число $b$:

    Процесс получения корня называется его извлечением.

    Левая часть равенства вида $sqrt[n] = m$ называется радикалом, то, что стоит непосредственно под знаком корня — подкоренным выражением, а число, стоящее слева сверху перед знаком корня называется показателем корня.

    Правая же часть равенства после знака «равно» называется корнем $n$-нной степени из числа $b$.

    Задай вопрос специалистам и получи
    ответ уже через 15 минут!

    При извлечении числа из-под корня нужно учитывать то, что в случае с корнем нечётной степени возможен лишь один ответ, математически это запишется так: $sqrt[n] = b$, тогда как в случае с извлечением корня чётной степени ответа будет два, причём один с положительным знаком, а другой с отрицательным, это записывается так: $sqrt[n]= ±b$.

    Также существует ещё одна теорема, которую нужно знать при вынесении множителя из-под знака корня:

    Для извлечения корня $n$-ой степени из произведения, моно извлечь его из каждого сомножителя отдельно, а результаты перемножить. Математически это запишется так: $sqrt[n]=sqrt[n]sqrt[n]sqrt[n]left(1
    ight)$.

    Докажем эту теорему для случая если под корнем стоит положительное число, а степень $n$ является нечётной.

    Применим эту логику к равенству $(1)$.

    Для этого возведём в степень правую часть равенства. Но для того чтобы сделать это, необходимо возвести в степень произведение, а для этого нужно возвести в степень каждый сомножитель и затем перемножить их все между собой:

    Получилось выражение, стоящее под знаком корня, а это значит, что теорема доказана.

    Правила вынесения множителя из под знака корня

    Вынесение множителя из-под знака корня $n$-ой степени — это упрощение выражения с помощью записи какого-либо множителя, являющегося частью подкоренного выражения, перед знаком корня. Например, $sqrt[6] <192>= sqrt[6] <64 cdot 3>= 2 sqrt[6]<3>$.

    Для вынесения множителей из-под знака корня необходимо показатель выносимого множителя разделить на показатель корня и разместить перед корнем этот множитель с тем показателем степени, который получится в результате этого деления:

    В частном случае, если приходится иметь дело с квадртным корнем, степень множителя, который необходимо вынести, нужно разделить на два, а сам множитель записать перед знаком корня:

    В случае если приходится иметь дело с множителем-дробью, можно извлечь по отдельности корень из числителя и знаменателя, например:

    Общий порядок вынесения множителя из под корня такой:

    1. Сначала подкоренное значение раскладывается на множители непосредственно под знаком корня, а у этих множителей выделяются показатели степени.
    2. Затем показатель степени при множителе делится на показатель корня, а сам выносимый множитель записывается слева от радикала.

    Вынесите множитель из-под знака корня в следующих выражениях:

    Так и не нашли ответ
    на свой вопрос?

    Просто напиши с чем тебе
    нужна помощь

    Квадратный корень

    Предварительные навыки

    Основные сведения

    Чтобы найти площадь квадрата, нужно длину его стороны возвести во вторую степень.

    Найдём площадь квадрата, длина стороны которого 3 см

    S = 32 = 9 см2

    Теперь решим обратную задачу. А именно, зная площадь квадрата определим длину его стороны. Для этого воспользуемся таким инструментом как кóрень. Корень бывает квадратный, кубический, а также n-й степени.

    Сейчас наш интерес вызывает квадратный корень. По другому его называют кóрнем второй степени.

    Для нахождения длины стороны нашего квадрата, нужно найти число, вторая степень которого равна 9. Таковым является число 3. Это число и является кóрнем.

    Введём для работы с корнями новые обозначения.

    Символ кóрня выглядит как . Это по причине того, что слово корень в математике употребляется как радикал. А слово радикал происходит от латинского radix (что в переводе означает корень). Первая буква слова radix это r впоследствии преобразилась в символ корня .

    Под корнем располагáют подкореннóе выражение. В нашем случае подкоренным выражением будет число 9 (площадь квадрата)

    Нас интересовал квадратный корень (он же корень второй степени), поэтому слева над корнем указываем число 2. Это число называют показателем корня (или степенью корня)

    Получили выражение, которое читается так: «квадратный корень из числа 9». С этого момента возникает новая задача по поиску самогó корня.

    Если число 3 возвести во вторую степень, то получится число 9. Поэтому число 3 и будет ответом:

    Значит квадрат площадью 9 см2 имеет сторону, длина которой 3 см. Приведённое действие называют извлечéнием квадрáтного кóрня.

    Нетрудно догадаться, что квадратным корнем из числа 9 также является отрицательное число −3. При его возведении во вторую степень тоже получается число 9

    Получается, что выражение  имеет два значения: 3 и −3. Но длина стороны квадрата не может быть отрицательным числом, поэтому для нашей задачи ответ будет только один, а именно 3.

    Вообще, квадратный корень имеет два противоположных значения: положительное и отрицательное.

    Например, извлечём квадратный корень из числа 4

    Это выражение имеет два значения: 2 и −2, поскольку при возведении этих чисел во вторую степень, получится один и тот же результат 4

    Поэтому ответ к выражению вида  записывают с плюсом и минусом. Плюс с минусом означает, что квадратный корень имеет два противоположных значения.

    Запишем ответ к выражению  с плюсом и минусом:


    Определения

    Дадим определение квадратному корню.

    Квадратным корнем из числа a называют такое число b, вторая степень которого равна a.

    То есть число b должно быть таким, чтобы выполнялось равенство ba. Число b (оно же корень) обозначается через радикал  так, что . На практике левая и правая часть поменяны местами и мы видим привычное выражение 

    Например, квадратным корнем из числá 16 есть число 4, поскольку число 4 во второй степени равно 16

    42 = 16

    Корень 4 можно обозначить через радикал  так, что .

    Также квадратным корнем из числá 16 есть число −4, поскольку число −4 во второй степени равно 16

    (−4)2 = 16

    Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.

    Арифметический квадратный корень из числá a — это неотрицательное число b (b ≥ 0), при котором выполняется равенство ba.

    В нашем примере квадратными корнями из числá 16 являются корни 4 и −4, но арифметическим из них является только корень 4.

    В разговорном языке можно использовать сокращение. К примеру, выражение  полностью читается так: «квадратный корень из числá шестнадцать», а в сокращённом варианте можно прочитать так: «корень из шестнадцати».

    Не следует путать понятия корень и квадрат. Квадрат это число, которое получилось в результате возведения какого-нибудь числá во вторую степень. Например, числа 25, 36, 49 являются квадратами, потому что они получились в результате возведения во вторую степень чисел 5, 6 и 7 соответственно.

    Корнями же являются числа 5, 6 и 7. Они являются теми числами, которые во второй степени равны 25, 36 и 49 соответственно.

    Чаще всего в квадратных корнях показатель кóрня вообще не указывается. Так, вместо записи можно использовать запись. Если в учебнике по математике встретится корень без показателя, то нужно понимать, что это квадратный корень.

    Квадратный корень из единицы равен единице. То есть справедливо следующее равенство:

    Это по причине того, что единица во второй степени равна единице:

    12 = 1

    и квадрат, состоящий из одной квадратной единицы, имеет сторону, равную единице:

    Квадратный корень из нуля равен нулю. То есть справедливо равенство , поскольку 0= 0.

    Выражение вида  смысла не имеет. Например, не имеет смысла выражение , поскольку вторая степень любого числа есть число положительное. Невозможно найти число, вторая степень которого будет равна −4.

    Если выражение вида  возвести во вторую степень, то есть если записать , то это выражение будет равно подкореннóму выражению a

    Например, выражение  равно 4

    Это потому что выражение  равно значению 2. Но это значение сразу возвóдится во вторую степень и получается результат 4.

    Еще примеры:

    Корень из квадрата числá равен модулю этого числá:

    Например, корень из числá 5, возведённого во вторую степень, равен модулю числá 5

    Если во вторую степень возвóдится отрицательное число, ответ опять же будет положительным. Например, корень из числá −5, возведённого во вторую степень, равен модулю числá −5. А модуль числа −5 равен 5

    Действительно, если не пользуясь правилом , вычислять выражение  обычным методом — сначала возвести число −5 во вторую степень, затем извлечь полученный результат, то полýчим ответ 5

    Не следует путать правило  с правилом . Правило  верно при любом a, тогда как правило  верно в том случае, если выражение  имеет смысл.

    В некоторых учебниках знак корня может выглядеть без верхней линии. Выглядит это так:

    Примеры: √4, √9, √16.

    Мéньшему числу соответствует мéньший корень, а бóльшему числу соответствует бóльший корень.

    Например, рассмотрим числа 49 и 64. Число 49 меньше, чем число 64.

    49 < 64

    Если извлечь квадратные корни из этих чисел, то числу 49 будет соответствовать меньший корень, а числу 64 — бóльший. Действительно, √49 = 7, а √64 = 8,

    √49 < √64

    Отсюда:

    7 < 8


    Примеры извлечения квадратных корней

    Рассмотрим несколько простых примеров на извлечение квадратных корней.

    Пример 1. Извлечь квадратный корень √36

    Данный квадратный корень равен числу, квадрат которого равен 36. Таковым является число 6, поскольку 6= 36

    √36 = 6


    Пример 2. Извлечь квадратный корень √49

    Данный квадратный корень равен числу, квадрат которого равен 49. Таковым является число 7, поскольку 7= 49

    √49 = 7

    В таких простых примерах достаточно знать таблицу умножения. Так, мы помним, что число 49 входит в таблицу умножения на семь. То есть:

    7 × 7 = 49

    Но 7 × 7 это 72

    7= 49

    Отсюда, √49 = 7.


    Пример 3. Извлечь квадратный корень √100

    Данный квадратный корень равен числу, квадрат которого равен 100. Таковым является число 10, поскольку 102 = 100

    √100 = 10

    Число 100 это последнее число, корень которого можно извлечь с помощью таблицы умножения. Для чисел, бóльших 100, квадратные корни можно находить с помощью таблицы квадратов.


    Пример 3. Извлечь квадратный корень √256

    Данный квадратный корень равен числу, квадрат которого равен 256. Чтобы найти это число, воспользуемся таблицей квадратов.

    Нахóдим в таблице квадратов число 256 и двигаясь от него влево и вверх определяем цифры, которые образуют число, квадрат которого равен 256.

    Видим, что это число 16. Значит √256 = 16.


    Пример 4. Найти значение выражения 2√16

    В данном примере число 2 умножается на выражение с корнем. Сначала вычислим корень √16, затем перемнóжим его с числом 2


    Пример 7. Решить уравнение 

    В данном примере нужно найти значение переменной x, при котором левая часть будет равна 4.

    Значение переменной x равно 16, поскольку . Значит корень уравнения равен 16.

    Примечание. Не следует путать корень уравнения и квадратный корень. Корень уравнения это значение переменной, при котором уравнение обращается в верное числовое равенство. А квадратный корень это число, вторая степень которого равна выражению, находящемуся под радикалом .

    Подобные примеры решают, пользуясь определением квадратного корня. Давайте и мы поступим так же.

    Из определения мы знаем, что квадратный корень  равен числу b, при котором выполняется равенство ba.

    Применим равенство ba к нашему примеру . Роль переменной b у нас играет число 4, а роль переменной a — выражение, находящееся под корнем , а именно переменная x

    В выражении 4x вычислим левую часть, полýчим 16 = x. Поменяем левую и правую часть местами, полýчим = 16. В результате приходим к тому, что нашлось значение переменной x.


    Пример 8. Решить уравнение 

    Перенесем −8 в правую часть, изменив знак:

    Возведем правую часть во вторую степень и приравняем её к переменной x

    Вычислим правую часть, полýчим 64 = x. Поменяем левую и правую часть местами, полýчим = 64. Значит корень уравнения  равен 64


    Пример 9. Решить уравнение 

    Воспользуемся определением квадратного корня:

    Роль переменной b играет число 7, а роль переменной a — подкореннóе выражение 3 + 5x. Возведем число 7 во вторую степень и приравняем его к 3 + 5x

    В выражении 72 = 3 + 5x вычислим левую часть полýчим 49 = 3 + 5x. Получилось обычное линейное уравнение. Решим его:

    Корень уравнения  равен . Выполним проверку, подставив его в исходное уравнение:


    Пример 10. Найти значение выражения 

    В этом выражении число 2 умножается на квадратный корень из числа 49.

    Сначала нужно извлечь квадратный корень и перемножить его с числом 2


    Приближённое значение квадратного корня

    Не каждый квадратный корень можно извлечь. Извлечь квадратный корень можно только в том случае, если удаётся найти число, вторая степень которого равна подкореннóму выражению.

    Например, извлечь квадратный корень  можно, потому что удаётся найти число, вторая степень которого равна подкореннóму выражению. Таковым является число 8, поскольку 8= 64. То есть

    А извлечь квадратный корень  нельзя, потому что невозможно найти число, вторая степень которого равна 3. В таком случае говорят, что квадратный корень из числа 3 не извлекается.

    Зато можно извлечь квадратный корень из числа 3 приближённо. Извлечь квадратный корень приближённо означает найти значение, которое при возведении во вторую степень будет максимально близко к подкореннóму выражению.

    Приближённое значение ищут с определенной точностью: с точностью до целых, с точностью до десятых, с точностью до сотых и так далее.

    Найдём значение корня  приближённо с точностью до десятых. Словосочетание «с точностью до десятых» говорит о том, что приближённое значение корня  будет представлять собой десятичную дробь, у которой после запятой одна цифра.

    Для начала найдём ближайшее меньшее число, корень которого можно извлечь. Таковым является число 1. Корень из этого числа равен самому этому числу:

    √1 = 1

    Аналогично находим ближайшее бóльшее число, корень которого можно извлечь. Таковым является число 4. Корень из этого числа равен 2

    √4 = 2

    √1 меньше, чем √4

    √1 < √4

    А √3 больше, чем √1 но меньше, чем √4. Запишем это в виде двойного неравенства:

    √1 < √3 < √4

    Точные значения корней √1 и √4 известны. Это числа 1 и 2

    1 < √3 < 2

    Тогда очевидно, что значение корня √3 будет представлять собой десятичную дробь, потому что между числами 1 и 2 нет целых чисел.

    Для нахождения приближённого значения квадратного корня √3 будем проверять десятичные дроби, располагающиеся в интервале от 1 до 2, возводя их в квадрат. Делать это будем до тех пор пока не полýчим значение, максимально близкое к 3. Проверим к примеру дробь 1,1

    1,12 = 1,21

    Получился результат 1,21, который не очень близок к подкореннóму выражению 3. Значит 1,1 не годится в качестве приближённого значения квадратного корня √3, потому что оно малó.

    Проверим тогда дробь 1,8

    1,82 = 3,24

    Получился результат 3,24, который близок к подкореннóму выражению, но превосходит его на 0,24. Значит 1,8 не годится в качестве приближенного значения корня √3, потому что оно великó.

    Проверим тогда дробь 1,7

    1,72 = 2,89

    Получился результат 2,89, который уже близок к подкореннóму выражению. Значит 1,7 и будет приближённым значением квадратного корня √3. Напомним, что знак приближенного значения выглядит как ≈

    √3 ≈ 1,7

    Значение 1,6 проверять не нужно, потому что в результате получится число 2,56, которое дальше от трёх, чем значение 2,89. А значение 1,8, как было показано ранее, является уже большим.

    В данном случае мы нашли приближенное значение корня √3 с точностью до десятых. Значение можно получить ещё более точно. Для этого его следует находить с точностью до сотых.

    Чтобы найти значение с точностью до сотых проверим десятичные дроби в интервале от 1,7 до 1,8

    1,7 < √3 < 1,8

    Проверим дробь 1,74

    1,742 = 3,0276

    Получился результат 3,0276, который близок к подкореннóму выражению, но превосходит его на 0,0276. Значит значение 1,74 великó для корня √3.

    Проверим тогда дробь 1,73

    1,732 = 2,9929

    Получился результат 2,9929, который близок к подкореннóму выражению √3. Значит 1,73 будет приближённым значением квадратного корня √3 с точностью до сотых.

    Процесс нахождения приближённого значения квадратного корня продолжается бесконечно. Так, корень √3 можно находить с точностью до тысячных, десятитысячных и так далее:

    √3 = 1,732 (вычислено с точностью до тысячных)

    √3 = 1,7320 (вычислено с точностью до десятитысячных)

    √3 = 1,73205 (вычислено с точностью до ста тысячных).

    Ещё квадратный корень можно извлечь с точностью до целых. Приближённое значение квадратного корня √3 с точностью до целых равно единице:

    √3 ≈ 1

    Значение 2 будет слишком большим, поскольку при возведении этого числа во вторую степень получается число 4, которое больше подкоренного выражения. Нас же интересуют значения, которые при возведении во вторую степень равны подкореннóму выражению или максимально близки к нему, но не превосходят его.

    В зависимости от решаемой задачи допускается находить значение, вторая степень которого больше подкоренного выражения. Это значение называют приближённым значением квадратного корня с избытком. Поговорим об этом подробнее.


    Приближенное значение квадратного корня с недостатком или избытком

    Иногда можно встретить задание, в котором требуется найти приближённое значение корня с недостатком или избытком.

    В предыдущей теме мы нашли приближённое значение корня √3 с точностью до десятых с недостатком. Недостаток понимается в том смысле, что до значения 3 нам недоставало ещё некоторых частей. Так, найдя приближённое значение √3 с точностью до десятых, мы получили 1,7. Это значение является значением с недостатком, поскольку при возведении этого числа во вторую степень полýчим результат 2,89. Этому результату недостаёт ещё 0,11 чтобы получить число 3. То есть, 2,89 + 0,11 = 3.

    С избытком же называют приближённые значения, которые при возведении во вторую степень дают результат, который превосходит подкореннóе выражение. Так, вычисляя корень √3 приближённо, мы проверили значение 1,8. Это значение является приближённым значением корня √3 с точностью до десятых с избытком, поскольку при возведении 1,8 во вторую степень, получаем число 3,24. Этот результат превосходит подкореннóе выражение на 0,24. То есть 3,24 − 3 = 0,24.

    Приближённое значение квадратного корня √3 с точностью до целых тоже был найден с недостатком:

    √3 ≈ 1

    Это потому что при возведении единицы в квадрат получаем единицу. То есть до числа 3 недостаёт ещё 2.

    Приближённое значение квадратного корня √3 с точностью до целых можно найти и с избытком. Тогда этот корень приближённо будет равен 2

    √3 ≈ 2

    Это потому что при возведении числа 2 в квадрат получаем 4. Число 4 превосходит подкореннóе выражение 3 на единицу. Извлекая приближённо квадратный корень с избытком желательно уточнять, что корень извлечен именно с избытком:

    √3 ≈ 2 (с избытком)

    Потому что приближённое значение чаще всего ищется с недостатком, чем с избытком.

    Дополнительно следует упомянуть, что в некоторых учебниках словосочетания «с точностью до целых», «с точностью до десятых», с «точностью до сотых», заменяют на словосочетания «с точностью до 1», «с точностью до 0,1», «с точностью до 0,01» соответственно.

    Так, если в задании сказано извлечь квадратный корень из числа 5 с точностью до 0,01, то это значит что корень следует извлекать приближённо с точностью до сотых:

    √5 ≈ 2,23


    Пример 2. Извлечь квадратный корень из числа 51 с точностью до 1

    √51 ≈ 7


    Пример 3. Извлечь квадратный корень из числа 51 с точностью до 0,1

    √51 ≈ 7,1

    Пример 4. Извлечь квадратный корень из числа 51 с точностью до 0,01

    √51 ≈ 7,14


    Границы, в пределах которых располагаются корни

    Если исходное число принадлежит промежутку [1; 100], то квадратный корень из этого исходного числа будет принадлежать промежутку [1; 10].

    Например, пусть исходным числом будет 64. Данное число принадлежит промежутку [1; 100]. Сразу делаем вывод, что квадратный корень из числа 64 будет принадлежать промежутку [1; 10]. Теперь вспоминаем таблицу умножения. Какое перемножение двух одинаковых сомножителей даёт в результате 64? Ясно, что перемножение 8 × 8, а это есть 8= 64. Значит квадратный корень из числа 64 есть 8


    Пример 2. Извлечь квадратный корень из числа 49

    Число 49 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 7, поскольку 7= 49

    √49 = 7


    Пример 2. Извлечь квадратный корень из числа 1

    Число 1 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 1, поскольку 1= 1

    √1 = 1


    Пример 3. Извлечь квадратный корень из числа 100

    Число 100 принадлежит промежутку [1; 100]. Значит квадратный корень будет принадлежать промежутку [1; 10]. Этим корнем будет число 10, поскольку 10= 100

    √100 = 10

    Понятно, что промежуток [1; 100] содержит ещё и числа, квадратные корни из которых не извлекаются. Для таких чисел корень нужно извлекать приближённо. Тем не менее, приближённый корень тоже будет располагаться в пределах промежутка [1; 10].

    Например, извлечём квадратный корень из числа 37. Нет целого числа, вторая степень которого была бы равна 37. Поэтому извлекать квадратный корень следует приближённо. Извлечём его к примеру с точностью до сотых:

    √37 ≈ 6,08

    Для облегчения можно находить ближайшее меньшее число, корень из которого извлекается. Таковым в данном примере было число 36. Квадратный корень из него равен 6. И далее отталкиваясь от числа 6, можно находить приближённое значение корня √37, проверяя различные десятичные дроби, целая часть которых равна 6.

    Квадраты чисел от 1 до 10 обязательно нужно знать наизусть. Ниже представлены эти квадраты:

    12 = 1
    22 = 4
    32 = 9
    42 = 16
    52 = 25
    62 = 36
    72 = 49
    82 = 64
    92 = 81
    102 = 100

    И обратно, следует знать значения квадратных корней этих квадратов:

    Если к любому числу от 1 до 10 в конце дописать ноль (или несколько нулей), и затем возвести это число во вторую степень, то в полученном числе будет в два раза больше нулей.

    Например, 6= 36. Допишем к числу 6 один ноль, полýчим 60. Возведём число 60 во вторую степень, полýчим 3600

    60= 3600

    А если к числу 6 дописать два нуля, и возвести это число во вторую степень, то полýчим число, в котором четыре нуля. То есть в два раза больше нулей:

    6002 = 360000

    Тогда можно сделать следующий вывод:

    Если исходное число содержит знакомый нам квадрат и чётное количество нулей, то можно извлечь квадратный корень из этого числа. Для этого следует извлечь корень из знакомого нам квадрата и затем записать половину количества нулей из исходного числа.

    Например, извлечём квадратный корень из числа 900. Видим, что в данном числе есть знакомый нам квадрат 9. Извлекаем из него корень, получаем 3

    Теперь из исходного числа записываем половину от количества нулей. В исходном числе 900 содержится два нуля. Половина этого количества нулей есть один ноль. Записываем его в ответе после цифры 3


    Пример 2. Извлечём квадратный корень из числа 90000

    Здесь опять же имеется знакомый нам квадрат 9 и чётное количество нулей. Извлекаем корень из числа 9 и записываем половину от количества нулей. В исходном числе содержится четыре нуля. Половиной же этого количества нулей будет два нуля:


    Пример 3. Извлечем квадратный корень из числа 36000000

    Здесь имеется знакомый нам квадрат 36 и чётное количество нулей. Извлекаем корень из числа 36 и записываем половину от количества нулей. В исходном числе шесть нулей. Половиной же будет три нуля:


    Пример 4. Извлечем квадратный корень из числа 2500

    Здесь имеется знакомый нам квадрат 25 и чётное количество нулей. Извлекаем корень из числа 25 и записываем половину от количества нулей. В исходном числе два нуля. Половиной же будет один ноль:


    Если подкореннóе число увеличить (или уменьшить) в 100, 10000 то корень увеличится (или уменьшится) в 10, 100 раз соответственно.

    Например, . Если увеличим подкореннóе число в 100 раз, то квадратный корень увеличится в 10 раз:

    И наоборот, если в равенстве  уменьшим подкореннóе число в 100 раз, то квадратный корень уменьшится в 10 раз:

    Пример 2. Увеличим в равенстве  подкореннóе число в 10000, тогда квадратный корень 70 увеличиться в 100 раз

    Пример 3. Уменьшим в равенстве  подкореннóе число в 100 раз, тогда квадратный корень 70 уменьшится в 10 раз

    Эта закономерность позволяет извлечь квадратный корень из десятичной дроби, если в данной дроби после запятой содéржатся две цифры, и эти две цифры образуют знакомый нам квадрат. В таких случаях данную десятичную дробь следует умножить на 100. Затем извлечь квадратный корень из получившегося числа и уменьшить подкореннóе число в сто раз.

    Например, извлечём квадратный корень из числа 0,25. В данной десятичной дроби после запятой содержатся две цифры и эти две цифры образуют знакомый нам квадрат 25.

    Умнóжим десятичную дробь 0,25 на 100, полýчим 25. А из числа 25 квадратный корень извлекается легко:

    Но нам изначально нужно было извлечь корень из 0,25, а не из 25. Чтобы исправить ситуацию, вернём нашу десятичную дробь. Если в равенстве  подкореннóе число уменьшить в 100 раз, то полýчим под корнем 0,25 и соответственно ответ уменьшится в 10 раз:

    Обычно в таких случаях достаточно уметь передвигáть запятую. Потому что сдвинуть в числе запятую вправо на две цифры это всё равно что умножить это число на 100.

    В предыдущем примере в подкоренном числе 0,25 можно было сдвинуть запятую вправо на две цифры, а в полученном ответе сдвинуть её влево на одну цифру.

    Например, извлечем корень из числа 0,81. Мысленно передвинем запятую вправо на две цифры, полýчим 81. Теперь извлечём квадратный корень из числа 81, полýчим ответ 9. В ответе 9 передвинем запятую влево на одну цифру, полýчим 0,9. Значит, .

    Это правило работает и в ситуации, когда после запятой содержатся четыре цифры и эти цифры образуют знакомый нам квадрат.

    Например, десятичная дробь 0,1225 содержит после запятой четыре цифры. Эти четыре цифры образуют число 1225, квадратный корень из которого равен 35.

    Тогда можно извлечь квадратный корень и из 0,1225. Умнóжим данную десятичную дробь на 10000, полýчим 1225. Из числа 1225 квадратный корень можно извлечь с помощью таблицы квадратов:

    Но нам изначально нужно было извлечь корень из 0,1225, а не из 1225. Чтобы исправить ситуацию, в равенстве  подкореннóе число уменьшим в 10000 раз. В результате под корнем образуется десятичная дробь 0,1225, а правая часть уменьшится в 100 раз

    Эта же закономерность будет работать и при извлечении корней из дробей вида 12,25. Если цифры из которых состоит десятичная дробь образуют знакомый нам квадрат, при этом после запятой содержится чётное количество цифр, то можно извлечь корень из этой десятичной дроби.

    Умнóжим десятичную дробь 12,25 на 100, полýчим 1225. Извлечём корень из числа 1225

    Теперь в равенстве уменьшим подкореннóе число в 100 раз. В результате под корнем образуется число 12,25, и соответственно ответ уменьшится в 10 раз


    Если исходное число принадлежит промежутку [100; 10000], то квадратный корень из этого исходного числа будет принадлежать промежутку [10; 100].

    В этом случае применяется таблица квадратов:

    Например, пусть исходным числом будет 576. Данное число принадлежит промежутку [100; 10000]. Сразу делаем вывод, что квадратный корень из числа 576 будет принадлежать промежутку [10; 100]. Теперь открываем таблицу квадратов и смотрим какое число во второй степени равно 576

    Видим, что это число 24. Значит .


    Пример 2. Извлечь квадратный корень из числа 432.

    Число 432 принадлежит промежутку [100; 10000]. Значит квадратный корень следует искать в промежутке [10; 100]. Открываем таблицу квадратов и смотрим какое число во второй степени равно 432. Обнаруживаем, что число 432 в таблице квадратов отсутствует. В этом случае квадратный корень следует искать приближённо.

    Извлечем квадратный корень из числа 432 с точностью до десятых.

    В таблице квадратов ближайшее меньшее число к 432 это число 400. Квадратный корень из него равен 20. Отталкиваясь от числа 20, будем проверять различные десятичные дроби, целая часть которых равна 20.

    Проверим, например, число 20,8. Для этого возведём его в квадрат:

    20,82 = 432,64

    Получилось число 432,64 которое превосходит исходное число 432 на 0,64. Видим, что значение 20,8 великó для корня √432. Проверим тогда значение 20,7

    20,7= 428,49

    Значение 20,7 годится в качестве корня, поскольку в результате возведения этого числа в квадрат получается число 428,49, которое меньше исходного числа 432, но близко к нему. Значит √432 ≈ 20,7.

    Необязательно запоминать промежутки чтобы узнать в каких границах располагается корень. Можно воспользоваться методом нахождения ближайших квадратов с чётным количеством нулей на конце.

    Например, извлечём корень из числа 4225. Нам известен ближайший меньший квадрат 3600, и ближайший больший квадрат 4900

    3600 < 4225 < 4900

    Извлечём квадратные корни из чисел 3600 и 4900. Это числа 60 и 70 соответственно:

    Тогда можно понять, что квадратный корень из числа 4225 располагается между числами 60 и 70. Можно даже найти его методом подбора. Корни 60 и 70 исключаем сразу, поскольку это корни чисел 3600 и 4900. Затем можно проверить, например, корень 64. Возведём его в квадрат (или умнóжим данное число само на себя)

    Корень 64 не годится. Проверим корень 65

    Получается 4225. Значит 65 является корнем числа 4225


    Тождественные преобразования с квадратными корнями

    Над квадратными корнями можно выполнять различные тождественные преобразования, тем самым облегчая их вычисление. Рассмотрим некоторые из этих преобразований.

    Квадратный корень из произведения

    Квадратный корень из произведения это выражение вида , где a и b некоторые числа.

    Например, выражение  является квадратным корнем из произведения чисел 4 и 9.

    Чтобы извлечь такой квадратный корень, нужно по отдельности извлечь квадратные корни из множителей 4 и 9, представив выражение  в виде произведения корней . Вычислив по отдельности эти корни полýчим произведение 2 × 3, которое равно 6

    Конечно, можно не прибегать к таким манипуляциям, а вычислить сначала подкореннóе выражение 4 × 9, которое равно 36. Затем извлечь квадратный корень из числа 36

    Но при извлечении квадратных корней из больших чисел это правило может оказаться весьма полезным.

    Допустим, потребовалось извлечь квадратный корень из числа 144. Этот корень легко определяется с помощью таблицы квадратов — он равен 12

    Но предстáвим, что таблицы квадратов под рукой не оказалось. В этом случае число 144 можно разложить на простые множители. Затем из этих простых множителей составить числа, квадратные корни из которых извлекаются.

    Итак, разлóжим число 144 на простые множители:

    Получили следующее разложение:

    В разложéнии содержатся четыре двойки и две тройки. При этом все числа, входящие в разложение, перемнóжены. Это позволяет предстáвить произведения одинаковых сомножителей в виде степени с показателем 2.

    Тогда четыре двойки можно заменить на запись 2× 22, а две тройки заменить на 32

    В результате будем иметь следующее разложение:

    Теперь можно извлекáть квадратный корень из разложения числа 144

    Применим правило извлечения квадратного корня из произведения:

    Ранее было сказано, что если подкореннóе выражение возведенó во вторую степень, то такой квадратный корень равен модулю из подкореннóго выражения.

    Тогда получится произведение 2 × 2 × 3, которое равно 12

    Простые множители представляют в виде степени для удобства и короткой записи. Допускается также записывать их под кóрнем как есть, чтобы впоследствии перемнóжив их, получить новые сомножители.

    Так, разложив число 144 на простые множители, мы получили разложение 2 × 2 × 2 × 2 × 3 × 3. Это разложение можно записать под кóрнем как есть:

    затем перемнóжить некоторые сомножители так, чтобы получились числа, квадратные корни из которых извлекаются. В данном случае можно дважды перемнóжить две двойки и один раз перемнóжить две тройки:

    Затем применить правило извлечения квадратного корня из произведения и получить окончательный ответ:

    С помощью правила извлечения квадратного корня из произведения можно извлекать корень и из других больших чисел. В том числе, из тех чисел, которых нет в таблице квадратов.

    Например, извлечём квадратный корень из числа 13456. Этого числа нет в таблице квадратов, поэтому воспользуемся правилом извлечения квадратного корня из произведения, предварительно разложив число 13456 на простые множители.

    Итак, разложим число 13456 на простые множители:

    В разложении имеются четыре двойки и два числа 29. Двойки дважды предстáвим как 22. А два числа 29 предстáвим как 292. В результате полýчим следующее разложение числа 13456

    Теперь будем извлекать квадратный корень из разложения числа 13456

    Итак, если ≥ 0 и ≥ 0, то . То есть корень из произведения неотрицательных множителей равен произведению корней из этих множителей.

    Докажем равенство . Для этого воспользуемся определением квадратного корня.

    Согласно определению, квадратным корня из числа a есть число b, при котором выполняется равенство b= a.

    В нашем случае нужно удостовериться, что правая часть равенства  при возведении во вторую степень даст в результате подкореннóе выражение левой части, то есть выражение ab.

    Итак, выпишем правую часть равенства  и возведём ее во вторую степень:

    Теперь воспользуемся правилом возведения в степень произведения. Согласно этому правилу, каждый множитель данного произведения нужно возвести в указанную степень:

    Ранее было сказано, что если выражение вида  возвести во вторую степень, то получится подкореннóе выражение. Применим это правило. Тогда полýчим ab. А это есть подкореннóе выражение квадратного корня

    Значит равенство  справедливо, поскольку при возведéнии правой части во вторую степень, получается подкореннóе выражение левой части.

    Правило извлечения квадратного корня из произведения работает и в случае, если под кóрнем располагается более двух множителей. То есть справедливым будет следующее равенство:

    , при ≥ 0 и ≥ 0, ≥ 0.


    Пример 1. Найти значение квадратного корня 

    Запишем корень в виде произведения корней, извлечём их, затем найдём значение полученного произведения:


    Пример 2. Найти значение квадратного корня 

    Предстáвим число 250 в виде произведения чисел 25 и 10. Делать это будем под знáком корня:

    Теперь под кóрнем образовалось два одинаковых множителя 10 и 10. Перемнóжим их, полýчим 100

    Далее применяем правило извлечения квадратного кóрня из произведения и получáем окончательный ответ:


    Пример 3. Найти значение квадратного корня 

    Воспользуемся правилом возведения степени в степень. Степень 114 предстáвим как (112)2.

    Теперь воспользуемся правилом извлечения квадратного кóрня из квадрата числа:

    В нашем случае квадратный корень из числа (112)2 будет равен 112. Говоря простым языком, внешний показатель степени 2 исчезнет, а внутренний останется:

    Далее возводим число 11 во вторую степень и получаем окончательный ответ:

    Этот пример также можно решить, воспользовавшись правилом извлечения квадратного корня из произведения. Для этого подкореннóе выражение 114 нужно записать в виде произведения 11× 112. Затем извлечь квадратный корень из этого произведения:


    Пример 4. Найти значение квадратного корня

    Перепишем степень 34 в виде (32)2, а степень 56 в виде (53)2

    Далее используем правило извлечения квадратного кóрня из произведения:

    Далее используем правило извлечения квадратного кóрня из квадрата числа:

    Вычислим произведение получившихся степеней и полýчим окончательный ответ:


    Сомножители, находящиеся под корнем, могут быть десятичными дробями. Например, извлечём квадратный корень из произведения

    Запишем корень  в виде произведения корней, извлечём их, затем найдём значение полученного произведения:


    Пример 6. Найти значение квадратного корня


    Пример 7. Найти значение квадратного корня


    Если первый сомножитель умножить на число n, а второй сомножитель разделить на это число n, то произведение не изменится.

    Например, произведение 8 × 4 равно 32

    8 × 4 = 32

    Умнóжим сомножитель 8 скажем на число 2, а сомножитель 4 раздéлим на это же число 2. Тогда получится произведение 16 × 2, которое тоже равно 32.

    (8 × 2) × (4 : 2) = 32

    Это свойство полезно при решении некоторых задач на извлечение квадратных корней. Сомножители подкореннóго выражения можно умнóжить и разделить так, чтобы корни из них извлекались.

    Например, извлечём квадратный корень из произведения . Если сразу воспользоваться правилом извлечения квадратного корня из произведения, то не полýчится извлечь корни √1,6 и √90, потому что они не извлекаются.

    Проанализировав подкореннóе выражение 1,6 × 90, можно заметить, что если первый сомножитель 1,6 умножить на 10, а второй сомножитель 90 разделить на 10, то полýчится произведение 16 × 9. Из такого произведения квадратный корень можно извлечь, пользуясь правилом извлечения квадратного корня из произведения.

    Запишем полное решение данного примера:

    Процесс умножения и деления можно выполнять в уме. Также можно пропустить подробную запись извлечения квадратного корня из каждого сомножителя. Тогда решение станóвится короче:


    Пример 9. Найти значение квадратного корня

    Умнóжим первый сомножитель на 10, а второй раздéлим на 10. Тогда под кóрнем образуется произведение 36 × 0,04, квадратный корень из которого извлекается:


    Если в равенстве поменять местами левую и правую часть, то полýчим равенство . Это преобразовáние позволяет упрощáть вычисление некоторых корней.

    Например, узнáем чему равно значение выражения .

    Квадратные корни из чисел 10 и 40 не извлекаются. Воспользуемся правилом , то есть заменим выражение из двух корней  на выражение с одним корнем, под которым будет произведение из чисел 10 и 40

    Теперь найдём значение произведения, находящегося под корнем:

    А квадратный корень из числа 400 извлекается. Он равен 20

    Сомножители, располагáющиеся под корнем, можно расклáдывать на множители, группировáть, представлять в виде степени, а также перемножáть для получения новых сомножителей, корни из которых извлекаются.

    Например, найдём значение выражения .

    Воспользуемся правилом

    Сомножитель 32 это 25. Предстáвим этот сомножитель как 2 × 24

    Перемнóжим сомножители 2 и 2, полýчим 4. А сомножитель 24 предстáвим в виде степени с показателем 2

    Теперь воспóльзуемся правилом и вычислим окончательный ответ:


    Пример 12. Найти значение выражения

    Воспользуемся правилом

    Сомножитель 8 это 2 × 2 × 2, а сомножитель 98 это 2 × 7 × 7

    Теперь под кóрнем имеются четыре двойки и две семёрки. Четыре двойки можно записать как 2× 22, а две семёрки как 72

    Теперь воспользуемся правилом и вычислим окончательный ответ:


    Квадратный корень из дроби

    Квадратный корень вида равен дроби, в числителе которой квадратный корень из числа a, а в знаменателе — квадратный корень из числа b

    Например, квадратный корень из дроби  равен дроби, в числителе которой квадратный корень из числа 4, а в знаменателе — квадратный корень из числа 9

    Вычислим квадратные корни в числителе и знаменателе:

    Значит, квадратный корень из дроби равен .

    Докáжем, что равенство является верным.

    Возведём правую часть во вторую степень. Если в результате полýчим дробь , то это будет означать, что равенство верно:


    Пример 1. Извлечь квадратный корень 

    Воспользуемся правилом извлечения квадратного корня из дроби:


    Пример 2. Извлечь квадратный корень 

    Переведём подкореннóе выражение в неправильную дробь, затем воспользуемся правилом извлечения квадратного корня из дроби:


    Пример 3. Извлечь квадратный корень

    Квадратным корнем из числа 0,09 является 0,3. Но можно извлечь этот корень, воспользовавшись правилом извлечения квадратного корня из дроби.

    Предстáвим подкоренное выражение в виде обыкновенной дроби. 0,09 это девять сотых:

    Теперь можно воспользоваться правилом извлечения квадратного корня из дроби:


    Пример 4. Найти значение выражения 

    Извлечём корни из 0,09 и 0,25, затем сложим полученные результаты:

    Также можно воспользоваться правилом извлечения квадратного корня из дроби:

    В данном примере первый способ оказался проще и удобнее.


    Пример 5. Найти значение выражения 

    Сначала вычислим квадратный корень, затем перемнóжим его с 10. Получившийся результат вычтем из 4


    Пример 6. Найти значение выражения 

    Сначала найдём значение квадратного корня . Он равен 0,6 поскольку 0,6= 0,36

    Теперь вычислим получившееся выражение. Согласно порядку действий, сначала надо выполнить умножение, затем сложение:


    Вынесение множителя из-под знака корня

    В некоторых задачах может быть полезным вынесение множителя из-под знака корня.

    Рассмотрим квадратный корень из произведения . Согласно правилу извлечения квадратного корня из произведения, нужно извлечь квадратный корень из каждого множителя данного произведения:

    В нашем примере квадратный корень извлекается только из множителя 4. Его мы извлечём, а выражение  оставим без изменений:

    Это и есть вынесение множителя из-под знака корня.

    На практике подкореннóе выражение чаще всего требуется разложить на множители.


    Пример 2. Вынести множитель из-под знака корня в выражении

    Разлóжим подкореннóе выражение на множители 9 и 2. Тогда полýчим:

    Теперь воспользуемся правило извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 9. Множитель 2 остáвим под кóрнем:


    Пример 3. Вынести множитель из-под знака корня в выражении

    Разлóжим подкореннóе выражение на множители 121 и 3. Тогда полýчим:

    Теперь воспользуемся правилом извлечения квадратного корня из произведения. Извлечь можно только корень из множителя 121. Выражение √3 остáвим под корнем:


    Пример 4. Вынести множитель из-под знака корня в выражении

    Воспользуемся правилом извлечения квадратного корня из произведения:

    Квадратный корень извлекается только из числа 121. Извлечём его, а выражение √15 оставим без изменений:

    Получается, что множитель 11 вынесен из-под знака корня. Вынесенный множитель принято записывать до выражения с корнем. Поменяем выражения √15 и 11 местами:


    Пример 5. Вынести множитель из-под знака корня в выражении

    Разлóжим подкореннóе выражение на множители 4 и 3

    Воспользуемся правилом извлечения квадратного корня из произведения:

    Извлечём корень из числа 4, а выражение √3 остáвим без изменений:


    Пример 6. Упростить выражение 

    Предстáвим второе слагаемое в виде . А третье слагаемое предстáвим в виде

    Теперь в выражениях и вынесем множитель из-под знака корня:

    Во втором слагаемом перемнóжим числа −4 и 4. Остальное перепишем без изменений:

    Замечáем, что получившемся выражении квадратный корень √3 является общим множителем. Вынесем его за скобки:

    Вычислим содержимое скобок, полýчим −1

    Если множителем является −1, то записывают только минус. Единица опускается. Тогда полýчим окончательный ответ −√3


    Внесение множителя под знак корня

    Рассмотрим следующее выражение:

    В этом выражении число 5 умнóжено на квадратный корень из числа 9. Найдём значение этого выражения.

    Сначала извлечём квадратный корень, затем перемнóжим его с числом 5.

    Квадратный корень из 9 равен 3. Перемнóжим его с числом 5. Тогда полýчим 15

    Число 5 в данном случае было множителем. Внесём этот множитель под знак корня. Но сделать это нужно таким образом, чтобы в результате наших действий значение исходного выражения не изменилось. Проще говоря, после внесения множителя 5 под знак корня, получившееся выражение по-прежнему должно быть равно 15.

    Значение выражения не изменится, если число 5 возвести во вторую степень и только тогда внести его под корень:

    Итак, если данó выражение , и нужно внести множитель a под знак корня, то надо возвести во вторую степень множитель a и внести его под корень:

    Пример 1. Внести множитель под знак корня в выражении

    Возведём число 7 во вторую степень и внесём его под знак корня:


    Пример 2. Внести множитель под знак корня в выражении 

    Возведём число 10 во вторую степень и внесем его под знак корня:


    Пример 3. Внести множитель под знак корня в выражении 

    Вносить под знак корня можно только положительный множитель. Ранее было сказано, что выражение вида  не имеет смысла.

    Однако, если перед знаком кóрня располагается отрицательный множитель, то минус можно оставить за знáком корня, а самó число внести под знак корня.

    Пример 4. Внести множитель по знак корня в выражении 

    В этом примере под знак корня внóсится только 3. Минус остаётся за знáком корня:


    Пример 5. Выполнить возведéние в степень в следующем выражении:

    Воспользуемся формулой квадрата суммы двух выражений:

    (a + b)2 = a+ 2ab + b2

    Роль переменной a в данном случае играет выражение √3, роль переменной b — выражение √2. Тогда полýчим:

    Теперь необходимо упростить получившееся выражение.

    Для выражений и  применим правило . Ранее мы говорили, что если выражение вида  возвести во вторую степень, то это выражение будет равно подкореннóму выражению a.

    А в выражении для множителей и применим правило . То есть заменим произведение корней на один общий корень:

    Приведём подобные слагаемые. В данном случае можно сложить слагаемые 3 и 2. А в слагаемом вычислить произведение, которое под кóрнем:


     

    Задания для самостоятельного решения

    Задание 1. Найдите значение квадратного корня:

    Решение:

    Задание 2. Найдите значение квадратного корня:

    Решение:

    Задание 3. Найдите значение квадратного корня:

    Решение:

    Задание 4. Найдите значение выражения:

    Решение:

    Задание 5. Найдите значение квадратного корня:

    Решение:

    Задание 6. Найдите значение квадратного корня:

    Решение:

    Задание 7. Найдите значение квадратного корня:

    Решение:

    Задание 8. Найдите значения следующих выражений:

    Решение:

    Задание 9. Извлеките квадратный корень из числа 4624

    Решение:

    Задание 10. Извлеките квадратный корень из числа 11025

    Решение:

    Задание 11. Найдите значение квадратного корня:

    Решение:

    Задание 12. Найдите значение квадратного корня:

    Решение:

    Задание 13. Найдите значение квадратного корня:

    Решение:

    Задание 14. Найдите значение квадратного корня:

    Решение:

    Задание 15. Найдите значение квадратного корня:

    Решение:

    Задание 16. Найдите значение выражения:

    Решение:

    Задание 17. Найдите значение выражения:

    Решение:

    Задание 18. Найдите значение выражения:

    Решение:

    Задание 19. Найдите значение выражения:

    Решение:

    Задание 20. Найдите значение выражения:

    Решение:

    Задание 21. Найдите значение выражения:

    Решение:

    Задание 22. Найдите значение выражения:

    Решение:

    Задание 23. Найдите значение выражения:

    Решение:

    Задание 24. Найдите значение выражения:

    Решение:

    Задание 25. Найдите значение выражения:

    Решение:

    Задание 26. Найдите значение выражения:

    Решение:

    Задание 27. Найдите значение выражения:

    Решение:

    Задание 28. Найдите значение выражения:

    Решение:

    Задание 29. Найдите значение выражения:

    Решение:

    Задание 30. Найдите значение выражения:

    Решение:

    Задание 31. Найдите значение выражения:

    Решение:

    Задание 32. Найдите значение выражения:

    Решение:

    Задание 33. Найдите значение выражения:

    Решение:

    Задание 34. Вынести множитель из-под знака корня:

    Решение:

    Задание 35. Вынести множитель из-под знака корня:

    Решение:

    Задание 36. Вынести множитель из-под знака корня:

    Решение:

    Задание 37. Вынести множитель из-под знака корня:

    Решение:

    Задание 38. Вынести множитель из-под знака корня:

    Решение:

    Задание 39. Вынести множитель из-под знака корня:

    Решение:

    Задание 40. Вынести множитель из-под знака корня:

    Решение:

    Задание 41. Вынести множитель из-под знака корня:

    Решение:

    Задание 42. Вынести множитель из-под знака корня:

    Решение:

    Задание 43. Вынести множитель из-под знака корня:

    Решение:

    Задание 44. Вынести множитель из-под знака корня в следующих выражениях:

    Решение:

    Задание 45. Внести множитель под знак корня:

    Решение:

    Задание 46. Внести множитель под знак корня:

    Решение:

    Задание 47. Внести множитель под знак корня:

    Решение:

    Задание 48. Внести множитель под знак корня:

    Решение:

    Задание 49. Внести множитель под знак корня:

    Решение:

    Задание 50. Внести множитель под знак корня в следующих выражениях:

    Решение:

    Задание 51. Упростить выражение:

    Решение:

    Задание 52. Упростить выражение:

    Решение:

    Задание 53. Упростить выражение:

    Решение:

    Задание 54. Упростить выражение:

    Решение:

    Задание 55. Упростить выражение:

    Решение:

    Задание 56. Упростить выражение:

    Решение:

    Задание 57. Упростить выражение:

    Решение:

    Задание 58. Упростить выражение:

    Решение:

    Задание 59. Упростить выражение:

    Решение:

    Задание 60. Упростить выражение:

    Решение:


    Понравился урок?
    Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках



    Возникло желание поддержать проект?
    Используй кнопку ниже

    Навигация по записям

    Арифметический квадратный корень. Вынесение, внесение множителя под знак корня

    Математика->Модуль числа. Корень числа->квадратный корень->

    Тестирование онлайн

    • Квадратный корень. Вычисления

    • Квадратный корень. Вычисления (часть 2)

    • Квадратный корень. Алгебраические выражения и преобразования

    • Квадратный корень. Алгебраические выражения и преобразования (часть 2)

    • Квадратный корень. Алгебраические выражения и преобразования (часть 3)

    • Тождество

    • Вынесение множителя из-под знака квадратного корня

    • Внесение множителя под знак квадратного корня

    • Значение переменной в выражении с квадратным корнем

    • Вынесение и внесение множителя (средний уровень)

    • Алгебраические преобразования с квадратным корнем (выше среднего)

    • Алгебраические преобразования, вычисление. Повторение (выше среднего)

    Арифметический квадратный корень

    Обозначение знака квадратного арифметического корня , подразумеваем , но «2» не пишется.

    Неотрицательный квадратный корень из числа a называется арифметическим квадратным корнем из числа a. Например,

    Выражения не имеют смысла!

    Тождество

    При любом значении a имеет место равенство

    Согласно определению модуля
    получим

    Вынесение и внесения множителя под знак корня

    При любом значении a и при любом положительном значении b верно равенство

    Обратное равенство имеет вид

    Среднее арифметическое и среднее геометрическое чисел

    Средним арифметическим двух чисел a и b называется выражение

    Средним геометрическим двух неотрицательных чисел a и b называется выражение

    Среднее арифметическое неотрицательных чисел a и b не меньше их среднего геометрического.

    Если среднее арифметическое двух неотрицательных чисел равно их среднему геометрическому, то эти числа равны.

    Как найти квадратный корень из числа и вычислить его вручную

    Иногда, в повседневных ситуациях, мы можем столкнуться с задачей вычислить квадратный корень из числа. Что делать, если под рукой нет калькулятора или смартфона? Можем ли мы использовать старомодную бумагу и карандаш, чтобы сделать это в стиле длинного деления?

    Да, мы можем, и есть несколько разных методов. Некоторые из них сложнее других. Некоторые дают более точные результаты.

    Тот, которым я хочу с вами поделиться, является одним из них.Чтобы сделать эту статью более удобной для читателя, каждый шаг снабжен иллюстрациями.

    ШАГ 1: Разделите цифры на пары

    Для начала организуем рабочее пространство. Разделим пространство на три части. Затем давайте разделим цифры числа на пары, двигаясь справа налево.

    Например, число 7 469,17 становится 74 69. 17 . Или в случае числа с нечетным количеством цифр, например 19 036, мы начнем с 1 90 36 .

    В нашем случае 2,025 превращается в 20 25 .

    ШАГ 2: Найдите наибольшее целое число

    В качестве следующего шага нам нужно найти наибольшее целое число (i), квадрат которого меньше или равен крайнему левому числу.

    В нашем текущем примере крайнее левое число — 20. Поскольку 4² = 16 <= 20 и 5² = 25> 20, рассматриваемое целое число равно 4. Давайте поместим 4 в правый верхний угол и 4² = 16 в правый нижний. один.

    ШАГ 3: Теперь вычтите это целое число

    Теперь нам нужно вычесть квадрат этого целого числа (которое равно 16) из крайнего левого числа (которое равно 20).Результат равен 4, и мы запишем его, как показано выше.

    ШАГ 4: Переходим к следующей паре

    Теперь давайте перейдем к следующей паре в нашем номере (это 25). Мы пишем его рядом с уже имеющимся вычитаемым значением (а это 4).

    Теперь умножьте число в правом верхнем углу (которое также равно 4) на 2. В результате получится 8, и мы запишем его в правом нижнем углу, а затем _ x _ =

    ШАГ 5: Найдите нужное Match

    Время, чтобы заполнить каждое пустое пространство одним и тем же целым числом (i).Это должно быть максимально возможное целое число, при котором произведение должно быть меньше или равно числу слева.

    Например, если мы выберем число 6, первое число станет 86 (8 и 6), и мы должны также умножить его на 6. Результат 516 больше 425, поэтому мы опускаемся ниже и пробуем 5. Число 8 а число 5 дает нам 85. 85 умноженное на 5 дает 425, что как раз то, что нам нужно.

    Напишите 5 рядом с 4 в правом верхнем углу. Это вторая цифра в корне.

    ШАГ 6: Снова вычесть

    Вычтите полученный результат (425) из текущего числа слева (также 425).Результат равен нулю, что означает, что задача выполнена.

    Примечание: Я специально выбрал идеальный квадрат (2025 = 45 x 45). Таким образом, я мог показать правила решения задач извлечения квадратного корня.

    На самом деле числа состоят из многих цифр, в том числе и после десятичной точки. В этом случае мы повторяем шаги 4, 5 и 6, пока не достигнем желаемой точности.

    Следующий пример объясняет, что я имею в виду.

    ПРИМЕР: Копаем глубже …

    На этот раз число состоит из нечетного числа цифр, включая единицы после десятичной точки.

    Как мы видели в этом примере, процесс может повторяться несколько раз для достижения желаемого уровня точности.

    чисел — квадратные корни — глубина

    Многие математические
    операции имеют обратную или противоположную операцию. Вычитание противоположное
    сложения, деление — это обратное умножение и т. д. Квадрат,
    о котором мы узнали на предыдущем уроке (экспоненты),
    есть и обратное, называемое «нахождение квадратного корня».»Помните,
    квадрат числа — это число, умноженное на само число. Идеальные квадраты — это
    квадраты целых чисел: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100

    Квадратный корень
    числа, n, написано

    это число, которое дает n при умножении на себя. Например,

    потому что
    10 х 10 = 100

    Примеры

    Вот
    квадратные корни из всех полных квадратов от 1 до 100.

    В поисках квадрата
    корни чисел, которые не являются точными квадратами без калькулятора

    1. Оценка
    — во-первых, подойдите как можно ближе, найдя два идеальных квадратных корня из ваших
    число находится между.

    2. Разделить —
    разделите ваше число на один из этих квадратных корней.

    3. Среднее —
    возьмите среднее значение результата шага 2 и корень.

    4. Используйте результат
    шага 3, чтобы повторять шаги 2 и 3, пока вы не получите точное число
    достаточно для вас.

    Пример:
    Вычислите квадратный корень из 10 ()
    до 2 знаков после запятой.

    1. Найти
    между двумя точными квадратами.

    Решение:
    3 2
    = 9 и 4 2 = 16, поэтому
    находится между 3 и 4.

    2. Разделить
    10 на 3. 10/3 = 3,33 (ответ можно округлить)

    3. Среднее
    3.33 и 3. (3,33 + 3) / 2 = 3,1667

    Повторить шаг
    2:
    10 / 3,1667 = 3,1579
    Повторите шаг 3: Среднее значение 3,1579 и 3,1667. (3,1579 + 3,1667) / 2 = 3,1623

    Попробуй ответ
    -> 3,1623 в квадрате равно 10? 3,1623 х 3,1623 = 10,0001

    Если это верно
    хватит тебе, можешь остановиться! В противном случае вы можете повторить шаги 2 и 3.

    Примечание :
    Есть несколько способов вычислить квадратные корни без использования калькулятора.Это только один из них.

    назад
    наверх

    Как вычислить квадратный корень вручную

    В старые времена, до того, как калькуляторы были разрешены на уроках математики и естествознания, ученикам приходилось выполнять вычисления вручную, с помощью правил скольжения или диаграмм. Сегодня дети все еще учатся складывать, вычитать, умножать и делить вручную, но 40 лет назад детям также приходилось учиться вычислять квадратные корни вручную!

    Если вы хотите возродить старый навык или просто любопытны математически, вот шаги для вычисления квадратного корня вручную.

      Во-первых, разберитесь, что такое квадратный корень. В то время как квадрат 19 равен 19×19 = 361, квадратный корень 361 равен 19. Извлечение квадратного корня из числа является обратной операцией возведения числа в квадрат.

      Возьмите число, из которого вы хотите найти квадратный корень, и сгруппируйте цифры в пары, начиная с правого конца. Например, если вы хотите вычислить квадратный корень из 8254129, запишите его как 8 25 41 29. Затем поместите черту над ним, как при делении в столбик.

      Затем, начиная с самой левой группы цифр (в данном примере 8), найдите ближайший полный квадрат без перехода и запишите его квадратный корень над первой группой цифр.

      Например, ближайший полный квадрат к 8 без перехода равен 4, а квадрат 4 равен 2.

      Затем возведите это первое число в квадрат и запишите его под первой группой цифр. Итак, в этом примере мы напишем 4 под 8. Вычтем и уменьшим следующую группу цифр. Пока что это похоже на долгое деление.

      А теперь самое сложное. Назовите число над полосой P и нижнее число C. Чтобы найти следующее число над полосой, нам нужно немного угадать и проверить.

      Сначала вычислите C / (20P), округлите до ближайшей цифры и назовите это число N. Затем проверьте, меньше ли (20P + N) (N) C. Если нет, уменьшите N, пока не найдете первое значение N такое, что (20P + N) (N) меньше C.

      Если при первой проверке вы обнаружите, что (20P + N) (N) меньше C, увеличьте N, чтобы убедиться, что не существует большего значения, чтобы (20P + N) (N) было меньше C.

      Как только вы найдете правильное значение N, напишите над строкой над второй парой цифр в исходном номере, запишите значение из (20P + N) (N) под C, вычтите и опустите следующую пару цифр.{2} = \ left (-3 \ right) \ cdot \ left (-3 \ right) = 9 $$

      3 и -3 считаются квадратными корнями из 9.

      Все положительные действительные числа имеют два квадратных корня, один положительный квадратный корень и один отрицательный квадратный корень. Положительный квадратный корень иногда называют главным квадратным корнем. {2} = a \ cdot a = \ left (-a \ right) \ cdot \ left (-a \ right) $$

      Квадратный корень записывается с помощью символа корня √, а число или выражение внутри символа корня, обозначенное ниже a, называется подкоренным выражением.

      $$ \ sqrt {a} $$

      Чтобы указать, что нам нужен как положительный, так и отрицательный квадратный корень из подкоренной части, мы помещаем символ ± (читается как плюс минус) перед корнем.

      $$ \ pm \ sqrt {9} = \ pm 3 $$

      У нуля один квадратный корень, равный 0.

      $$ \ sqrt {0} = 0 $$

      Отрицательные числа не имеют действительных квадратных корней, поскольку квадрат либо положительный, либо 0.

      Если квадратный корень целого числа является другим целым числом, квадрат называется полным квадратом.Например, 25 — это идеальный квадрат, так как

      $$ \ pm \ sqrt {25} = \ pm 5 $$

      Если подкоренное выражение не является точным квадратом, то есть квадратный корень не является целым числом, вам нужно приблизительно вычислить квадратный корень

      $$ \ pm \ sqrt {3} = \ pm 1.73205 … \ приблизительно \ pm 1,7 $$

      Квадратные корни из чисел, не являющихся полным квадратом, являются членами иррациональных чисел. Это означает, что они не могут быть записаны как частное двух целых чисел. Десятичная форма иррационального числа не прерывается и не повторяется.Иррациональные числа вместе с рациональными числами составляют действительные числа.


      Видеоурок

      Примерно квадратный корень из 250

      Как умножить квадратный корень

      Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает
      или несколько ваших авторских прав, сообщите нам, отправив письменное уведомление («Уведомление о нарушении»), содержащее
      в
      информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
      ан
      Уведомление о нарушении, оно предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
      средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

      Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
      в виде
      ChillingEffects.org.

      Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
      искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
      на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

      Чтобы отправить уведомление, выполните следующие действия:

      Вы должны включить следующее:

      Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
      Идентификация авторских прав, которые, как утверждается, были нарушены;
      Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
      достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например нам требуется
      а
      ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
      к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
      Ваше имя, адрес, номер телефона и адрес электронной почты; и
      Ваше заявление: (а) вы добросовестно полагаете, что использование контента, который, по вашему мнению, нарушает
      ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
      информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
      либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

      Отправьте жалобу нашему уполномоченному агенту по адресу:

      Чарльз Кон
      Varsity Tutors LLC
      101 S. Hanley Rd, Suite 300
      St. Louis, MO 63105

      Или заполните форму ниже:

      Как вручную найти квадратный корень

      Как вручную найти квадратный корень

      Как найти квадратный корень вручную

      Вот почти забытое искусство: с появлением электронных
      калькуляторы, скорее всего, доживут до XXI века только на бумаге и
      в воспоминаниях стариков.

      Из какого числа вы хотите найти квадратный корень?
      Вот один из них, который мы будем использовать:

      46656
       

      Сначала разделите число, которое нужно извлекать из квадратного корня, на пары цифр,
      начиная с десятичной точки. То есть никакая пара цифр не должна пересекаться
      десятичная точка. (Например, разделите 1225 на «12 25», а не на
      «1 22 5»; 6.5536 на «6,55 36», а не на «6,5 53 6».)

      Затем вы можете поместить несколько линий на каждую пару цифр и полосу на
      слева, что-то вроде длинного деления.

           + --- ---- ----
           | 4 66 56
       

      Найдите наибольшее число, квадрат которого меньше или равен ведущему
      пара цифр. В этом случае первая пара цифр — 4; самое большое число
      квадрат которого меньше или равен 4 равен 2.

      Поместите это число слева, и над первой парой цифр.

             2
           + --- ---- ----
        2 | 4 66 56
       

      Теперь возведите это число в квадрат и вычтите из первой пары цифр.

             2
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
             0
       

      Выдвинуть левую скобу; умножьте последнюю (и единственную) цифру левой
      число на 2, поместите его слева от разницы, которую вы только что вычислили, и
      оставьте рядом с ним пустой десятичный знак.

             2
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
       4_ | 0
       

      Затем опустите следующую пару цифр и поместите ее вправо
      разницы.

             2
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
       4_ | 0 66
       

      Найдите наибольшее число для этого пустого десятичного разряда, чтобы
      число, умноженное на уже существующее число плюс десятичный разряд, будет меньше
      чем текущая разница. Например, если 1 * 41 равно ≤ 66, то 2 * 42
      ≤ 66 и т. Д. В данном случае это 1. Поместите это число в оставленное вами поле,
      и в следующем десятичном разряде в строке результатов вверху.

             2 1
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
       41 | 0 66
       

      Теперь вычтите продукт, который вы только что нашли.

             2 1
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
       41 | 0 66
           | - 41
           + --------
                 25
       

      Теперь повторите, как и раньше: возьмите число в левом столбце (здесь 41) и
      удвойте его последнюю цифру (что даст вам 42). Скопируйте это ниже в левый столбец и
      оставьте рядом с ним пустое место. (Двойная последняя цифра с переносом: для
      Например, если у вас было не 41, а 49, что составляет 40 + 9, вы должны скопировать 40 + 18
      что равно 58.) Также опустите следующую пару цифр справа.

             2 1
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
       41 | 0 66
           | - 41
           + --------
      42_ 25 56
       

      Теперь найдите самую большую цифру (назовите ее #) такую, что 42 # * # ≤ 2556. Здесь
      получается, что 426 * 6 = 2556 точно.

             2 1 6
           + --- ---- ----
        2 | 4 66 56
           | -4
           + ----
       41 | 0 66
           | - 41
           + --------
      426 | 25 56
           | - 25 56
           + -------------
                       0
       

      Когда разница равна нулю, у вас есть точный квадратный корень, и вы
      сделано.В противном случае вы можете продолжать находить больше десятичных знаков до тех пор, пока
      как ты хочешь.


      Вот еще один пример с меньшим количеством аннотаций.

                7. 2 8 0 1 ...
             + ----------------------
      7 | 53. 00 00 00 00 00
             | 49
             + ----------------------
      142 | 4 00
             | 2 84
             + ----------------------
      1448 | 1 16 00
             | 1 15 84
             + ----------------------
      14560 | 16 00
             | 0
             + ----------------------
      145601 | 16 00 00
             | 14 56 01
             + ----------------------
             | 1 43 ​​99 00
                               ...
      
       


      Джон Керл

      john dot r dot kerl at lmco точка com

      Июль 1998 г.

      Текущий адрес (по состоянию на 2005 г.):

      [email protected]

      ← Прочие документы

      Корень | математика | Britannica

      Корень , в математике решение уравнения, обычно выражаемое числом или алгебраической формулой.

      В IX веке арабские писатели обычно называли один из равных множителей числа джадхр («корень»), а их средневековые европейские переводчики использовали латинское слово с основанием (от которого происходит прилагательное с корнем ). .Если a — положительное действительное число, а n — положительное целое число, существует уникальное положительное действительное число x такое, что x n = a . Это число — (главный) n -й корень из a — записывается как n Квадратный корень из √ a или a 1/ n . Целое число n называется индексом корня. Для n = 2, корень называется квадратным корнем и записывается как квадратный корень из √ a .Корень 3 Квадратный корень из √ a называется кубическим корнем из a . Если a отрицательное значение и n нечетное, уникальный отрицательный корень n -й из a называется основным. Например, главный кубический корень из –27 равен –3.

      Если целое число (положительное целое число) имеет рациональный корень n -й степени, т. Е. Тот, который может быть записан как обычная дробь, то этот корень должен быть целым числом. Таким образом, 5 не имеет рационального квадратного корня, потому что 2 2 меньше 5, а 3 2 больше 5.В точности n комплексные числа удовлетворяют уравнению x n = 1, и они называются комплексными n корнями -й степени из единицы. Если правильный многоугольник из n сторон вписан в единичный круг с центром в начале координат, так что одна вершина лежит на положительной половине оси x , радиусы вершин — это векторы, представляющие комплекс n n -е корни единства. Если корень, вектор которого составляет наименьший положительный угол с положительным направлением оси x , обозначен греческой буквой омега, ω, то ω, ω 2 , ω 3 ,…, ω n = 1 составляют все корни n -й степени из единицы.Например, ω = — 1 / 2 + Квадратный корень из √ −3 / 2 , ω 2 = — 1 / 2 Квадратный корень из √ −3 / 2 и ω 3 = 1 — все кубические корни из единицы. Любой корень, обозначаемый греческой буквой эпсилон, ε, который имеет свойство, что ε, ε 2 ,…, ε n = 1 дают все n -го корня из единицы, называется примитивным. Очевидно, проблема нахождения корней n -й степени из единицы эквивалентна задаче вписания правильного многоугольника из n сторон в круг.Для каждого целого числа n корни n -й степени из единицы могут быть определены в терминах рациональных чисел с помощью рациональных операций и радикалов; но они могут быть построены с помощью линейки и циркуля (т. е. определены в терминах обычных операций арифметики и извлечения квадратных корней) только в том случае, если n является произведением различных простых чисел в форме 2 h + 1, или 2 k раз больше, или имеет форму 2 k .Если a является комплексным числом, а не 0, уравнение x n = a имеет ровно n корней , и все n -е корни из a являются произведениями любого из них. этих корней на n -й корней из единицы.

      Член корень был перенесен из уравнения x n = a во все полиномиальные уравнения. Таким образом, решение уравнения f ( x ) = a 0 x n + a 1 x n — 1 +… + a n — 1 x + a n = 0, где a 0 ≠ 0, называется корнем уравнения.Если коэффициенты лежат в комплексном поле, уравнение n -й степени имеет точно n (не обязательно различные) комплексные корни. Если коэффициенты действительные и n нечетное, значит, существует действительный корень.

Добавить комментарий

Ваш адрес email не будет опубликован.