Как решать симметрические уравнения 4 степени: Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра

Подготовка школьников к ЕГЭ и ОГЭ (Справочник по математике — Алгебра

Справочник по математике Алгебра Уравнения, сводящиеся к квадратным уравнениям

      Существует ряд уравнений, которые удается решить при помощи сведения их к квадратным уравнениям.

      К таким уравнениям, в частности, относятся уравнения следующих типов:

Трёхчленные уравнения
Уравнения 4-ой степени, левая часть которых равна произведению четырёх последовательных членов арифметической прогрессии
Возвратные (симметричные) уравнения 3-ей степени
Возвратные (симметричные) уравнения 4-ой степени
Обобщенные возвратные уравнения 4-ой степени

      Замечание. Уравнения, носящие название «Биквадратные уравнения», относятся к типу «Трехчленные уравнения».

Возвратные (симметричные) уравнения 3-ей степени

      Возвратным уравнением 3-ей степени называют уравнение вида

ax3 + bx2 + bx + a = 0, (1)

где a, b – заданные числа.

      Решение уравнения (1) осуществляется при помощи разложения левой части уравнения (1) на множители:

      Для завершения решения уравнения (1) остаётся лишь решить квадратное уравнение

ax2 + (b – a) x + a = 0.

      Пример 1. Решить уравнение

2x3 + 7x2 + 7x + 2 = 0. (2)

      Решение. Разложим левую часть уравнения (2) на множители:

      Ответ:.

Возвратные (симметричные) уравнения 4-ой степени

      Возвратными (симметричными) уравнениями 4-ой степени называют уравнения вида

ax4 + bx3 + cx2 +
+ bx + a = 0,
(3)

а также уравнения вида

ax4 + bx3 + cx2
– bx
+ a = 0,
(4)

где a, b, c – заданные числа.

      Для того, чтобы решить возвратное уравнение (3), разделим его на  x2. В результате получится уравнение

(5)

      Преобразуем левую часть уравнения (5):

      В результате этого преобразования уравнение (5) принимает вид

(6)

      Если теперь обозначить

(7)

то уравнение (6) станет квадратным уравнением:

ay2 + by + c – 2a = 0. (8)

     Найдем корни уравнения (8), а после этого, подставив каждый из найденных корней в равенство (7), решим полученное уравнение относительно  x.

      Описание метода решения уравнений вида (3) завершено.

      Для того, чтобы решить возвратное уравнение (4), разделим его на  x2. В результате получится уравнение

(9)

      Преобразуем левую часть уравнения (9):

      В результате этого преобразования уравнение (9) принимает вид

(10)

      Если теперь обозначить

(11)

то уравнение (10) станет квадратным уравнением:

ay2 + by + c + 2a = 0. (12)

      Найдем корни уравнения (13), а после этого, подставив каждый из найденных корней в равенство (11), решим полученное уравнение относительно  x.

      Описание метода решения уравнений вида (4) завершено.

      Пример 2. Решить уравнение

2x4 – 3x3x2
– 3x + 2 = 0.
(13)

      Решение. Уравнение (13) является возвратным и относится к виду (3). Разделим его на  x2. В результате получится уравнение

(14)

      Преобразуем левую часть уравнения (14):

      В результате этого преобразования уравнение (14) принимает вид

(15)

      Если теперь обозначить

(16)

то уравнение (15) станет квадратным уравнением:

2y2 – 3y – 5 = 0. (17)

      Решим уравнение (17):

(18)

      В первом случае из равенства (16) получаем уравнение:

которое решений не имеет.

      Во втором случае из равенства (16) получаем:

      Ответ:

      Пример 3. Решить уравнение

6x4 – 25x3 + 12x2 +
+ 25x + 6 = 0.
(19)

      Решение. Уравнение (19) является возвратным и относится к виду (4). Разделим его на  x2. В результате получится уравнение

(20)

      Преобразуем левую часть уравнения (20):

      В результате этого преобразования уравнение (20) принимает вид

(21)

      Если теперь обозначить

(22)

то уравнение (21) станет квадратным уравнением:

6y2 – 25y + 24 = 0. (23)

      Решим уравнение (23):

(24)

      В первом случае из равенства (22) получаем:

      Во втором случае из равенства (22) получаем:

      Ответ:

Обобщенные возвратные уравнения 4-ой степени

      Обобщенным возвратным уравнением 4-ой степени назовём уравнение вида

(25)

где  a, b, c, d  – заданные числа.

      Для того, чтобы решить уравнение (25), разделим его на  x2. В результате получится уравнение

(26)

      Преобразуем левую часть уравнения (26):

      В результате этого преобразования уравнение (26) принимает вид

      Если теперь обозначить

(28)

то уравнение (27) станет квадратным уравнением:

(29)

      Найдем корни уравнения (29), а после этого, подставив каждый из найденных корней в равенство (28), решим полученное уравнение относительно  x.

      Описание метода решения уравнений вида (25) завершено.

      Пример 4. Решить уравнение

2x4 – 15x3 + 35x2
– 30 x + 8 = 0.
(30)

      Решение. Введем для коэффициентов уравнения (30) следующие обозначения

a = 2 ,      b =– 15,      
c = 35,       d = – 30,

и найдем значение выражения

      Поскольку

то уравнение (30) является обобщенным возвратным уравнением 4-ой степени. В соответствии с изложенным выше, разделим его на x2. В результате получится уравнение

(31)

      Преобразуем левую часть уравнения (31):

      В результате этого преобразования уравнение (31) принимает вид

(32)

      Если теперь обозначить

(33)

то уравнение (32) станет квадратным уравнением:

2y2 – 15y + 27 = 0. (34)

      Решим уравнение (34):

      В первом случае из равенства (33) получаем:

      Во втором случае из равенства (33) получаем:

      Ответ:

 

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Симметрические уравнения

1. Уравнения называются симметрическими уравнениями 3-й степени, если они имеют вид
ах3 + bx2 + bх + a = 0
.

Для того, чтобы успешно решать уравнения такого вида, полезно знать и уметь использовать следующие простейшие свойства возвратных уравнений:

а) У любого возвратного уравнения нечетной степени всегда есть корень, равный -1.

Действительно, если сгруппировать в левой части слагаемые следующим образом: а(х3 + 1) + bx(х + 1) = 0, то есть возможность вынести общий множитель, т. е. (х + 1)(ах2 + (b – а)x + а) = 0, поэтому,
х + 1 = 0 или ах2 + (b – а)x + а = 0, первое уравнение и доказывает интересующее нас утверждение.

б) У возвратного уравнения корней, равных нулю, нет.

в) При делении многочлена нечетной степени на (х + 1) частное является снова возвратным многочленом и это доказывается по индукции.

Пример.

х3 + 2x2 + 2х + 1 = 0.

Решение.

У исходного уравнения обязательно есть корень х = -1, поэтому разделим х3 + 2x2 + 2х + 1 на (х + 1) по схеме Горнера:

.
 1
2
2
1
-1
 1
2 – 1 = 1 2 – 1 = 1 1 – 1 = 0

х3 + 2x2 + 2х + 1 = (х + 1)(x2 + х + 1) = 0.

Квадратное уравнение x2 + х + 1 = 0 не имеет корней.

Ответ: -1.

2. Уравнения называются симметрическими уравнениями 4-й степени, если они имеют вид
ах4 + bx3 + сх2 + bх + a = 0.

Алгоритм решения подобных уравнений таков:

а) Разделить обе части исходного уравнения на х2. Это действие не приведет к потере корня, ведь х = 0 решением заданного уравнения не является.

б) С помощью группировки привести уравнение к виду:

а(x2 + 1/x2) + b(x + 1/x) + c = 0.

в) Ввести новую неизвестную: t = (x + 1/x).

Проделаем преобразования:t2 = x2 +2 + 1/x2. Если теперь выразить x2 + 1/x2, то t2 – 2 = x2 + 1/x2.

г) Решить в новых переменных полученное квадратное уравнение:

аt2 + bt + c – 2a = 0.

д) Сделать обратную подстановку.

Пример.

4 – 5х3 – 38x2 – 5х + 6 = 0.

Решение.

2 – 5х – 38 – 5/х + 6/х2 = 0.

6(х2 + 1/х2) – 5(х + 1/х) – 38 = 0.

Вводим t: подстановка (x + 1/x) = t. Замена: (x2 + 1/x2) = t2 – 2, имеем:

6t2 – 5t – 50 = 0.

t = -5/2 или t = 10/3.

Вернемся к переменной х. После обратной замены решим два полученных уравнения:

1) x + 1/x = -5/2;

х2 + 5/2 х +1 = 0;

х = -2 или х = -1/2.

2) x + 1/x = 10/3;

х2 – 10/3 х + 1 = 0;

х = 3 или х = 1/3.

Ответ: -2; -1/2; 1/3; 3.

Способы решения некоторых видов уравнений высших степеней

1. Уравнения, которые имеют вид (х + а)n + (х + b)n = c, решаются подстановкой t = x + (a + b)/2. Этот метод называется методом симметризации.

Примером такого уравнения может быть уравнение вида (х + а)4 + (х + b)4 = c.

Пример.

(х + 3)4 + (х + 1)4 = 272.

Решение. 

Делаем подстановку, о которой говорилось выше:

t = x + (3 + 1)/2 = х + 2, после упрощения: х = t – 2.

(t – 2 + 3)4 + (t – 2 + 1)4 = 272.

(t + 1)4 + (t – 1)4 = 272.

Убрав скобки с помощью формул, получим:

t4 + 4t3 + 6t2 + 4t + 1 + t4 – 4t3 + 6t2 – 4t + 1 = 272.

2t4 + 12t2 – 270 = 0.

t4 + 6t2 – 135 = 0.

t2 = 9 или t2 = -15.

Второе уравнение корней не дает, а вот из первого имеем t = ±3.

После обратной замены получим, что х = -5 или х = 1.

Ответ: -5; 1.

Для решения подобных уравнений часто оказывается эффективным и метод разложения на множители левой части уравнения.

2. Уравнения вида (х + а)(х + b)(x + c)(x + d) = А, где а + d = c + b.

Методика решения подобных уравнений заключается в частичном раскрытии скобок, а затем введении новой переменной.

Пример.

(х + 1)(х + 2)(x + 3)(x + 4) = 24.

Решение.

Вычисляем: 1 + 4 = 2 + 3. Группируем скобки по парам:

((х + 1)(x + 4))((х + 2)(x + 3)) = 24,

2 + 5х + 4)(х2 + 5х + 6) = 24.

Сделав замену х2 + 5х + 4 = t, имеем уравнение

t(t + 2) = 24, оно является квадратным:

t2 + 2t – 24 = 0.

t = -6 или t = 4.

После выполнения обратной замены, легко находим корни исходного уравнения.

Ответ: -5; 0.

3. Уравнения вида (х + а)(х + b)(x + c)(x + d) = Ах2, где аd = cb.

Метод решения заключается в частичном раскрытии скобок, делении обеих частей на х2 и решении совокупности квадратных уравнений.

Пример.

(х + 12)(х + 2)(x + 3)(x + 8) = 4х2.

Решение.

Перемножив в левой части первые две и последние две скобки получим:

2 + 14х + 24)(х2 + 11х + 24) = 4х2. Делим на х2 ≠ 0.

(х + 14 + 24/х)(х + 11 + 24/х) = 4. Заменой (х + 24/х) = t приходим к квадратному уравнению:

(t + 14)(t + 11) = 4;

t2 + 25х + 150 = 0.

t = 10 или t = 15.

Произведя обратную замену х + 24/х = 10 или х + 24/х = 15, находим корни.

Ответ: (-15  ± √129)/2; -4; -6.

4. Решить уравнение (3х + 5)4 + (х + 6)3 = 4х2 + 1.

Решение.

Данное уравнение сразу трудно классифицировать и выбрать метод решения. Поэтому сначала преобразуем, используя разность квадратов и разность кубов:

((3х + 5)2 – 4х2) + ((х + 6)3 – 1) = 0. Затем, после вынесения общего множителя, придем к простому уравнению:

(х + 5)(х2 + 18х + 48) = 0.

Ответ: -5; -9 ± √33.

Задача.

Составить многочлен третьей степени, у которого один корень, равный 4, имеет кратность 2 и корень, равный -2.

Решение.

По следствию из теоремы Безу, если у многочлена есть корень кратности 2 равный 4 и есть корень -2, то он без остатка должен поделиться на (х – 4)2(х + 2), значит:

f(x)/((х – 4)2(х + 2)) = q(x) или f(x) = (х – 4)2(х + 2)q(x).

Умножив первые две скобки, и приведя подобные слагаемые, получим: f(x) = (х3 – 6x2 + 32)q(х).

х3 – 6x2 + 32 – многочлен третьей степени, следовательно, q(x) – некоторое число из  R (т. е. действительное). Пусть q(x) есть единица, тогда f(x) = х3 – 6x2 + 32.

Ответ: f(x) = х3 – 6x2 + 32.

 Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

2 + cp + d) $ и что, применяя распределительный закон, я могу получить систему уравнений 4×4, он решил ее примерно за 5 секунд и ухмыльнулся.

Когда я вернулся домой, я попытался решить его самостоятельно, так как он только написал ответы (что сделал математику с книгой) и не смог этого сделать. Это следующее:

\begin{case}
а+с=-2 \\
б+д+ас=-1
\\
объявление+бк=10
\\
бд=-20
\end{cases}

Я показал это 3-му учителю, и он сказал мне, что никогда не видел такого способа решения, и после нескольких минут попыток он тоже не смог его решить.
Ps: Пробовал только методом подстановки. Заранее спасибо. 92-2п+4\больш)$$.

$\endgroup$

3

Зарегистрируйтесь или войдите в систему

Зарегистрируйтесь с помощью Google

Зарегистрироваться через Facebook

Зарегистрируйтесь, используя электронную почту и пароль

Опубликовать как гость

Электронная почта

Требуется, но никогда не отображается

Опубликовать как гость

Электронная почта

Требуется, но не отображается

Нажимая «Опубликовать свой ответ», вы соглашаетесь с нашими условиями обслуживания, политикой конфиденциальности и политикой использования файлов cookie

. 2-4).$$

Подставьте $x=2$, чтобы найти $a$, и $x=1$, чтобы найти $b$.

Затем сдвигаем $q(x)$ подходящим образом: $p(x)=q(x-2)$.

$\endgroup$

$\begingroup$

Подставьте известные значения, и вы получите $4$ (линейные) уравнения с $4$ переменными.

Это многовато, но выполнимо.

Если вы продвинуты и знаете, что такое матрицы, вы можете использовать его для поиска решения.

$\endgroup$

$\begingroup$

Еще один метод, использующий тот факт, что входными данными являются последовательные целые числа, начинающиеся с нуля. Это метод конечных разностей, в котором вы многократно используете оператор $\Delta$, где $(\Delta f)(n)=f(n+1)-f(n)$. Основные полиномы здесь: $C_0(x)=1$ (константа), $C_1(x)=x$, $C_2(x)=x(x-1)/2!$, $C_3(x)=x (x-1)(x-2)/3!$ и т. nf$ — в последующих строках:
\начать{выравнивать}
7\четверка 1\четверка3\четверка1\четверка7\\
-6\quad2-2\quad6\quad\>\\
8\четверка-4\четверка8\четверка\четверка\\
-12\quad12\quad\quad\quad\quad\\
24\qquad\quad\quad\quad\quad
\end{выравнивание}
Затем искомый многочлен получается чтением вниз по левому столбцу: $f(x)=7C_0-6C_1+8C_2-12C_3+24C_4$.

Если вы не прочь научить методу без дополнительных объяснений, это прекрасно подходит для желающих учащихся начальной школы.

$\endgroup$

$\begingroup$

Давайте решим более простой случай: $q(x)$ полином 2-й степени и $q(1) = 1$, $q(4) = 3$ и $q(5) = 2$. Легко проверить, что следующее полиномиальное выражение имеет нужную нам степень и при вычислении 0, 4 и 5 дает ожидаемые значения:

$$
Q(x) = 1\cdot\frac{(x-4)(x-5)}{(1-4)(1-5)} + 3\cdot\frac{(x-5)(x-1 )}{(4-5)(4-1)} + 2\cdot\frac{(x-1)(x-4)}{(5-1)(5-4)}
$$

Следовательно, это должен быть искомый многочлен, $Q(x) = q(x)$ (хотя, конечно, для получения коэффициентов нужно расширить выражение).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *