Как найти дискриминант квадратного: Как найти Дискриминант? 🤔 Формулы, Примеры решений.

Содержание

Как найти Дискриминант? 🤔 Формулы, Примеры решений.

Понятие квадратного уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 8 + 4 = 12. При вычислении левой части получается верное числовое равенство, то есть 12 = 12.

Уравнением можно назвать выражение 8 + x = 12, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени, значит, такое уравнение является квадратным.

Квадратное уравнение — это ax2 + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.

Есть три вида квадратных уравнений:

  • не имеют корней;
  • имеют один корень;
  • имеют два различных корня.

Чтобы ваш ребенок легко справиться с будущими экзаменами, запишите его на курс подготовки к ОГЭ или ЕГЭ по математике в Skysmart. На занятиях с личным преподавателем он потренируется решать пробные варианты экзамена на время, увидит свои сильные и слабые стороны, разберется в каждой сложной теме и выработает тактику поведения на экзамене, чтобы добиться отличных результатов без стресса.

Записывайтесь на бесплатный пробный урок математики: познакомим с платформой, наметим программу обучения и вдохновим ребенка.

Понятие дискриминанта

Дискриминант квадратного уравнения — это выражение, которое находится под корнем в формуле нахождения корней квадратного уравнения. Дискриминант в переводе с латинского означает «отличающий» или «различающий» и обозначается буквой D.

Дискриминант — отличный помощник, чтобы понять, сколько в уравнении корней.

Чаще всего для поиска дискриминанта используют формулу:

В этом ключе универсальная формула для поиска корней квадратного уравнения выглядит так:

Эта формула подходит даже для неполных квадратных уравнений.

Но есть и другие формулы — все зависит от вида уравнения. Чтобы в них не запутаться, сохраняйте табличку или распечатайте ее и храните в учебнике.

Как решать квадратные уравнения через дискриминант

В 8 классе на алгебре можно встретить задачу по поиску действительных корней квадратного уравнения. Для этого важно перед использованием формул найти дискриминант и убедиться, что он неотрицательный. Только после этого вычисляем значения корней. Если дискриминант отрицательный, значит уравнение не имеет действительных корней.

Алгоритм решения квадратного уравнения ax2 + bx + c = 0:

  • как найти дискрининант: D = b2 − 4ac;
  • если дискриминант отрицательный — зафиксировать, что действительных корней нет;
  • если дискриминант равен нулю — вычислить единственный корень уравнения по формуле х = — b2/2a;
  • если дискриминант положительный — найти два действительных корня квадратного уравнения по формуле корней

А вот и еще одна табличка: в ней вы найдете формулы для поиска корней квадратных уравнений при помощи дискриминанта:

Чтобы запомнить алгоритм решения квадратных уравнений и с легкостью его использовать, важно практиковаться. Вперед!

Примеры решения квадратных уравнений с помощью дискриминанта

Пример 1. Решить уравнение: 3x2 — 4x + 2 = 0.

Как решаем:

  1. Определим коэффициенты: a = 3, b = -4, c = 2.
  2. Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 3 * 2 = 16 — 24 = -8.

Ответ: D < 0, корней нет.

Пример 2. Решить уравнение: x2 — 6x + 9 = 0.

Как решаем:

  1. Определим коэффициенты: a = 1, b = -6, c = 9.
  2. Найдем дискриминант: D = b2 — 4ac = (-6)2 — 4 * 1 * 9 = 36 — 36 = 0.
  3. D = 0, значит уравнение имеет один корень:

Ответ: корень уравнения 3.

Пример 3. Решить уравнение: x2 — 4x — 5 = 0.

Как решаем:

  1. Определим коэффициенты: a = 1, b = -4, c = -5.
  2. Найдем дискриминант: D = b2 — 4ac = (-4)2 — 4 * 1 * (-5) = 16 + 20 = 36.
  3. D > 0, значит уравнение имеет два корня:

     

x1 = (4 + 6) : 2 = 5,

x2 = (4 — 6) : 2 = -1.

Ответ: два корня x1 = 5, x2 = -1.

Не желаешь повторить формулы сокращенного умножения?

Дискриминант квадратного уравнения. Формулы дискриминанта

Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой  D.

Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:

Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:

  1. Если дискриминант больше нуля, то уравнение имеет два корня.
  2. Если дискриминант равен нулю, то уравнение имеет один корень.
  3. Если дискриминант меньше нуля, то уравнение не имеет корней.

Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:

D = b2 — 4ac,

так как она относится к формуле:

,

которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.

Решение квадратных уравнений через дискриминант

Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.

Пример 1. Решить уравнение:

3x2 — 4x + 2 = 0.

Определим, чему равны коэффициенты:

a = 3,  b = -4,  c = 2.

Найдём дискриминант:

D = b2 — 4ac = (-4)2 — 4 · 3 · 2 = 16 — 24 = -8,

D < 0.

Ответ: корней нет.

Пример 2.

x2 — 6x + 9 = 0.

Определим, чему равны коэффициенты:

a = 1,  b = -6,  c = 9.

Найдём дискриминант:

D = b2 — 4ac = (-6)2 — 4 · 1 · 9 = 36 — 36 = 0,

D = 0.

Уравнение имеет всего один корень:

Ответ:  3.

Пример 3.

x2 — 4x — 5 = 0.

Определим, чему равны коэффициенты:

a = 1,  b = -4,  c = -5

Найдём дискриминант:

D = b2 — 4ac = (-4)2 — 4 · 1 · (-5) = 16 + 20 = 36,

D > 0.

Уравнение имеет два корня:

x1 = (4 + 6) : 2 = 5,

x2 = (4 — 6) : 2 = -1.

Ответ:  5,  -1.

Решение квадратных уравнений

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.

Дискриминант

Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x2 − 8x + 12 = 0;
  2. 5x2 + 3x + 7 = 0;
  3. x2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

Задача. Решить квадратные уравнения:

  1. x2 − 2x − 3 = 0;
  2. 15 − 2x − x2 = 0;
  3. x2 + 12x + 36 = 0.

Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left( -1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left( -1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

\[x=\frac{-12+\sqrt{0}}{2\cdot 1}=-6\]

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x2 + 9x = 0;
  2. x2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:

Решение неполного квадратного уравнения

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c/a) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x2 − 7x = 0;
  2. 5x2 + 30 = 0;
  3. 4x2 − 9 = 0.

x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.

5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.

Смотрите также:

  1. Теорема Виета
  2. Следствия из теоремы Виета
  3. Тест на тему «Значащая часть числа»
  4. Правила комбинаторики в задаче B6
  5. Как представить обычную дробь в виде десятичной
  6. Задача B15: частный случай при работе с квадратичной функцией

Решение (корни) квадратного уравнения

Квадратным уравнением называется уравнение вида ax² + bx + c = 0,
где x — переменная, которая в уравнении присутствует в квадрате, a, b, c — некоторые числа, причём a ≠ 0.

Например, квадратным является уравнение

2x² — 3x + 1 = 0,

в котором a = 2, b = — 3, c = 1.

В квадратном уравнении ax² + bx + c = 0
коэффициент a называют первым коэффициентом, b — вторым коэффициентом, c — свободным членом.

Уравнения вида ax² + bx = 0,

где c =0,

ax² + c = 0,

где b =0, и

ax² = 0,

где a =0 и b =0,

называются неполными квадратными уравнениями.

Найти корни квадратного уравнения значит решить квадратное уравнение.

Для вычисления корней квадратного уравния служит выражение b² — 4ac,
которое называется дискриминантом квадратного уравнения и обозначается буквой D.

Корни квадратного уравнения имеют следующие сферы применения:

— для разложении квадратного трёхлена на множители, что, в свою очередь, является
приёмом упрощения выражений (например, сокращения дробей, вынесение за скобки общего знаменателя и т. д.) в частности,
при нахождении пределов, производных и интегралов;

— для решения задач на соотношения параметров меняющегося объекта (корни квадратного уравнения,
чаще всего один, являются обычно конечным решением).

График квадратичного трёхлена ax² + bx + c
левой части квадратного уравнения — представляет собой параболу, ось симметрии которой параллельна
оси 0y. Число точек пересечения параболы с осью
0x определяет число корней квадратного уравнения. Если точек
пересечения две, то квадратное уравнение имеет два действительных корня, если точка пересечения
одна, то квадратное уравнение имеет один действительный корень, если парабола не пересекает
ось 0x, то квадратное уравнение не имеет действительных
корней. На рисунке ниже изображены три упомянутых случая.

Как видно на рисунке, красная парабола пересекает ось 0x
в двух точках, зелёная — в одной точке, а жёлтая парабола не имеет точек пересечения с осью
0x.

1. Если дискриминант больше нуля (),
то квадратное уравнение имеет два различных действительных корня.

Они вычисляются по формулам:

и

.

Часто пишется так: .

2. Если дискриминант равен нулю (),
то квадратное уравнение имеет только один действительный корень, или, что то же самое — два равных действительных корня,
которые равны .

3. Если дискриминант меньше нуля (),
то квадратное уравнение не имеет действительных корней, а имеет комплексные корни, но нахождение комплексных корней
в этой статье рассматривать не будем. В общем случае правильным решением является констатация того,
что квадратное уравнение не имеет действительных корней.

Пример 1. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант больше нуля, следовательно, квадратное уравнение имеет два действительных корня.

Путём преобразования в квадратное уравнение следует решать и дробные
уравнения, в которых хотя бы одно из слагаемых — дробь, в знаменателе которой присутствует неизвестное, например, .
О том, как это делается — в материале Решение дробных уравнений с преобразованием в квадратное уравнение.


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 2. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант равен нулю, следовательно, квадратное уравнение имеет один действительный корень.

Пример 3. Определить, сколько действительных корней имеет квадратное уравнение:

.

Решение. Найдём дискриминант:

.

Дискриминант меньше нуля, следовательно, квадратное уравнение не имеет действительных корней.


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Находить корни квадратного уравнения требуется при решении многих
задач высшей математики, например, при нахождении пределов,
интегралов, исследовании
функций на возрастание и убывание
и других.

Пример 4. Найти корни квадратного уравнения:

.

В примере 1 нашли дискриминант этого уравнения:

,

Решение квадратного уравнения найдём по формуле для корней:


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Корни приведённого квадратного уравнения

Формула корней приведённого уравнения имеет вид:

.

Существуют формулы, связывающие корни квадратного уравнения с его
коэффициентами. Они впервые были получены французским математиком Ф.Виетом.

Теорема Виета. Если квадратное уравнение
ax² + bx + c = 0
имеет действительные корни, то их сумма равна — b/a,
а произведение равно с/a:

Следствие. Если приведённое квадратное уравнение
x² + px + q = 0
имеет действительные корни и
, то

Пояснение формул: сумма корней приведённого квадратного уравнения равна второму
коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному
члену.

Следовательно, теорему Виета можно применять и для поиска корней
приведённого квадратного уравнения.


Если известны корни квадратного уравнения, то трёхчлен, представляющий собой левую часть уравнения, можно
разложить на множители по следующей формуле:

.

Этот приём часто используется для упрощения выражений, особенно сокращения дробей.

Пример 9. Упростить выражение:

.

Решение. Числитель данной дроби можем рассматривать как квадратный трёхчлен в отношении x
и разложить его на множители, предварительно найдя его корни. Найдём дискриминант квадратного уравнения:

.

Корни квадратного уравнения будут следующими:

.

Разложим квадратный многочлен на множители:

.

Упростили выражение, проще не бывает:

.


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 10. Упростить выражение:

.

Решение. И числитель, и знаменатель — квадратные трёхчлены. Значит, их можно разложить
на множители, предварительно найдя корни соответствующих квадратных уравнений. Находим дискриминант первого квадратного уравнения:

.

Корни первого квадратного уравнения будут следующими:

.

Находим дискриминант второго квадратного уравнения:

.

Так как дискриминант равен нулю, второе квадратное уравнение имеет два совпадающих корня:

.

Подставим корни квадратных уравнений, разложим числитель и знаменатель на множители и получим:

.


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Упрощать выражения путём решения квадратных уравнений требуется
при решении многих задач высшей математики, например, при
нахождении пределов,
интегралов,
исследовании
функций на возрастание и убывание
и других.

Разумеется, квадратного трёхчлена может может и не быть в выражении в первоначальном виде,
он может быть получен в процессе предварительных преобразований выражения.

Формула корней квадратного уравнения «переоткрывалась» неоднократно. Один
из первых дошедших до наших дней выводов этой формулы принажлежит индийскому математику
Брахмагупте (около 598 г.). Среднеазиатский учёный аль-Хорезми (IX в.) получил эту формулу
методом выделения полного квадрата с помощью геометрической иллюстрации. Суть его рассуждений
видна из рисунка ниже (он рассматривает уравнение x² + 10x = 39).

Площадь большого квадрата равна (x + 5)².
Она складывается из площади x² + 10x
заштрихованной фигуры, равной левой части рассматриваемого уравнения, и площади четырёх
квадратов со стороной 5/2, равной 25. Получается следующее уравнение и его решение:

Пример 11. Отрезок ткани стоит 180 у.ед. Если бы ткани в отрезке было на 2,5 м больше
и цена отрезка оставалась бы прежней, то цена 1 м ткани была бы на 1 у.ед. меньше. Сколько ткани в отрезке?

Решение. Примем количество ткани в отрезке за x и получим уравнение:

Приведём обе части уравнения к общему знаменателю:

Произведём дальнейшие преобразования:

Получили квадратное уравнение, которое и решим:

Ясно, что количество ткани не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь один корень — положительный.

Ответ: в отрезке 20 м ткани.


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Пример 12. Товар, количество которого 187,5 кг, взвешивают в одинаковых ящиках.
Если в каждом ящике количество товара уменьшить на 2 кг, то следовало бы использовать на 2 ящика больше и при этом
2 кг товара остались бы невзвешенными. Сколько кг товара взвешивают в каждом ящике?

Решение. Примем за x количество товара, взвешиваемого в одном ящике. Тогда получим уравнение:

Приведём обе части уравнения к общему знаменателю, произведём дальнейшие преобразования и получим квадратное уравнение.
Процесс записывается так:

Найдём дискриминант:

Найдём корни квадратного уравнения:

Количество товара не может быть отрицательным, поэтому в качестве ответа из двух корней квадратного уравнения подходит лишь положительный корень.

Ответ: в одном ящике взвешивают 12,5 кг ткани.


Проверить решение можно с помощью онлайн калькулятора квадратных уравнений.

Другие темы в блоке «Школьная математика»

Дискриминант квадратного уравнения с большими коэффициентами

Сложно встретить старшеклассника, НЕ умеющего находить корни квадратного уравнения через дискриминант.

Но, к сожалению, в отдельных случаях, получая громоздкий дискриминант,  многие начинают паниковать (без калькулятора).

А на ЕГЭ по математике, например, в задачах категории В14, вам вполне может встретиться причудливый дискриминант.

Нет безвыходных ситуаций!

На чем можно сэкономить силы при вычислении дискриминанта

 

Прежде чем разбирать примеры, вспомним все же  формулу дикриминанта для вычисления корней квадратного уравнения  

Тогда корни  уравнения находим по формуле

Надеюсь, вы помните, что удобно искать корни уравнения через дискриминант в случае, если имеем дело с полным  квадратным уравнением ( и – ненулевые).

Как решать неполные квадратные уравнения мы уже говорили.

1) Используем формулу «разность квадратов».

Допустим, нам нужно решить уравнение  

Ясно, что дискриминант следующий:

Не спешим возводить 53 в квадрат! Замечаем, что , поэтому

Корни данного уравнения, думаю, теперь каждый из вас найдет без труда…

2) Используем прием вынесения общего множителя за скобки.

Допустим, нам нужно решить уравнение (кстати, оно взято из реальной текстовой задачи из открытого банка заданий ЕГЭ по математике).

Ясно, что дискриминант следующий: 

Нет, мы не пойдем напролом!

Замечаем, что , а .

Мы можем вынести за скобку общий множитель

Корни найти – уже не проблема…

3) Формула сокращенного дискриимнанта.

Допустим, нам нужно решить уравнение

Вы знаете, что такое ? + показать

Его очень удобно применять в случае четности второго коэффициента (при x).

Вот формулы дискриминанта и корней в этом случае:

для уравнения , где – четное

Тогда корни следующие: , то есть или

Хоть на чуть-чуть, но упростили вычисления. Считаете, что неоправданно, – лишней формулой забивать голову… Выбор за вами.

4) Вместо дискриминанта – т. Виета.

Допустим, нам нужно решить уравнение

Вспоминаем  теорему  Виета:

Для приведенного квадратного уравнения (т.е. такого, коэффициент при  в котором равен единице)   сумма корней равна коэффициенту , взятому с обратным знаком, а произведение корней равно свободному члену , то есть ,

Так вот, очевидно, на роль корней уравнения  претендуют числа и , так как и

Вот, пожалуй, все основные случае, где можно сэкономить время и силы при решении квадратного уравнения, о которых я хотела рассказать.

За улыбкой –> + показать

Дискриминант.2–4*a*c.

Корни (решения) квадратного уравнения зависят от знака дискриминанта (D) :
D>0 – уравнение имеет 2 различных действительных корня;
D=0 — уравнение имеет 1 корень (2 совпадающих корня):
D<0 – не имеет действительных корней (в школьной теории). В ВУЗах изучают комплексные числа и уже на множестве комплексных чисел уравнение с отрицательным дискриминантом имеет два комплексных корня.
Формула для вычисления дискриминанта достаточно проста, поэтому множество сайтов предлагают онлайн калькулятор дискриминанта. Мы с такого рода скриптами еще не разобрались, поэтому кто знает, как это реализовать просим писать на почту Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..

Общая формула для нахождения корней квадратного уравнения:

Корни уравнения находим по формуле
Если коэффициент при переменной в квадрате парный то целесообразно исчислять не дискриминант, а четвертую его часть
В таких случаях корни уравнения находят по формуле

Вторая способ нахождения корней — это Теорема Виета.

Формулируется теорема не только для квадратных уравнений, но и для многочленов. Это Вы можете почитать в Википедии или других электронных ресурсах. Однако для упрощения рассмотрим ту ее часть, которая касается приведенных квадратных уравнений, то есть уравнений вида (a=1)
Суть формул Виета заключается в том, что сумма корней уравнения равна коэффициенту при переменной, взятому с противоположным знаком. Произведение корней уравнения равно свободном члену. Формулами теорема Виета имеет запись.
Вывод формулы Виета достаточно прост. Распишем квадратное уравнение через простые множители
Как видите все гениальное одновременно является простым. Эффективно использовать формулу Виета когда разница корней по модулю или разница модулей корней равна 1, 2. Например, следующие уравнения по теореме Виета имеют корни

До 4 уравнения анализ должен выглядеть следующим образом. Произведение корней уравнения равно 6, следовательно корнями могут быть значения (1, 6) и (2, 3) или пары с противоположным знаком. Сумма корней равна 7 (коэффициент при переменной с противоположным знаком). Отсюда делаем вывод что решения квадратного уравнения равны x=2; x=3.
Проще подбирать корни уравнения среди делителей свободного члена, корректируя их знак с целью выполнения формул Виета. В начале это кажется трудно сделать, но с практикой на ряде квадратных уравнений такая методика окажется эффективнее вычисления дискриминанта и нахождения корней квадратного уравнения классическим способом.
Как видите школьная теория изучения дискриминанта и способов нахождения решений уравнения лишена практического смысла — «Зачем школьникам квадратное уравнение?», «Какой физический смысл дискриминанта?».

Давайте попробуем разобраться,

что описывает дискриминант?

В курсе алгебры изучают функции, схемы исследования функции и построения графика функций. Из всех функций важное место занимает парабола, уравнение которой можно записать в виде
Так вот физический смысл квадратного уравнения — это нули параболы, то есть точки пересечения графика функции с осью абсцисс Ox
Свойства парабол которые описаны ниже попрошу Вас запомнить. Придет время сдавать экзамены, тесты, или вступительные экзамены и Вы будете благодарны за справочный материал. Знак при переменной в квадрате соответствует тому, будут ли ветки параболы на графике идти вверх (a>0),

или парабола ветвями вниз (a<0).

Вершина параболы лежит посередине между корнями

Физический смысл дискриминанта:

Если дискриминант больше нуля (D>0) парабола имеет две точки пересечения с осью Ox.
Если дискриминант равен нулю (D=0) то парабола в вершине касается оси абсцисс.
И последний случай, когда дискриминант меньше нуля (D<0) – график параболы принадлежит плоскости над осью абсцисс (ветки параболы вверх), или график полностью под осью абсцисс (ветки параболы опущены вниз).

Неполные квадратные уравнения

Если в квадратном уравнении коэффициент при свободном члене или переменной равны нулю то такие уравнения называют неполными. Корни уравнений находим по упрощенной формуле
График функций всегда симметричен относительно начала координат. Стоит отметить, что уравнение имеет действительные корни только тогда, когда в уравнении чередуются знаки при коэффициентах «+, -» или «-, +».
Неполное квадратное уравнение вида
одним из корней всегда имеет точку x=0.
В таком контексте решения квадратных уравнений становится нужным, а при построении графиков парабол, еще и визуально интересным времяпрепровождением, особенно если речь идет о школьном занятии по анализу графика функций, или изучении темы парабол. Поэтому в 8, 9 классе рекомендуем эти две темы в алгебре сочетать.
Если материал помог Вам в обучении, просьба поделиться с друзьями ссылкой на статью!

Онлайн калькулятор: Дискриминант

В алгебре дискриминантом многочлена называется функция от многочлена, описывающая некоторые свойства корней, без их вычисления.

Из школьного курса хорошо известна формула дискриминанта квадратного многочлена . Дискриминант равен . Формула используется для вычисления корней квадратного уравнения.

Однако зная дискриминант можно предсказать некоторые свойства корней, не вычисляя их. В случае квадратичного полинома дискриминант равен нулю тольк в том случае, если имеется один двойной корень. Если дискриминант положителен — то имеются два различных вещественных корня, а если отрицательный — то два комплексно сопряженных.

Следующий калькулятор вычисляет дискриминант квадратичного полинома, а ниже него можно почитать немного теории.

Дискриминант квадратного многочлена

Квадратный многочлен

 

Дискриминант

 

Корни многочлена

 

content_copy Ссылка save Сохранить extension Виджет

Дискриминант

Дискриминант многочлена степени n: может быть определен через результант или через корни.

Через корни полинома, дискриминант выражается следующим образом:

Через результант дискриминант можно выразить так:

где Res — результант многочлена A и его первой производной A’. Если коротко, то результант это определитель Матрицы Сильвестра составленной из A и A’.

В случае квадратного многочлена A производная A’ будет равна . Еси записать матрицу Сильвестра для этих двух многочленов и посчитать детерминант, то мы придем к уже известному:.

Дискриминант полиномов более высоких степеней

Используя второе определение, можно вывести формулы для дискриминанта полиномов более высоких степеней (если перейти по ссылке ниже можно получить формулы для полиномов степеней 3 и 4 и других).
Последовательность OEIS A007878 содержит 5 членов суммы для вычисления дискриминанта полинома 3-й степени, 16 членов для 4-й, 59 членов для 5-й, и наконец 3815311 членов для полиномов 12-й степени.
Следующий калькулятор вычисляет дискриминант многочлена любой степени:

Дискриминант

Введите коэффициенты многочлена, через пробел начиная от более высокой степени к меньшей

Точность вычисления

Знаков после запятой: 2

Дискриминант

 

Входной многочлен

 

content_copy Ссылка save Сохранить extension Виджет

Квадратичная формула: решения и дискриминант

Purplemath

Приведем еще несколько примеров.

  • Решите

    x ( x — 2) = 4. Округлите ответ до двух десятичных знаков.

Я не только не могу применить квадратичную формулу на данном этапе, но и не могу использовать множители.Почему? Потому что это уравнение пока что в правильном виде.

И я, , конечно же, не могу с невозмутимым видом утверждать, что « x = 4, x — 2 = 4», потому что это , а не , как работает «решение с использованием факторинга».

Независимо от того, какой метод решения я собираюсь использовать — факторизирую ли я на множители или использую квадратичную формулу для поиска ответов — я должен сначала преобразовать уравнение в форму «(квадратичный) = 0».

MathHelp.com

Первое, что я сделаю здесь, это умножу на левую часть, а затем переместу 4 из правой части в левую:

x ( x -2) = 4

x 2 -2 x = 4

x 2 — 2 x — 4 = 0

Поскольку нет множителей при (1) (- 4) = –4, которые в сумме дают –2, то эта квадратичная величина не множится.(Другими словами, невозможно, чтобы решение « x = 4, x — 2 = 4» с ложным факторингом могло быть хоть немного правильным.)

Значит, факторинг не сработает, но я могу использовать квадратичную формулу; в этом случае я вставлю значения a = 1, b = –2 и c = –4:

.

Тогда ответ:

x = –1.24, x = 3,24 с округлением до двух десятичных знаков.


Для справки, вот как выглядит график соответствующей квадратичной, y = x 2 -2 x -4, выглядит так:

Как видите, решения квадратичной формулы совпадают с интерцепциями x . Точки пересечения графика с осью x дают значения, которые решают исходное уравнение.

Существует еще одна связь между решениями из квадратичной формулы и графиком параболы: вы можете определить, сколько интервалов x вы получите, исходя из значения внутри квадратного корня. Аргумент (то есть содержание) квадратного корня, являющийся выражением b 2 — 4 ac , называется «дискриминантом», потому что, используя его значение, вы можете «различать» (что уметь различать) различные типы решений.

В данном случае значение дискриминанта b 2 — 4 ac было 20; в частности, значение было , а не ноль, и было , а не отрицательным. Поскольку значение не было отрицательным, уравнение должно было иметь по крайней мере одно (действительное) решение; поскольку значение не было нулевым, два решения должны были быть разными (то есть они должны были отличаться друг от друга).


  • Решить 9

    x 2 + 12 x + 4 = 0.Оставьте свой ответ в точной форме.

Используя a = 9, b = 12 и c = 4, квадратичная формула дает мне:

Тогда ответ:


В первом примере на этой странице я получил два решения, потому что значение дискриминанта (то есть значение внутри квадратного корня) было ненулевым и положительным.В результате часть формулы «плюс-минус» дала мне два различных значения; один для «плюсовой» части числителя и другой для «минусовой» части. Однако в этом случае квадратный корень уменьшился до нуля, поэтому плюс-минус ни для чего не учитывался.

Такое решение, при котором вы получаете только одно значение, потому что «плюс или минус ноль» ничего не меняет, называется «повторяющимся» корнем, потому что x равно

–2 / 3 , но оно равно этому значению как бы вдвое: –2 / 3 + 0 и –2 / 3 — 0.

Вы можете лучше увидеть это повторение, если разложите квадратичный множитель (и, поскольку решения были хорошими аккуратными дробями, квадратичный должен множить ): 9 x 2 + 12 x + 4 = (3 x + 2) (3 x + 2) = 0, поэтому первый множитель дает нам 3 x + 2 = 0, поэтому

x = –2 / 3 , и (из второго, идентичный коэффициент) 3 x + 2 = 0, поэтому x = –2 / 3 снова .

Каждый раз, когда вы получаете ноль внутри квадратного корня квадратной формулы, вы получаете только одно решение уравнения в смысле получения одного числа, которое решает уравнение. Но вы получите два решения в том смысле, что одно значение будет подсчитано дважды. Другими словами, дискриминант (то есть выражение b 2 — 4 ac ) с нулевым значением означает, что вы получите одно «повторяющееся» значение решения.


Ниже показан график связанной функции, y = 9 x 2 + 12 x + 4, выглядит так:

Парабола только касается оси x при

x = –2 / 3 ; это на самом деле не пересекает.Это соотношение всегда верно: если у вас есть корень, который встречается ровно дважды (или, что то же самое, если вы получаете ноль внутри квадратного корня), то график будет «целовать» ось в значении решения, но он не пройдет через ось.


Поскольку нет множителей при (3) (2) = 6, которые в сумме дают 4, эта квадратичная величина не множится. Но квадратичная формула работает всегда; в этом случае я вставлю значения a = 3, b = 4 и c = 2:

На данный момент у меня есть отрицательное число внутри квадратного корня.Если вы еще не узнали о комплексных числах, вам придется остановиться на этом, и ответ будет «нет решения»; если вы знаете комплексные числа, то можете продолжить вычисления:

Таким образом, в зависимости от вашего уровня обучения ваш ответ будет одним из следующих:

решения с вещественными числами: нет решения

комплексно-числовых решений:


Партнер


Но знаете ли вы о комплексах или нет, вы знаете, что вы не можете изобразить свой ответ, потому что вы не можете изобразить квадратный корень из отрицательного числа на правильном декартовом месте.На оси x таких значений нет. Поскольку вы не можете найти графическое решение квадратичной функции, разумно не должно быть никаких перехватов x (потому что вы можете построить график с перехватом x ).


Вот график связанной функции, y = 3 x 2 + 4 x + 2:

Как видите, график не пересекает ось x и даже не касается ее.Это соотношение всегда верно: если вы получите отрицательное значение внутри квадратного корня, тогда не будет решения действительного числа и, следовательно, не будет x -перехватов. Другими словами, если дискриминант (являющийся выражением b 2 — 4 ac ) имеет отрицательное значение, то у вас не будет графических нулей.

(взаимосвязь между дискриминантом (являющимся значением внутри квадратного корня), типом решения (два различных решения, одно повторяющееся решение или отсутствие графически отображаемых решений) и количеством x -перехватов на графике (два , один или ни один) сведены в диаграмму на следующей странице.)


URL: https://www.purplemath.com/modules/quadform2.htm

Читать: Дискриминант | Промежуточная алгебра

Цели обучения

  • Определите дискриминант и используйте его для классификации решений квадратных уравнений

Дискриминант

Квадратичная формула не только генерирует решения квадратного уравнения, но и рассказывает нам о природе решений.{2} -4x + 10 = 0 [/ latex] имеет два сложных решения.

В последнем примере мы проведем корреляцию между количеством и типом решений квадратного уравнения и графиком соответствующей функции.

Пример

Используйте следующие графики квадратичных функций, чтобы определить, сколько и какого типа решения будет у соответствующего квадратного уравнения [latex] f (x) = 0 [/ latex]. Определите, будет ли дискриминант больше, меньше или равен нулю для каждого из них.{2}} — 4ac [/ латекс]. Он определяет количество и тип решений квадратного уравнения. Если дискриминант положительный, существуют [latex] 2 [/ latex] вещественные решения. Если это [latex] 0 [/ latex], существует [latex] 1 [/ latex] реальное повторяющееся решение. Если дискриминант отрицательный, существуют [latex] 2 [/ latex] комплексные решения (но нет реальных решений).

Дискриминант также может рассказать нам о поведении графика квадратичной функции.

Найти корни квадратного уравнения с помощью дискриминанта

Если вы считаете, что контент, доступный через Веб-сайт (как определено в наших Условиях обслуживания), нарушает одно
или несколько ваших авторских прав, сообщите нам об этом, отправив письменное уведомление («Уведомление о нарушении»), содержащее
в
информацию, описанную ниже, назначенному ниже агенту.Если репетиторы университета предпримут действия в ответ на
ан
Уведомление о нарушении, он предпримет добросовестную попытку связаться со стороной, которая предоставила такой контент
средствами самого последнего адреса электронной почты, если таковой имеется, предоставленного такой стороной Varsity Tutors.

Ваше Уведомление о нарушении прав может быть отправлено стороне, предоставившей доступ к контенту, или третьим лицам, таким как
в виде
ChillingEffects.org.

Обратите внимание, что вы будете нести ответственность за ущерб (включая расходы и гонорары адвокатам), если вы существенно
искажать информацию о том, что продукт или действие нарушает ваши авторские права.Таким образом, если вы не уверены, что контент находится
на Веб-сайте или по ссылке с него нарушает ваши авторские права, вам следует сначала обратиться к юристу.

Чтобы отправить уведомление, выполните следующие действия:

Вы должны включить следующее:

Физическая или электронная подпись правообладателя или лица, уполномоченного действовать от их имени;
Идентификация авторских прав, которые, как утверждается, были нарушены;
Описание характера и точного местонахождения контента, который, по вашему мнению, нарушает ваши авторские права, в \
достаточно подробностей, чтобы позволить репетиторам университетских школ найти и точно идентифицировать этот контент; например, мы требуем
а
ссылка на конкретный вопрос (а не только на название вопроса), который содержит содержание и описание
к какой конкретной части вопроса — изображению, ссылке, тексту и т. д. — относится ваша жалоба;
Ваше имя, адрес, номер телефона и адрес электронной почты; а также
Ваше заявление: (а) вы добросовестно считаете, что использование контента, который, по вашему мнению, нарушает
ваши авторские права не разрешены законом, владельцем авторских прав или его агентом; (б) что все
информация, содержащаяся в вашем Уведомлении о нарушении, является точной, и (c) под страхом наказания за лжесвидетельство, что вы
либо владелец авторских прав, либо лицо, уполномоченное действовать от их имени.

Отправьте жалобу нашему уполномоченному агенту по адресу:

Чарльз Кон
Varsity Tutors LLC
101 S. Hanley Rd, Suite 300
St. Louis, MO 63105

Или заполните форму ниже:

Дискриминант квадратного уравнения — Концепция

Дискриминант — это часть формулы корней квадратного уравнения.Дискриминант квадратного уравнения важен, потому что он сообщает нам количество и тип решений. Эта информация полезна, потому что она служит двойной проверкой при решении квадратных уравнений любым из четырех методов (факторизация, завершение квадрата, использование квадратных корней и использование формулы квадратного уравнения).

Дискриминант квадратного уравнения является частью формулы корней квадратного уравнения.На самом деле это та часть, которая лежит под квадратным корнем. Итак, различение, которое вы услышите, это b в квадрате минус 4ac, что, надеюсь, выглядит знакомо, потому что вы знаете формулу квадратичного уравнения. И на самом деле дискриминант сообщает нам, какой тип решения и количество решений будут у наших квадратных уравнений. Он не говорит нам, что это такое. Он просто сообщает нам тип и номер. ХОРОШО?
Как это работает, есть четыре сценария. Я предпочитаю не запоминать их, но я собираюсь пройтись по каждому из них, а затем вы можете использовать логику или запомнить их, чтобы как бы понять их.
Хорошо. Итак, какой может быть дискриминант? Есть разные варианты. Во-первых, он будет больше нуля и будет точным квадратом. Под этим я подразумеваю 16, 25, любое число больше нуля и полный квадрат.
Итак, дискриминант — это то, что находится под квадратным корнем, поэтому, если это идеальный квадрат, вы сможете извлечь из него квадратный корень, а наш квадратный корень исчезнет из нашей формулы квадратичного уравнения. Это говорит нам о том, что у нас есть два рациональных решения.Идеальный квадрат. Вы можете извлечь квадратный корень. Квадратный корень уходит.
Хорошо, дискриминант больше нуля, а не точный квадрат. Итак, это будет примерно 10, 20 или что-то в этом роде, где мы не можем извлечь квадратный корень. Это говорит нам о том, что мы помещаем его под знаком квадратного корня. Наш квадратный корень никуда не денется.
У нас все еще есть квадратный корень из числа, из которого мы можем извлечь квадратный корень, поэтому в итоге мы получим два иррациональных числа. Итак, у нас есть квадратный корень, плюс квадратный корень минус квадратный корень.Итак, у нас есть два иррациональных решения.
Дискриманент равен нулю. Хорошо, с точки зрения нашей формулы квадратиков это приводит к исчезновению всего квадратного корня. Итак, у вас есть плюс или минус квадратный корень из нуля, исчезает, и мы просто остаемся с отрицательным b над 2a.
Итак, в этом случае у нас есть одно рациональное решение, одно дробное решение. И последний сценарий для нашего дискриминанта — меньше нуля. Хорошо, это означает отрицательное число. Дискриминант отрицательный, что означает, что квадратный корень отрицателен, что означает, что у нас есть два воображаемых решения.
Квадратный корень отрицательного числа — мнимое число. И поэтому у нас не будет никаких реальных решений; у нас просто будут воображаемые решения. ОК.
Итак, дискриминант — это то, что стоит под квадратным корнем в квадратной формуле, и он говорит нам о количестве и типе решений для этого квадратного уравнения.
Вы можете запомнить эти четыре разные вещи. В общем, я просто предпочитаю использовать логику, хорошо? Знайте, что такое дискриминант, знайте, что он находится под квадратным корнем, а затем вы знаете, как квадратный корень ведет себя достаточно, чтобы иметь возможность вывести их в любое время, когда вам нужно.

Дискриминант — Концепция — Алгебра Видео от Brightstorm

Дискриминант — это член под квадратным корнем в квадратной формуле, который сообщает нам количество решений квадратного уравнения. Если , дискриминант положительный, мы знаем, что у нас есть 2 решения. Если он отрицательный, решений нет, а если дискриминант равен нулю, у нас есть одно решение. Дискриминант вычисляется путем возведения в квадрат члена «b» и четырехкратного вычитания члена «a», умноженного на член «c».

Дискриминант — действительно удобный инструмент, когда вам кажется, что вы получаете странный ответ. Вот почему. Дискриминант говорит вам, сколько существует решений квадратного уравнения или сколько пересечений по оси x существует для параболы. Он не говорит вам, каковы эти числа, каковы значения пересечения x, он просто говорит вам, сколько их должно быть. Звучит так, будто это бесполезно, но на самом деле это особенно важно, когда вы проверяете свою работу.
Вот как это выглядит. Дискриминант — это формула b в квадрате минус 4ac, помня, что a, b и c — это коэффициенты квадратичной функции в стандартной форме. Он сообщает вам количество решений квадратного уравнения. Если дискриминант больше нуля, есть два решения. Если дискриминант меньше нуля, решений нет, а если дискриминант равен нулю, есть одно решение.
Это то, что вам просто необходимо запомнить. Это идет рука об руку с формулой корней квадратного уравнения.Так что, если вы, ребята, это усвоили, в этом будет большой смысл. Если вы еще не выучили квадратную формулу, вы, вероятно, выучите ее завтра на уроке математики. Просто знайте, что вы смотрите на то, действительно ли b в квадрате минус 4ac больше нуля, меньше нуля или равно нулю. И это говорит мне, сколько ответов я должен получить. Он не говорит мне, каковы ответы, просто сколько из них мне нужно, чтобы решить проблему.

Квадратные уравнения

Пример квадратного уравнения :

Квадратные уравнения образуют красивые кривые, такие как эта:

Имя

Название Quadratic происходит от «quad», что означает квадрат, потому что переменная возводится в квадрат (например, x 2 ).

Его также называют «уравнением степени 2» (из-за «2» на x )

Стандартная форма

Стандартная форма квадратного уравнения выглядит так:

  • a , b и c — известные значения. a не может быть 0.
  • « x » — это переменная или неизвестно (мы еще не знаем).

Вот несколько примеров:

2x 2 + 5x + 3 = 0 В этом случае a = 2 , b = 5 и c = 3
x 2 — 3x = 0 Это немного сложнее:

  • Где а ? Ну a = 1 , так как мы обычно не пишем «1x 2 »
  • б = −3
  • А где c ? Ну c = 0 , поэтому не показан.
5x — 3 = 0 Ой! Это , а не квадратное уравнение: оно отсутствует x 2

(другими словами a = 0 , что означает, что он не может быть квадратичным)

Поиграйте с ним

Поиграйте с «Проводником квадратного уравнения», чтобы увидеть:

  • график, а
  • решений (называемых «корнями»).

Скрытые квадратные уравнения!

Как мы видели ранее, Стандартная форма квадратного уравнения —

Но иногда квадратное уравнение так не выглядит!

Например:

Скрытый в стандартной форме a, b и c
x 2 = 3x — 1 Переместить все термины в левую часть x 2 — 3x + 1 = 0 a = 1, b = −3, c = 1
2 (ширина 2 — 2w) = 5 Развернуть (снять скобки),

и переместите 5 влево
2 Вт 2 — 4 Вт — 5 = 0 a = 2, b = −4, c = −5
z (z − 1) = 3 Разверните и переместите 3 влево z 2 — z — 3 = 0 a = 1, b = −1, c = −3

Как их решить?

« решений » квадратного уравнения — это где равно нулю .

Их еще называют « корней », а иногда « нулей »

Обычно существует 2 решения (как показано на этом графике).

И есть несколько разных способов найти решения:

Или мы можем использовать специальную квадратичную формулу :

Просто введите значения a, b и c и выполняйте вычисления.

Сейчас мы рассмотрим этот метод более подробно.

О квадратичной формуле

Плюс / Минус

Прежде всего, что это за плюс / минус, который выглядит как ±?

± означает ДВА ответа:

x = −b + √ (b 2 — 4ac) 2a

x = −b — √ (b 2 — 4ac) 2a

Вот пример с двумя ответами:

Но не всегда так получается!

  • Представьте, что кривая «просто касается» оси x.
  • Или представьте, что кривая настолько высока , что даже не пересекает ось x!

Вот тут-то нам и помогает «Дискриминант» …

Дискриминант

Вы видите b 2 — 4ac в приведенной выше формуле? Он называется Дискриминант , потому что он может «различать» возможные типы ответов:

  • когда b 2 — 4ac положительный, мы получаем два Реальных решения
  • , когда он равен нулю, мы получаем только ОДНО реальное решение (оба ответа одинаковы)
  • при отрицательном значении получаем пару Комплексных решений

Комплексные решения? Давайте поговорим о них после того, как мы увидим, как использовать формулу.

Использование квадратичной формулы

Просто введите значения a, b и c в квадратичную формулу и выполните вычисления.

Пример: Решить 5x

2 + 6x + 1 = 0

Коэффициенты: a = 5, b = 6, c = 1

Квадратичная формула: x =
−b ± √ (b 2 — 4ac)
2a

Вставьте a, b и c: x =
−6 ± √ (6 2 — 4 × 5 × 1)
2 × 5

Решить: x =
−6 ± √ (36 — 20)
10

х =
−6 ± √ (16)
10

х =
−6 ± 4
10

х = -0.2 или -1

Ответ: x = −0,2 или x = −1

И мы их видим на этом графике.

Чек -0,2 : 5 × ( −0,2 ) 2 + 6 × ( −0,2 ) + 1

= 5 × (0,04) + 6 × (-0,2) + 1

= 0,2 — 1,2 + 1

= 0
Чек -1 : 5 × ( −1 ) 2 + 6 × ( −1 ) + 1

= 5 × (1) + 6 × (-1) + 1

= 5–6 + 1

= 0

Вспоминая формулу

Добрый читатель предложил спеть это к «Pop Goes the Weasel»:

«x равно минус b «Вокруг тутового куста
плюс или минус квадратный корень Обезьяна погналась за лаской
квадрата b минус четыре a c Обезьяна думала, что все было весело
ВСЕ по двум a « Поп! идет ласка »

Попробуйте спеть несколько раз, и она застрянет у вас в голове!

Или вы можете вспомнить эту историю:

х =
−b ± √ (b 2 — 4ac)
2a

«Негативный мальчик думал, да или нет, о том, чтобы пойти на вечеринку,
на вечеринке он разговаривал с квадратным мальчиком, но не с четырьмя классными цыпочками.
В 2 часа ночи все было кончено.
«

Комплексные решения?

Когда Дискриминант (значение b 2 — 4ac ) отрицателен, мы получаем пару Комплексных решений … что это означает?

Это означает, что наш ответ будет включать мнимые числа. Ух ты!

Пример: Решить 5x

2 + 2x + 1 = 0

Коэффициенты равны : a = 5, b = 2, c = 1

Обратите внимание, что дискриминант отрицательный: b 2 — 4ac = 2 2 — 4 × 5 × 1
= −16

Используйте квадратичную формулу : x =
−2 ± √ (−16)
10

√ (−16)
= 4 i
(где i — мнимое число √ − 1)

Итак: x =
−2 ± 4 и
10

Ответ: x = −0.2 ± 0,4 и

График не пересекает ось абсцисс. Вот почему мы пришли к комплексным числам.

В некотором смысле это проще: нам не нужно больше вычислений, просто оставьте -0,2 ± 0,4 i .

Пример: Решить x

2 — 4x + 6,25 = 0

Коэффициенты равны : a = 1, b = −4, c = 6,25

Обратите внимание, что дискриминант отрицательный: b 2 — 4ac = (−4) 2 — 4 × 1 × 6.25
= −9

Используйте квадратичную формулу : x = — (- 4) ± √ (−9) 2

√ (−9) = 3 i
(где i — мнимое число √ − 1)

Итак: x = 4 ± 3 i 2

Ответ: x = 2 ± 1,5 i

График не пересекает ось абсцисс.Вот почему мы пришли к комплексным числам.

НО перевернутое зеркальное отображение нашего уравнения действительно пересекает ось x на уровне 2 ± 1,5 (примечание: отсутствует i ).

Просто интересный факт для вас!

Сводка

  • Квадратичное уравнение в стандартной форме: ax 2 + bx + c = 0
  • Квадратичные уравнения могут быть разложены на множители
  • Квадратичная формула: x =
    −b ± √ (b 2 — 4ac)
    2a

  • Когда дискриминант ( b 2 −4ac ) равен:
    • положительный, есть 2 реальных решения
    • ноль, есть одно реальное решение
    • негатив, есть 2 комплексных решения

Дискриминант — Центр академической поддержки

Что такое дискриминант квадратичной функции и для чего он используется?

Дискриминант квадратичной функции — это значение, определяемое значениями a, b, и c функции.Это значение скажет нам, сколько решений будет у квадратичной. Это также позволяет нам проделать некоторую работу по упрощению квадратной формулы, прежде чем мы начнем решать.

Наша стандартная формула для квадратичной функции:

y = ax 2 + bx + c

Дискриминант — это то же самое, что и часть квадратной формулы, стоящая под корнем (квадратный корень). Вот общая формула дискриминанта.

b 2 -4 ac

Интерпретация дискриминанта

Мы получаем дискриминантную формулу от радикала в квадратной формуле.Наши правила о квадратных корнях гласят, что мы не можем иметь отрицательные числа под корнем, если мы не хотим работать с мнимым числом i . Нам не нужно будет использовать мнимые числа для работы с дискриминантом.

Значение дискриминанта говорит вам, имеет ли квадратичный 2 решения, 1 решение или нет реальных решений.

· Если b 2 — 4 ac упрощается до положительного числа, тогда квадратичная функция имеет 2 решения.

· Если b 2 — 4 ac упрощается до 0, то квадратичная функция имеет 1 решение.

· Если b 2 — 4 ac упрощается до отрицательного числа, то квадратичная функция не имеет действительных решений.

Квадратичная система, имеющая 2 решения, дважды пересечет ось x .

Квадратичная система с одним решением будет касаться оси x своей вершиной.

Квадратичная функция, не имеющая реальных решений, не будет пересекать ось x .

Например,

Используйте дискриминант, чтобы определить, сколько решений будет у квадратичной. Затем используйте формулу корней квадратного уравнения, чтобы найти эти решения.

2 x 2 + 5 x + 3 = 0

· Шаг 1. Найдите свои значения для a , b, и c

o Наша общая формула квадратичного уравнения: ax 2 + bx + c = 0.

§ Это означает, что a = 2, b = 5 и c = 3

§ Убедитесь, что одна часть уравнения равна нулю.Обычно это можно сделать путем сложения или вычитания

· Шаг 2. Подставьте свои значения для a , b и c в дискриминантную формулу и упростите результат

o Дискриминантная формула: b 2 — 4 ac

5 2 — 4 (2) (3)

25–24

1

· Шаг 3: Интерпретируйте результаты.

o Если результат положительный, имеем 2 реальных решения

o Если результат равен нулю, имеем 1 реальное решение

o Если результат отрицательный, у нас нет реальных решений (2 мнимых решения)

§ Наш результат — 1, что является положительным числом.Это означает, что у нас будет 2 решения.

· Шаг 4. Подставьте значения a, b, и c в формулу корней квадратного уравнения, чтобы найти решения уравнения.

Практические задачи

Воспользуйтесь дискриминантом, чтобы определить, сколько реальных решений будет иметь каждая квадратичная функция, а затем используйте формулу корней квадратного уравнения, чтобы найти любые существующие решения.

Добавить комментарий

Ваш адрес email не будет опубликован.