Как искать дискриминант и корни: Дискриминант. Формула дискриминанта.

Содержание

Решение квадратных уравнений. Дискриминант. Формула дискриминанта. ( Дискриминат на 4 и на 1). Теорема Виета. 3 способа.

Квадратным уравнением называется уравнение вида

                 ,

где

x — переменная,

a,b,c — постоянные (числовые) коэффициенты.

В общем случае решение квадратных уравнений сводится к нахождению дискриминанта



Формула дискриминанта: .

       О корнях квадратного уравнения можно судить по знаку дискриминанта (D) :

  • D>0 — уравнение имеет 2 различных вещественных корня
  • D=0 — уравнение имеет 2 совпадающих вещественных корня
  • D<0 — уравнение имеет 2 мнимых корня (для непродвинутых пользователей — корней не имеет)

В общем случае корни уравнения равны:

                 .

Очевидно, в случае с нулевым дискриминантом, оба корня равны

                 .

Если коэффициент при х четный, то имеет смысл вычислять не дискриминант, а четверть дискриминанта:

                

В таком случае корни уравнения вычисляются по формуле:

                

Теорема Виета.

Приведенным квадратным уравнением называется уравнение вида

                ,

то есть квадратное уравнение с единичным коэффициентом при старшем члене.

В этом случае целесообразно применять теорему Виета, которая позволяет получить относительно корней уравнения следующую систему уравнений:

                 .

Следует заметить, что любое квадратное уравнение может стать приведенным, если его поделить на коэффициент при старшем члене, то есть при х2.

Квадратное уравнение

Предварительные навыки

Что такое квадратное уравнение и как его решать?

Мы помним, что уравнение это равенство, содержащее в себе переменную, значение которой нужно найти.

Если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение называют уравнением второй степени или квадратным уравнением.

Например, следующие уравнения являются квадратными:

Решим первое из этих уравнений, а именно x− 4 = 0.

Все тождественные преобразования, которые мы применяли при решении обычных линейных уравнений, можно применять и при решении квадратных.

Итак,  в уравнении x− 4 = 0 перенесем член −4 из левой части в правую часть, изменив знак:

Получили уравнение x= 4. Ранее мы говорили, что уравнение считается решённым, если в одной части переменная записана в первой степени и её коэффициент равен единице, а другая часть равна какому-нибудь числу. То есть чтобы решить уравнение, его следует привести к виду x = a, где a — корень уравнения.

У нас переменная x всё ещё во второй степени, поэтому решение необходимо продолжить.

Чтобы решить уравнение x= 4, нужно ответить на вопрос при каком значении x левая часть станет равна 4. Очевидно, что при значениях 2 и −2. Чтобы вывести эти значения воспользуемся определением квадратного корня.

Число b называется квадратным корнем из числа a, если b= a и обозначается как

У нас сейчас похожая ситуация. Ведь, что такое x= 4? Переменная x в данном случае это квадратный корень из числа 4, поскольку вторая степень x прирáвнена к 4.

Тогда можно записать, что . Вычисление правой части позвóлит узнать чему равно x. Квадратный корень имеет два значения: положительное и отрицательное. Тогда получаем = 2 и = −2.

Обычно записывают так: перед квадратным корнем ставят знак «плюс-минус», затем находят арифметическое значение квадратного корня. В нашем случае на этапе когда записано выражение , перед следует поставить знак ±

Затем найти арифметическое значение квадратного корня

Выражение = ± 2 означает, что = 2 и = −2. То есть корнями уравнения x− 4 = 0 являются числа 2 и −2. Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю. Значит уравнение решено верно.

Решим ещё одно уравнение. Пусть требуется решить квадратное уравнение (+ 2)= 25

Для начала проанализируем данное уравнение. Левая часть возведенá в квадрат и она равна 25. Какое число в квадрате равно 25? Очевидно, что числа 5 и −5

То есть наша задача найти x, при которых выражение + 2 будет равно числам 5 и −5. Запишем эти два уравнения:

Решим оба уравнения. Это обычные линейные уравнения, которые решаются легко:

Значит корнями уравнения (+ 2)= 25 являются числа 3 и −7.

В данном примере как и в прошлом можно использовать определение квадратного корня. Так, в уравнения (+ 2)= 25 выражение (+ 2) представляет собой квадратный корень из числа 25. Поэтому можно cначала записать, что .

Тогда правая часть станет равна ±5. Полýчится два уравнения: + 2 = 5 и + 2 = −5. Решив по отдельности каждое из этих уравнений мы придём к корням 3 и −7.

Запишем полностью решение уравнения (+ 2)= 25

Из рассмотренных примеров видно, что квадратное уравнение имеет два корня. Чтобы не забыть о найденных корнях, переменную x можно подписывать нижними индексами. Так, корень 3 можно обозначить через x1, а корень −7 через x2

В предыдущем примере тоже можно было сделать так. Уравнение x− 4 = 0 имело корни 2 и −2. Эти корни можно было обозначить как x= 2 и x= −2. 

Бывает и так, что квадратное уравнение имеет только один корень или вовсе не имеет корней. Такие уравнения мы рассмотрим позже.

Сделаем проверку для уравнения (+ 2)= 25. Подставим в него корни 3 и −7. Если при значениях 3 и −7 левая часть равна 25, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна 25. Значит уравнение решено верно.

Квадратное уравнение бывает дано в разном виде. Наиболее его распространенная форма выглядит так:

ax2 + bx + c = 0,
где a, b, c — некоторые числа, x — неизвестное.

Это так называемый общий вид квадратного уравнения. В таком уравнении все члены собраны в общем месте (в одной части), а другая часть равна нулю. По другому такой вид уравнения называют нормальным видом квадратного уравнения.

Пусть дано уравнение 3x+ 2= 16. В нём переменная x возведенá во вторую степень, значит уравнение является квадратным. Приведём данное уравнение к общему виду.

Итак, нам нужно получить уравнение, которое будет похоже на уравнение axbx = 0. Для этого в уравнении 3x+ 2= 16 перенесем 16 из правой части в левую часть, изменив знак:

3x2 + 2x − 16 = 0

Получили уравнение 3x+ 2− 16 = 0. В этом уравнении = 3, = 2, = −16.

В квадратном уравнении вида axbx = 0 числа a, b и c имеют собственные названия. Так, число a называют первым или старшим коэффициентом; число b называют вторым коэффициентом; число c называют свободным членом.

В нашем случае для уравнения 3x+ 2− 16 = 0 первым или старшим коэффициентом является 3; вторым коэффициентом является число 2;  свободным членом является число −16. Есть ещё другое общее название для чисел a, b и c — параметры.

Так, в уравнении 3x+ 2− 16 = 0 параметрами являются числа 3, 2 и −16.

В квадратном уравнении желательно упорядочивать члены так, чтобы они располагались в таком же порядке как у нормального вида квадратного уравнения.

Например, если дано уравнение −5 + 4x= 0, то его желательно записать в нормальном виде, то есть в виде ax2+ bx + c = 0.

В уравнении −5 + 4xx = 0 видно, что свободным членом является −5, он должен располагаться в конце левой части. Член 4x2 содержит старший коэффициент, он должен располагаться первым. Член x соответственно будет располагаться вторым:

Квадратное уравнение в зависимости от случая может принимать различный вид. Всё зависит от того, чему равны значения a, b и с.

Если коэффициенты a, b и c не равны нулю, то квадратное уравнение называют полным. Например, полным является квадратное уравнение 2x+ 6x − 8 = 0.

Если какой-то из коэффициентов равен нулю (то есть отсутствует), то уравнение значительно уменьшается и принимает более простой вид. Такое квадратное уравнение называют неполным. Например, неполным является квадратное уравнение 2x+ 6= 0, в нём имеются коэффициенты a и b (числа 2 и 6), но отсутствует свободный член c.

Рассмотрим каждый из этих видов уравнений, и для каждого из этих видов определим свой способ решения.

Пусть дано квадратное уравнение 2x+ 6x − 8 = 0. В этом уравнении = 2, = 6, = −8. Если b сделать равным нулю, то уравнение примет вид:

Получилось уравнение 2x− 8 = 0. Чтобы его решить перенесем −8 в правую часть, изменив знак:

2x= 8

Для дальнейшего упрощения уравнения воспользуемся ранее изученными тождественными преобразованиями. В данном случае можно разделить обе части на 2

У нас получилось уравнение, которое мы решали в начале данного урока. Чтобы решить уравнение x= 4, следует воспользоваться определением квадратного корня. Если x= 4, то . Отсюда = 2 и = −2.

Значит корнями уравнения 2x− 8 = 0 являются числа 2 и −2. Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 2 и −2 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 2 и −2 левая часть равна нулю, то это будет означать, что уравнение решено верно:

В обоих случаях левая часть равна нулю, значит уравнение решено верно.

Уравнение, которое мы сейчас решили, является неполным квадратным уравнением. Название говорит само за себя. Если полное квадратное уравнение выглядит как axbx = 0, то сделав коэффициент b нулём получится неполное квадратное уравнение ax= 0.

У нас тоже сначала было полное квадратное уравнение 2x+ 6− 4 = 0. Но мы сделали коэффициент b нулем, то есть вместо числа 6 поставили 0. В результате уравнение обратилось в неполное квадратное уравнение 2x− 4 = 0.

В начале данного урока мы решили квадратное уравнение x− 4 = 0. Оно тоже является уравнением вида ax= 0, то есть неполным. В нем = 1, = 0, с = −4.

Также, неполным будет квадратное уравнение, если коэффициент c равен нулю.

Рассмотрим полное квадратное уравнение 2x+ 6x − 4 = 0. Сделаем коэффициент c нулём. То есть вместо числа 4 поставим 0

Получили квадратное уравнение 2x+ 6x=0, которое является неполным. Чтобы решить такое уравнение, переменную x выносят за скобки:

Получилось уравнение x(2+ 6) = 0 в котором нужно найти x, при котором левая часть станет равна нулю. Заметим, что в этом уравнении выражения x и (2+ 6) являются сомножителями. Одно из свойств умножения говорит, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

В нашем случае равенство будет достигаться, если x будет равно нулю или (2+ 6) будет равно нулю. Так и запишем для начала:

Получилось два уравнения: = 0 и 2+ 6 = 0. Первое уравнение решать не нужно — оно уже решено. То есть первый корень равен нулю.

Чтобы найти второй корень, решим уравнение 2+ 6 = 0. Это обычное линейное уравнение, которое решается легко:

Видим, что второй корень равен −3.

Значит корнями уравнения 2x+ 6= 0 являются числа 0 и −3. Запишем полностью решение данного уравнения:

Выполним проверку. Подставим корни 0 и −3 в исходное уравнение и выполним соответствующие вычисления. Если при значениях 0 и −3 левая часть равна нулю, то это будет означать, что уравнение решено верно:

Следующий случай это когда числа b и с равны нулю. Рассмотрим полное квадратное уравнение 2x+ 6− 4 = 0. Сделаем коэффициенты b и c нулями. Тогда уравнение примет вид:

Получили уравнение 2x= 0. Левая часть является произведением, а правая часть равна нулю. Произведение равно нулю, если хотя бы один из сомножителей равен нулю. Очевидно, что = 0. Действительно, 2 × 0= 0. Отсюда, 0 = 0. При других значениях x равенства достигаться не будет.

Проще говоря, если в квадратном уравнении вида axbx = 0 числа b и с равны нулю, то корень такого уравнения равен нулю.

Отметим, что когда употребляются словосочетания «b равно нулю» или «с равно нулю«, то подразумевается, что параметры b или c вовсе отсутствуют в уравнении.

Например, если дано уравнение 2x− 32 = 0, то мы говорим, что = 0. Потому что если сравнить с полным уравнением axbx = 0, то можно заметить, что в уравнении 2x− 32 = 0 присутствует старший коэффициент a, равный 2; присутствует свободный член −32; но отсутствует коэффициент b.

Наконец, рассмотрим полное квадратное уравнение axbx = 0. В качестве примера решим квадратное уравнение x− 2+ 1 = 0.

Итак, требуется найти x, при котором левая часть станет равна нулю. Воспользуемся изученными ранее тождественными преобразованиями.

Прежде всего заметим, что левая часть уравнения представляет собой квадрат разности двух выражений. Если мы вспомним как раскладывать многочлен на множители, то получим в левой части (− 1)2.

Рассуждаем дальше. Левая часть возведенá в квадрат и она равна нулю. Какое число в квадрате равно нулю? Очевидно, что только 0. Поэтому наша задача найти x, при котором выражение − 1 равно нулю. Решив простейшее уравнение − 1 = 0, можно узнать чему равно x

Этот же результат можно получить, если воспользоваться квадратным корнем. В уравнении (− 1)= 0 выражение (− 1) представляет собой квадратный корень из нуля. Тогда можно записать, что . В этом примере записывать перед корнем знак ± не нужно, поскольку корень из нуля имеет только одно значение — ноль. Тогда получается − 1 = 0. Отсюда = 1.

Значит корнем уравнения x− 2+ 1 = 0 является единица. Других корней у данного уравнения нет. В данном случае мы решили квадратное уравнение, имеющее только один корень. Такое тоже бывает.

Не всегда бывают даны простые уравнения. Рассмотрим например уравнение x+ 2− 3 = 0.

В данном случае левая часть уже не является квадратом суммы или разности. Поэтому нужно искать другие пути решения.

Заметим, что левая часть уравнения представляет собой квадратный трехчлен. Тогда можно попробовать выделить полный квадрат из этого трёхчлена и посмотреть что это нам даст.

Выделим полный квадрат из квадратного трёхчлена, располагающего в левой части уравнения:

В получившемся уравнении перенесем −4 в правую часть, изменив знак:

Теперь воспользуемся квадратным корнем. В уравнении (+ 1)= 4 выражение (+ 1) представляет собой квадратный корень из числа 4. Тогда можно записать, что . Вычисление правой части даст выражение + 1 = ±2. Отсюда полýчится два уравнения: + 1 = 2 и + 1 = −2, корнями которых являются числа 1 и −3

Значит корнями уравнения x+ 2− 3 = 0 являются числа 1 и −3.

Выполним проверку:


Пример 3. Решить уравнение x− 6+ 9 = 0, выделив полный квадрат.

Выделим полный квадрат из левой части:

Далее воспользуемся квадратным корнем и узнáем чему равно x

Значит корнем уравнения x− 6+ 9 = 0 является 3. Выполним проверку:


Пример 4. Решить квадратное уравнение 4x+ 28− 72 = 0, выделив полный квадрат:

Выделим полный квадрат из левой части:

Перенесём −121 из левой части в правую часть, изменив знак:

Воспользуемся квадратным корнем:

Получили два простых уравнения: 2+ 7 = 11 и 2+ 7 = −11. Решим их:


Пример 5. Решить уравнение 2x+ 3− 27 = 0

Это уравнение немного посложнее. Когда мы выделяем полный квадрат, первый член квадратного трёхчлена мы представляем в виде квадрата какого-нибудь выражения.

Так, в прошлом примере первым членом уравнения был 4x2. Его можно было представить в виде квадрата выражения 2x, то есть (2x)= 22x= 4x2. Чтобы убедиться что это правильно, можно извлечь квадратный корень из выражения 4x2. Это квадратный корень из произведения — он равен произведению корней:

В уравнении 2x+ 3− 27 = 0 первый член это 2x2. Его нельзя представить в виде квадрата какого-нибудь выражения. Потому что нет числá, квадрат которого равен 2. Если бы такое число было, то этим числом был бы квадратный корень из числа 2. Но квадратный корень из числа 2 извлекается только приближённо. А приближённое значение не годится для представления числá 2 в виде квадрата.

Если обе части исходного уравнения умножить или разделить на одно и то же число, то полýчится уравнение равносильное исходному. Это правило сохраняется и для квадратного уравнения.

Тогда можно разделить обе части нашего уравнения на 2. Это позвóлит избавиться от двойки перед x2 что впоследствии даст нам возможность выделить полный квадрат:

Перепишем левую часть в виде трёх дробей со знаменателем 2

Сократим первую дробь на 2. Остальные члены левой части перепишем без изменений. Правая часть по-прежнему станет равна нулю:

Выделим полный квадрат.

При представлении члена в виде удвоенного произведения, появление множителя 2 привело бы к тому, что этот множитель и знаменатель дроби сократились бы. Чтобы этого не произошло, удвоенное произведение было домножено на . При выделении полного квадрата всегда нужно стараться сделать так, чтобы значение изначального выражения не изменилось.

Свернём полученный полный квадрат:

Приведём подобные члены:

Перенесём дробь в правую часть, изменив знак:

Воспользуемся квадратным корнем. Выражение представляет собой квадратный корень из числа

Для вычисления правой части воспользуемся правилом извлечения квадратного корня из дроби:

Тогда наше уравнение примет вид:

Полýчим два уравнения:

Решим их:

Значит корнями уравнения 2x+ 3− 27 = 0 являются числа 3 и .

Корень удобнее оставить в таком виде, не выполняя деления числителя на знаменатель. Так проще будет выполнять проверку.

Выполним проверку. Подставим найденные корни в исходное уравнение:

В обоих случаях левая часть равна нулю, значит уравнение 2x+ 3− 27 = 0 решено верно.

Решая уравнение 2x+ 3− 27 = 0, в самом начале мы разделили обе его части на 2. В результате получили квадратное уравнение, в котором коэффициент перед x2 равен единице:

Такой вид квадратного уравнения называют приведённым квадратным уравнением.

Любое квадратное уравнение вида axbx = 0 можно сделать приведённым. Для этого нужно разделить обе его части на коэффициент, который располагается перед x². В данном случае обе части уравнения axbx = 0 нужно разделить на a


Пример 6. Решить квадратное уравнение 2x+ 2 = 0

Сделаем данное уравнение приведённым:

Выделим полный квадрат:

Получили уравнение , в котором квадрат выражения равен отрицательному числу . Такого быть не может, поскольку квадрат любого числа или выражения всегда положителен.

Следовательно, нет такого значения x, при котором левая часть стала бы равна . Значит уравнение не имеет корней.

А поскольку уравнение равносильно исходному уравнению 2x+ 2 = 0, то и оно (исходное уравнение) не имеет корней.


Формулы корней квадратного уравнения

Выделять полный квадрат для каждого решаемого квадратного уравнения не очень удобно.

Можно ли создать универсальные формулы для решения квадратных уравнений? Оказывается можно. Сейчас мы этим и займёмся.

Взяв за основу буквенное уравнение axbx = 0, и выполнив некоторые тождественные преобразования, мы сможем получить формулы для вывода корней квадратного уравнения axbx = 0. В эти формулы можно будет подставлять коэффициенты a, b, с и получать готовые решения.

Итак, выделим полный квадрат из левой части уравнения axbx = 0. Сначала сделаем данное уравнение приведённым. Разделим обе его части на a

Теперь в получившемся уравнении выделим полный квадрат:

Перенесем члены и в правую часть, изменив знак:

Приведём правую часть к общему знаменателю. Дроби, состоящие из букв, привóдят к общему знаменателю методом «крест-нáкрест». То есть знаменатель первой дроби станóвится дополнительным множителем второй дроби, а знаменатель второй дроби станóвится дополнительным множителем первой дроби:

В числителе правой части вынесем за скобки a

Сократим правую часть на a

Поскольку все преобразования были тождественными, то получившееся уравнение имеет те же корни, что и исходное уравнение axbx = 0.

Уравнение будет иметь корни только тогда, если правая часть больше нуля или равна нулю. Это потому что в левой части выполнено возведéние в квадрат, а квадрат любого числа положителен или равен нулю (если в этот квадрат возвóдится ноль). А чему будет равна правая часть зависит от того, что будет подставлено вместо переменных a, b и c.

Поскольку при любом a не рáвным нулю, знаменатель правой части уравнения всегда будет положительным, то знак дроби будет зависеть от знака её числителя, то есть от выражения b− 4ac.

Выражение b− 4ac называют дискриминантом квадратного уравнения. Дискриминант это латинское слово, означающее различитель. Дискриминант квадратного уравнения обозначается через букву D

D = b2 4ac

Дискриминант позволяет заранее узнать имеет ли уравнение корни или нет. Так, в предыдущем задании мы долго решали уравнение 2x+ 2 = 0 и оказалось, что оно не имеет корней. Дискриминант же позволил бы нам заранее узнать, что корней нет. В уравнении 2x+ 2 = 0 коэффициенты a, b и c равны 2, 1 и 2 соответственно. Подставим их в формулу D = b2−4ac

D = b2 − 4ac = 12 − 4 × 2 × 2 = 1 − 16 = −15.

Видим, что D (оно же b− 4ac) является отрицательным числом. Тогда нет смысла решать уравнение 2x+ 2 = 0, выделяя в нём полный квадрат, потому что когда мы дойдем до уравнения вида , окажется что правая часть станет меньше нуля (из-за отрицательного дискриминанта). А квадрат числа не может быть отрицательным. Следовательно, корней у данного уравнения не будет.

Станóвится понятно почему древние люди считали выражение b− 4ac различителем. Это выражение подобно индикатору позволяет различить уравнение имеющего корни от уравнения, не имеющего корней.

Итак, D равно b− 4ac. Подставим в уравнении вместо выражения b− 4ac букву D

Если дискриминант исходного уравнения окажется меньше нуля (< 0), то уравнение примет вид:

В этом случае говорят, что у исходного уравнения корней нет, поскольку квадрат любого числа не должен быть отрицательным.

Если дискриминант исходного уравнения окажется больше нуля (> 0), то уравнение примет вид:

В этом случае уравнение будет иметь два корня. Для их вывода воспользуемся квадратным корнем:

Получили уравнение . Из него полýчится два уравнения: и . Выразим x в каждом из уравнений:

Получившиеся два равенства это и есть универсальные формулы для решения квадратного уравнения axbx = 0. Их называют формулами корней квадратного уравнения.

Чаще всего эти формулы обозначаются как x1 и x2. То есть для вычисления первого корня используется формула c индексом 1; для вывода второго корня — формула с индексом 2. Обозначим свои формулы так же:

Очерёдность применения формул не важнá.

Решим например квадратное уравнение x+ 2− 8 = 0 с помощью формул корней квадратного уравнения. Коэффициенты данного квадратного уравнения это числа 1, 2 и −8. То есть, = 1, = 2, = −8.

Прежде чем использовать формулы корней квадратного уравнения, нужно найти дискриминант этого уравнения.

Найдём дискриминант квадратного уравнения. Для этого воспользуемся формулой D = b2 4ac. Вместо переменных a, b и c у нас будут коэффициенты уравнения x+ 2− 8 = 0

D = b2 4ac = 22− 4 × 1 × (−8) = 4 + 32 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Теперь можно воспользоваться формулами корней квадратного уравнения:

Значит корнями уравнения x+ 2− 8 = 0 являются числа 2 и −4. Проверкой убеждаемся, что корни найдены верно:

Наконец, рассмотрим случай когда дискриминант квадратного уравнения равен нулю. Вернёмся к уравнению . Если дискриминант равен нулю, то правая часть уравнения примет вид:

И в этом случае квадратное уравнение будет иметь только один корень. Воспользуемся квадратным корнем:

Далее выражаем x

Это ещё одна формула для вывода корня квадратного корня. Рассмотрим её применение. Ранее мы решили уравнение x− 6+ 9 = 0, имеющее один корень 3. Решили мы его методом выделения полного квадрата. Теперь попробуем решить с помощью формул.

Найдём дискриминант квадратного уравнения. В этом уравнении = 1, = −6, = 9. Тогда по формуле дискриминанта имеем:

D = b2 4ac = (−6)− 4 × 1 × 9 = 36 − 36 = 0

Дискриминант равен нулю (= 0). Это означает, что уравнение имеет только один корень, и вычисляется он по формуле

Значит корнем уравнения x− 6+ 9 = 0 является число 3.

Для квадратного уравнения, имеющего один корень также применимы формулы и . Но применение каждой из них будет давать один и тот же результат.

Применим эти две формулы для предыдущего уравнения. В обоих случаях получим один и тот же ответ 3

Если квадратное уравнение имеет только один корень, то желательно применять формулу , а не формулы и . Это позволяет сэкономить время и место.


Пример 3. Решить уравнение 5x− 6+ 1 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения 5x− 6+ 1 = 0 являются числа 1 и .

Ответ: 1; .


Пример 4. Решить уравнение x+ 4+ 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант равен нулю. Значит уравнение имеет только один корень. Он вычисляется по формуле

Значит корнем уравнения x+ 4+ 4 = 0 является число −2.

Ответ: −2.


Пример 5. Решить уравнение 3x+ 2+ 4 = 0

Найдём дискриминант квадратного уравнения:

Дискриминант меньше нуля. Значит корней у данного уравнения нет.

Ответ: корней нет.


Пример 6. Решить уравнение (+ 4)= 3+ 40

Приведём данное уравнение к нормальному виду. В левой части располагается квадрата суммы двух выражений. Раскрóем его:

Перенесём все члены из правой части в левую часть, изменив их знаки. В правой части останется ноль:

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения (+ 4)= 3+ 40 являются числа 3 и −8.

Ответ: 3; −8.


Пример 7. Решить уравнение

Умнóжим обе части данного уравнения на 2. Это позвóлит нам избавиться от дроби в левой части:

В получившемся уравнении перенесём 22 из правой части в левую часть, изменив знак. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа 23 и −1.

Ответ: 23; −1.


Пример 8. Решить уравнение

Умнóжим обе части на наименьшее общее кратное знаменателей обеих дробей. Это позвóлит избавиться от дробей в обеих частях. Наименьшее общее кратное чисел 2 и 3 это число 6. Тогда получим:

В получившемся уравнении раскроем скобки в обеих частях:

Теперь перенесём все члены из правой части в левую часть, изменив у них знаки. В правой части останется 0

Приведём подобные члены в левой части:

В получившемся уравнении найдём дискриминант:

Дискриминант больше нуля. Значит уравнение имеет два корня. Воспользуемся формулами корней квадратного уравнения:

Значит корнями уравнения являются числа и 2.


Примеры решения квадратных уравнений

Пример 1. Решить уравнение x= 81

Это простейшее квадратное уравнение, в котором надо определить число, квадрат которого равен 81. Таковыми являются числа 9 и −9. Воспользуемся квадратным корнем для их вывода:

Ответ: 9, −9.


Пример 2. Решить уравнение x− 9 = 0

Это неполное квадратное уравнение. Для его решения нужно перенести член −9 в правую часть, изменив знак. Тогда получим:

Ответ: 3, −3.


Пример 3. Решить уравнение x− 9= 0

Это неполное квадратное уравнение. Для его решения сначала нужно вынести x за скобки:

Левая часть уравнения является произведением. Произведение равно нулю, если хотя один из сомножителей равен нулю.

Левая часть станет равна нулю, если отдельно x равно нулю, или если выражение − 9 равно нулю. Получится два уравнения, одно из которых уже решено:

Ответ: 0, 9.


Пример 4. Решить уравнение x+ 4− 5 = 0

Это полное квадратное уравнение. Его можно решить методом выделения полного квадрата или с помощью формул корней квадратного уравнения.

Решим данное уравнение с помощью формул. Сначала найдём дискриминант:

D = b− 4ac = 4− 4 × 1 × (−5) = 16 + 20 = 36

Дискриминант больше нуля. Значит уравнение имеет два корня. Вычислим их:

Ответ: 1, −5.


Пример 5. Решить уравнение

Умнóжим обе части на наименьшее общее кратное чисел 5, 3 и 6. Это позвóлит избавиться от дробей в обеих частях:

В получившемся уравнении перенесём все члены из правой части в левую часть, изменив знак. В правой части останется ноль:

Приведём подобные члены:

Решим получившееся уравнение с помощью формул:

Ответ: 5, .


Пример 6. Решить уравнение x= 6

В данном примере как и в первом нужно воспользоваться квадратным корнем:

Однако, квадратный корень из числа 6 не извлекается. Он извлекается только приближённо. Корень можно извлечь с определённой точностью. Извлечём его с точностью до сотых:

Но чаще всего корень оставляют в виде радикала:

Ответ:


Пример 7. Решить уравнение (2+ 3)+ (− 2)= 13

Раскроем скобки в левой части уравнения:

В получившемся уравнении перенесём 13 из правой части в левую часть, изменив знак. Затем приведём подобные члены:

Получили неполное квадратное уравнение. Решим его:

Ответ: 0, −1,6.


Пример 8. Решить уравнение (5 + 7x)(4 − 3x) = 0

Данное уравнение можно решить двумя способами. Рассмотрим каждый из них.

Первый способ. Раскрыть скобки и получить нормальный вид квадратного уравнения.

Раскроем скобки:

Приведём подобные члены:

Перепишем получившееся уравнение так, чтобы член со старшим коэффициентом располагался первым, член со вторым коэффициентом — вторым, а свободный член располагался третьим:

Чтобы старший член стал положительным, умнóжим обе части уравнения на −1. Тогда все члены уравнения поменяют свои знаки на противоположные:

Решим получившееся уравнение с помощью формул корней квадратного уравнения:

Второй способ. Найти значения x, при которых сомножители левой части уравнения равны нулю. Этот способ удобнее и намного короче.

Произведение равно нулю, если хотя бы один из сомножителей равен нулю. В данном случае равенство в уравнении (5 + 7x)(4 − 3x) = 0 будет достигаться, если выражение (5 + 7x) равно нулю, или же выражение (4 − 3x) равно нулю. Наша задача выяснить при каких x это происходит:


Примеры решения задач

Предстáвим, что возникла необходимость построить небольшую комнату, площадь которой 8 м2. При этом длина комнаты должна быть в два раза больше её ширины. Как определить длину и ширину такой комнаты?

Сделаем примерный рисунок этой комнаты, который иллюстрирует вид сверху:

Обозначим ширину комнаты через x. А длину комнаты через 2x, потому что по условию задачи длина должна быть в два раза больше ширины. Множитель 2 и выполнит это требование:

Поверхность комнаты (её пол) является прямоугольником. Для вычисления площади прямоугольника, нужно длину данного прямоугольника умножить на его ширину. Сделаем это:

2x × x

По условию задачи площадь должна быть 8 м2. Значит выражение 2× x следует приравнять к 8

2x × x = 8

Получилось уравнение. Если решить его, то можно найти длину и ширину комнаты.

Первое что можно сделать это выполнить умножение в левой части уравнения:

2x2 = 8

В результате этого преобразования переменная x перешла во вторую степень. А мы говорили, что если переменная, входящая в уравнение, возведенá во вторую степень (в квадрат), то такое уравнение является уравнением второй степени или квадратным уравнением.

Для решения нашего квадратного уравнения воспользуемся изученными ранее тождественными преобразованиями. В данном случае можно разделить обе части на 2

Теперь воспользуемся квадратным корнем. Если x= 4, то . Отсюда = 2 и = −2.

Через x была обозначена ширина комнаты. Ширина не должна быть отрицательной, поэтому в расчёт берём только значение 2. Такое часто бывает при решении задачи, в которых применяется квадратное уравнение. В ответе получаются два корня, но условию задачи удовлетворяет только один из них.

А длина была обозначена через 2x. Значение x теперь известно, подставим его в выражение 2x и вычислим длину:

2x = 2 × 2 = 4

Значит длина равна 4 м, а ширина 2 м. Это решение удовлетворяет условию задачи, поскольку площадь комнаты равна 8 м2

4 × 2 = 8 м2

Ответ: длина комнаты составляет 4 м, а ширина 2 м.


Пример 2. Огородный участок, имеющий форму прямоугольника, одна сторона которого на 10 м больше другой, требуется обнести изгородью. Определить длину изгороди, если известно, что площадь участка равна 1200 м2

Решение

Длина прямоугольника, как правило, больше его ширины. Пусть ширина участка x метров, а длина (+ 10) метров. Площадь участка составляет 1200 м2. Умножим длину участка на его ширину и приравняем к 1200, получим уравнение:

x(x + 10) = 1200

Решим данное уравнение. Для начала раскроем скобки в левой части:

Перенесём 1200 из правой части в левую часть, изменив знак. В правой части останется 0

Решим получившееся уравнение с помощью формул:

Несмотря на то, что квадратное уравнение имеет два корня, в расчёт берём только значение 30. Потому что ширина не может выражаться отрицательным числом.

Итак, через x была обозначена ширина участка. Она равна тридцати метрам. А длина была обозначена через выражение + 10. Подставим в него найденное значение x и вычислим длину:

x + 10 = 30 + 10 = 40 м

Значит длина участка составляет сорок метров, а ширина тридцать метров. Эти значения удовлетворяют условию задачи, поскольку если перемножить длину и ширину (числа 40 и 30) получится 1200 м2

40 × 30 = 1200 м2

Теперь ответим на вопрос задачи. Какова длина изгороди? Чтобы её вычислить нужно найти периметр участка.

Периметр прямоугольника это сумма всех его сторон. Тогда:

P = 2(a + b) = 2 × (40 + 30) = 2 × 70 = 140 м.

Ответ: длина изгороди огородного участка составляет 140 м.


Задания для самостоятельного решения

Задание 1. Решить уравнение:

Решение:

Ответ: 2; −2.

Задание 2. Решить уравнение:

Решение:

Ответ: корней нет.

Задание 3. Решить уравнение:

Решение:

Ответ: 3; −3.

Задание 4. Решить уравнение, используя выделение полного квадрата:

Решение:

Ответ: 3; −13.

Задание 5. Решить уравнение, используя выделение полного квадрата:

Решение:

Ответ: 12; 4.

Задание 6. Решить уравнение, используя выделение полного квадрата:

Решение:

Ответ: 7; 5.

Задание 7. Решить уравнение:

Решение:

Ответ: 0; 1.

Задание 8. Решить уравнение:

Решение:

Ответ: 0; −3.

Задание 9. Решить уравнение:

Решение:

Ответ: 7; −7.

Задание 10. Решить уравнение:

Решение:

Ответ:

Задание 11. Решить уравнение:

Решение:

Ответ: 5; −5.

Задание 12. Решить уравнение:

Решение:

Ответ: 7; 2

Задание 13. Решить уравнение:

Решение:

Ответ: корней нет.

Задание 14. Решить уравнение:

Решение:

Ответ:

Задание 15. Решить уравнение:

Решение:

Ответ: 1; −5.

Задание 16. Решить уравнение:

Решение:

Ответ: 5; −9.

Задание 17. Решить уравнение:

Решение:

Ответ: −3; −4.

Задание 18. Решить уравнение:

Решение:

Ответ: .


Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках



Возникло желание поддержать проект?
Используй кнопку ниже

Навигация по записям

Решение квадратных уравнений: формула корней, дискриминант, график

Квадратное уравнение – это математическое уравнение, которое в общем виде выглядит так:

ax+ bx + c = 0

Это многочлен второго порядка с 3 коэффициентами:

  • a – старший (первый) коэф., не должен быть равен 0;
  • b – средний (второй) коэф.;
  • c – свободный элемент.

Решением квадратного уравнения является нахождение двух чисел (его корней) – x1 и x2.

Формула для вычисления корней

Для нахождения корней квадратного уравнения используется формула:

Выражение внутри квадратного корня называется дискриминантом и обозначается буквой D (или Δ):

D = b2 – 4ac

Таким образом, формула для вычисления корней может быть представлена разными способами:

1. Если D>0, у уравнения есть 2 корня:

2. Если D=0, уравнение имеет всего один корень:

3. Если D<0, вещественных корней нет, но есть комплексные:

Решений квадратных уравнений

Пример 1

3x2+5x+2 = 0

Решение:

a = 3, b = 5, c = 2

x= (-5 + 1)/6 = -4/6 = -2/3
x= (-5 – 1)/6  = -6/6 = -1

Пример 2

3x2-6x+3 = 0

Решение:

a = 3, b = -6, c = 3

x= x= 1

Пример 3

x2+2x+5 = 0

Решение:

a = 1, b = 2, c = 5

В данном случае нет вещественных корней, а решением являются комплексные числа:

x= -1 + 2i
x= -1 – 2i

График квадратичной функции

Графиком квадратичной функции является парабола.

f(x) = ax2 + bx + c

  • Корни квадратного уравнения – это точки пересечения параболы с осью абцисс (X).
  • Если корень один – парабола касается оси в одной точке, не пересекая ее.
  • При отсутствии вещественных корней (наличии комплексных), график с осю X не соприкасается.

Решение квадратных уравнений через д1. Решение квадратных уравнений с помощью дискриминанта. Квадратные уравнения. Дискриминант. Решение, примеры

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax
2 + bx
+ c
= 0, где коэффициенты a
, b
и c
— произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант
.

Дискриминант

Пусть дано квадратное уравнение ax
2 + bx
+ c
= 0. Тогда дискриминант — это просто число D
= b
2 − 4ac
.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D
  2. Если D
    = 0, есть ровно один корень;
  3. Если D
    > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x
    2 − 8x
    + 12 = 0;
  2. 5x
    2 + 3x
    + 7 = 0;
  3. x
    2 − 6x
    + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a
= 1, b
= −8, c
= 12;
D
= (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a
= 5; b
= 3; c
= 7;
D
= 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a
= 1; b
= −6; c
= 9;
D
= (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D
> 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D
= 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D

  1. x
    2 − 2x
    − 3 = 0;
  2. 15 − 2x
    − x
    2 = 0;
  3. x
    2 + 12x
    + 36 = 0.

Первое уравнение:
x
2 − 2x
− 3 = 0 ⇒ a
= 1; b
= −2; c
= −3;
D
= (−2) 2 − 4 · 1 · (−3) = 16.

D
> 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x
− x
2 = 0 ⇒ a
= −1; b
= −2; c
= 15;
D
= (−2) 2 − 4 · (−1) · 15 = 64.

D
> 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x
2 + 12x
+ 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x
    2 + 9x
    = 0;
  2. x
    2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax
2 + bx
+ c
= 0 называется неполным квадратным уравнением, если b
= 0 или c
= 0, т.е. коэффициент при переменной x
или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b
= c
= 0. В этом случае уравнение принимает вид ax
2 = 0. Очевидно, такое уравнение имеет единственный корень: x
= 0.

Рассмотрим остальные случаи. Пусть b
= 0, тогда получим неполное квадратное уравнение вида ax
2 + c
= 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c
/a
) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax
    2 + c
    = 0 выполнено неравенство (−c
    /a
    ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c
    /a
    )

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c
/a
) ≥ 0. Достаточно выразить величину x
2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax
2 + bx
= 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x
    2 − 7x
    = 0;
  2. 5x
    2 + 30 = 0;
  3. 4x
    2 − 9 = 0.

x
2 − 7x
= 0 ⇒ x
· (x
− 7) = 0 ⇒ x
1 = 0; x
2 = −(−7)/1 = 7.

5x
2 + 30 = 0 ⇒ 5x
2 = −30 ⇒ x
2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x
2 − 9 = 0 ⇒ 4x
2 = 9 ⇒ x
2 = 9/4 ⇒ x
1 = 3/2 = 1,5; x
2 = −1,5.

Надеюсь, изучив данную статью, вы научитесь находить корни полного квадратного уравнения.

С помощью дискриминанта решаются только полные квадратные уравнения, для решения неполных квадратных уравнений используют другие методы, которые вы найдете в статье «Решение неполных квадратных уравнений».

Какие же квадратные уравнения называются полными? Это уравнения вида ах 2 + b x + c = 0
, где коэффициенты a, b и с не равны нулю. Итак, чтобы решить полное квадратное уравнение, надо вычислить дискриминант D.

D = b 2 – 4ас.

В зависимости от того какое значение имеет дискриминант, мы и запишем ответ.

Если дискриминант отрицательное число (D

Если же дискриминант равен нулю, то х = (-b)/2a. Когда дискриминант положительное число (D > 0),

тогда х 1 = (-b — √D)/2a , и х 2 = (-b + √D)/2a .

Например. Решить уравнение х 2
– 4х + 4= 0.

D = 4 2 – 4 · 4 = 0

x = (- (-4))/2 = 2

Ответ: 2.

Решить уравнение 2х 2

+ х + 3 = 0.

D = 1 2 – 4 · 2 · 3 = – 23

Ответ: корней нет
.

Решить уравнение 2х 2

+ 5х – 7 = 0
.

D = 5 2 – 4 · 2 · (–7) = 81

х 1 = (-5 — √81)/(2·2)= (-5 — 9)/4= – 3,5

х 2 = (-5 + √81)/(2·2) = (-5 + 9)/4=1

Ответ: – 3,5 ; 1
.

Итак представим решение полных квадратных уравнений схемой на рисунке1.

По этим формулам можно решать любое полное квадратное уравнение. Нужно только внимательно следить за тем, чтобы уравнение было записано многочленом стандартного вида

ах 2


+ bx + c,
иначе можно допустить ошибку. Например, в записи уравнения х + 3 + 2х 2 = 0, ошибочно можно решить, что

а = 1, b = 3 и с = 2. Тогда

D = 3 2 – 4 · 1 · 2 = 1 и тогда уравнение имеет два корня. А это неверно. (Смотри решение примера 2 выше).

Поэтому, если уравнение записано не многочленом стандартного вида, вначале полное квадратное уравнение надо записать многочленом стандартного вида (на первом месте должен стоять одночлен с наибольшим показателем степени, то есть ах 2



, затем с меньшим
bx
, а затем свободный член с.

При решении приведенного квадратного уравнения и квадратного уравнения с четным коэффициентом при втором слагаемом можно использовать и другие формулы. Давайте познакомимся и с этими формулами. Если в полном квадратном уравнении при втором слагаемом коэффициент будет четным (b = 2k), то можно решать уравнение по формулам приведенным на схеме рисунка 2.

Полное квадратное уравнение называется приведенным, если коэффициент при х 2



равен единице и уравнение примет вид х 2 + px + q = 0
. Такое уравнение может быть дано для решения, либо получается делением всех коэффициентов уравнение на коэффициент а
, стоящий при х 2



.

На рисунке 3 приведена схема решения приведенных квадратных
уравнений. Рассмотрим на примере применение рассмотренных в данной статье формул.

Пример. Решить уравнение

3х 2



+ 6х – 6 = 0.

Давайте решим это уравнение применяя формулы приведенные на схеме рисунка 1.

D = 6 2 – 4 · 3 · (– 6) = 36 + 72 = 108

√D = √108 = √(36 · 3) = 6√3

х 1 = (-6 — 6√3)/(2 · 3) = (6 (-1- √(3)))/6 = –1 – √3

х 2 = (-6 + 6√3)/(2 · 3) = (6 (-1+ √(3)))/6 = –1 + √3

Ответ: –1 – √3; –1 + √3

Можно заметить, что коэффициент при х в этом уравнении четное число, то есть b = 6 или b = 2k , откуда k = 3. Тогда попробуем решить уравнение по формулам, приведенным на схеме рисунка D 1 = 3 2 – 3 · (– 6) = 9 + 18 = 27

√(D 1) = √27 = √(9 · 3) = 3√3

х 1 = (-3 — 3√3)/3 = (3 (-1 — √(3)))/3 = – 1 – √3

х 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Ответ: –1 – √3; –1 + √3
. Заметив, что все коэффициенты в этом квадратном уравнении делятся на 3 и выполнив деление, получим приведенное квадратное уравнение x 2 + 2х – 2 = 0 Решим это уравнение, используя формулы для приведенного квадратного
уравнения рисунок 3.

D 2 = 2 2 – 4 · (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 · 3) = 2√3

х 1 = (-2 — 2√3)/2 = (2 (-1 — √(3)))/2 = – 1 – √3

х 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Ответ: –1 – √3; –1 + √3.

Как видим, при решении этого уравнения по различным формулам мы получили один и тот же ответ. Поэтому хорошо усвоив формулы приведенные на схеме рисунка 1 , вы всегда сможете решить любое полное квадратное уравнение.

сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень…»
И для тех, кто «очень даже…»)

Виды квадратных уравнений

Что такое квадратное уравнение? Как оно выглядит? В термине квадратное уравнение
ключевым словом является «квадратное».
Оно означает, что в уравнении обязательно
должен присутствовать икс в квадрате. Кроме него, в уравнении могут быть (а могут и не быть!) просто икс (в первой степени) и просто число (свободный член).
И не должно быть иксов в степени, больше двойки.

Говоря математическим языком, квадратное уравнение — это уравнение вида:

Здесь a, b и с
– какие-то числа. b и c
– совсем любые, а а
– любое, кроме нуля. Например:

Здесь а
=1; b
= 3; c
= -4

Здесь а
=2; b
= -0,5; c
= 2,2

Здесь а
=-3; b
= 6; c
= -18

Ну, вы поняли…

В этих квадратных уравнениях слева присутствует полный набор
членов. Икс в квадрате с коэффициентом а,
икс в первой степени с коэффициентом b
и свободный член с.

Такие квадратные уравнения называются полными.

А если b
= 0, что у нас получится? У нас пропадёт икс в первой степени.
От умножения на ноль такое случается.) Получается, например:

5х 2 -25 = 0,

2х 2 -6х=0,

-х 2 +4х=0

И т.п. А если уж оба коэффицента, b
и c
равны нулю, то всё ещё проще:

2х 2 =0,

-0,3х 2 =0

Такие уравнения, где чего-то не хватает, называются неполными квадратными уравнениями.
Что вполне логично.) Прошу заметить, что икс в квадрате присутствует во всех уравнениях.

Кстати, почему а
не может быть равно нулю? А вы подставьте вместо а
нолик.) У нас исчезнет икс в квадрате! Уравнение станет линейным. И решается уже совсем иначе…

Вот и все главные виды квадратных уравнений. Полные и неполные.

Решение квадратных уравнений.

Решение полных квадратных уравнений.

Квадратные уравнения решаются просто. По формулам и чётким несложным правилам. На первом этапе надо заданное уравнение привести к стандартному виду, т.е. к виду:

Если уравнение вам дано уже в таком виде — первый этап делать не нужно.) Главное — правильно определить все коэффициенты, а
, b
и c
.

Формула для нахождения корней квадратного уравнения выглядит так:

Выражение под знаком корня называется дискриминант
. Но о нём — ниже. Как видим, для нахождения икса, мы используем только a, b и с
.
Т.е. коэффициенты из квадратного уравнения. Просто аккуратно подставляем значения a, b и с
в эту формулу и считаем. Подставляем со своими знаками!

Например, в уравнении:

а
=1; b
= 3; c
= -4. Вот и записываем:

Пример практически решён:

Это ответ.

Всё очень просто. И что, думаете, ошибиться нельзя? Ну да, как же…

Самые распространённые ошибки – путаница со знаками значений a, b и с
. Вернее, не с их знаками (где там путаться?), а с подстановкой отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы с конкретными числами. Если есть проблемы с вычислениями, так и делайте
!

Предположим, надо вот такой примерчик решить:

Здесь a
= -6;
b
= -5;
c
= -1

Допустим, вы знаете, что ответы у вас редко с первого раза получаются.

Ну и не ленитесь. Написать лишнюю строчку займёт секунд 30. А количество ошибок резко сократится
. Вот и пишем подробно, со всеми скобочками и знаками:

Это кажется невероятно трудным, так тщательно расписывать. Но это только кажется. Попробуйте. Ну, или выбирайте. Что лучше, быстро, или правильно?
Кроме того, я вас обрадую. Через некоторое время отпадёт нужда так тщательно всё расписывать. Само будет правильно получаться. Особенно, если будете применять практические приёмы, что описаны чуть ниже. Этот злой пример с кучей минусов решится запросто и без ошибок!

Но, частенько, квадратные уравнения выглядят слегка иначе. Например, вот так:

Узнали?) Да! Это неполные квадратные уравнения
.

Решение неполных квадратных уравнений.

Их тоже можно решать по общей формуле. Надо только правильно сообразить, чему здесь равняются a, b и с
.

Сообразили? В первом примере a = 1; b = -4;
а c
? Его вообще нет! Ну да, правильно. В математике это означает, что c = 0

! Вот и всё. Подставляем в формулу ноль вместо c,
и всё у нас получится. Аналогично и со вторым примером. Только ноль у нас здесь не с
, а b
!

Но неполные квадратные уравнения можно решать гораздо проще. Безо всяких формул. Рассмотрим первое неполное уравнение. Что там можно сделать в левой части? Можно икс вынести за скобки! Давайте вынесем.

И что из этого? А то, что произведение равняется нулю тогда, и только тогда, когда какой-нибудь из множителей равняется нулю! Не верите? Хорошо, придумайте тогда два ненулевых числа, которые при перемножении ноль дадут!
Не получается? То-то…
Следовательно, можно уверенно записать:
х 1 = 0
, х 2 = 4
.

Всё. Это и будут корни нашего уравнения. Оба подходят. При подстановке любого из них в исходное уравнение, мы получим верное тождество 0 = 0. Как видите, решение куда проще, чем по общей формуле. Замечу, кстати, какой икс будет первым, а какой вторым — абсолютно безразлично. Удобно записывать по порядочку, х 1
— то, что меньше, а х 2
— то, что больше.

Второе уравнение тоже можно решить просто. Переносим 9 в правую часть. Получим:

Остаётся корень извлечь из 9, и всё. Получится:

Тоже два корня.
х 1 = -3
, х 2 = 3
.

Так решаются все неполные квадратные уравнения. Либо с помощью вынесения икса за скобки, либо простым переносом числа вправо с последующим извлечением корня.
Спутать эти приёмы крайне сложно. Просто потому, что в первом случае вам придется корень из икса извлекать, что как-то непонятно, а во втором случае выносить за скобки нечего…

Дискриминант. Формула дискриминанта.

Волшебное слово дискриминант

! Редкий старшеклассник не слышал этого слова! Фраза «решаем через дискриминант» вселяет уверенность и обнадёживает. Потому что ждать подвохов от дискриминанта не приходится! Он прост и безотказен в обращении.) Напоминаю самую общую формулу для решения любых
квадратных уравнений:

Выражение под знаком корня называется дискриминантом. Обычно дискриминант обозначается буквой D
. Формула дискриминанта:

D = b 2 — 4ac

И чем же примечательно это выражение? Почему оно заслужило специальное название? В чём смысл дискриминанта?
Ведь -b,
или 2a
в этой формуле специально никак не называют… Буквы и буквы.

Дело вот в чём. При решении квадратного уравнения по этой формуле, возможны всего три случая.

1. Дискриминант положительный.
Это значит, из него можно извлечь корень. Хорошо корень извлекается, или плохо – вопрос другой. Важно, что извлекается в принципе. Тогда у вашего квадратного уравнения – два корня. Два различных решения.

2. Дискриминант равен нулю.
Тогда у вас получится одно решение. Так как от прибавления-вычитания нуля в числителе ничего не меняется. Строго говоря, это не один корень, а два одинаковых
. Но, в упрощённом варианте, принято говорить об одном решении.

3. Дискриминант отрицательный.
Из отрицательного числа квадратный корень не извлекается. Ну и ладно. Это означает, что решений нет.

Честно говоря, при простом решении квадратных уравнений, понятие дискриминанта не особо-то и требуется. Подставляем в формулу значения коэффициентов, да считаем. Там всё само собой получается, и два корня, и один, и ни одного. Однако, при решении более сложных заданий, без знания смысла и формулы дискриминанта
не обойтись. Особенно — в уравнениях с параметрами. Такие уравнения — высший пилотаж на ГИА и ЕГЭ!)

Итак, как решать квадратные уравнения
через дискриминант вы вспомнили. Или научились, что тоже неплохо.) Умеете правильно определять a, b и с
. Умеете внимательно
подставлять их в формулу корней и внимательно
считать результат. Вы поняли, что ключевое слово здесь – внимательно?

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок. Тех самых, что из-за невнимательности.… За которые потом бывает больно и обидно…

Приём первый

. Не ленитесь перед решением квадратного уравнения привести его к стандартному виду. Что это означает?
Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с.
Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

И опять не бросайтесь! Минус перед иксом в квадрате может здорово вас огорчить. Забыть его легко… Избавьтесь от минуса. Как? Да как учили в предыдущей теме! Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример. Дорешайте самостоятельно.
У вас должны получиться корни 2 и -1.

Приём второй.

Проверяйте корни! По теореме Виета. Не пугайтесь, я всё объясню! Проверяем последнее
уравнение. Т.е. то, по которому мы записывали формулу корней. Если (как в этом примере) коэффициент а = 1
, проверить корни легко. Достаточно их перемножить. Должен получиться свободный член, т.е. в нашем случае -2. Обратите внимание, не 2, а -2! Свободный член со своим знаком

. Если не получилось – значит уже где-то накосячили. Ищите ошибку.

Если получилось — надо сложить корни. Последняя и окончательная проверка. Должен получиться коэффициент b
с противоположным

знаком. В нашем случае -1+2 = +1. А коэффициент b
, который перед иксом, равен -1. Значит, всё верно!
Жаль, что это так просто только для примеров, где икс в квадрате чистый, с коэффициентом а = 1.
Но хоть в таких уравнениях проверяйте! Всё меньше ошибок будет.

Приём третий

. Если в вашем уравнении есть дробные коэффициенты, — избавьтесь от дробей! Домножьте уравнение на общий знаменатель, как описано в уроке «Как решать уравнения? Тождественные преобразования». При работе с дробями ошибки, почему-то так и лезут…

Кстати, я обещал злой пример с кучей минусов упростить. Пожалуйста! Вот он.

Чтобы не путаться в минусах, домножаем уравнение на -1. Получаем:

Вот и всё! Решать – одно удовольствие!

Итак, подытожим тему.

Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно
.

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего уравнения на -1.

3. Если коэффициенты дробные – ликвидируем дроби умножением всего уравнения на соответствующий множитель.

4. Если икс в квадрате – чистый, коэффициент при нём равен единице, решение можно легко проверить по теореме Виета. Делайте это!

Теперь можно и порешать.)

Решить уравнения:

8х 2 — 6x + 1 = 0

х 2 + 3x + 8 = 0

х 2 — 4x + 4 = 0

(х+1) 2 + x + 1 = (x+1)(x+2)

Ответы (в беспорядке):

х 1 = 0

х 2 = 5

х 1,2 =
2

х 1 = 2

х 2 = -0,5

х — любое число

х 1 = -3

х 2 = 3

решений нет

х 1 = 0,25

х 2 = 0,5

Всё сходится? Отлично! Квадратные уравнения — не ваша головная боль. Первые три получились, а остальные — нет? Тогда проблема не в квадратных уравнениях. Проблема в тождественных преобразованиях уравнений. Прогуляйтесь по ссылке, это полезно.

Не совсем получается? Или совсем не получается? Тогда вам в помощь Раздел 555. Там все эти примеры разобраны по косточкам. Показаны главные
ошибки в решении. Рассказывается, разумеется, и о применении тождественных преобразований в решении различных уравнений. Очень помогает!

Если Вам нравится этот сайт…

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся — с интересом!)

можно познакомиться с функциями и производными.

Прежде чем мы узнаем, как найти дискриминант квадратного уравнения вида ax2+bx+c=0 и как найти корни данного уравнения, нам необходимо вспомнить определение квадратного уравнения. Уравнение, которое имеет вид ax 2 + bx + c = 0 (где a,b и c — любые числа, также надо помнить, что a ≠ 0) является квадратным. Все квадратные уравнения мы разделим на три разряда:

  1. те, у которых нет корней;
  2. имеется один корень в уравнении;
  3. есть два корня.

Для того чтобы определить количество корней в уравнении нам необходим дискриминант.

Как найти дискриминант. Формула

Нам дано: ax 2 + bx + c = 0.

Формула дискриминанта: D = b 2 — 4ac
.

Как найти корни дискриминанта

По знаку дискриминанта определяется количество корней:

  1. D = 0, у уравнения один корень;
  2. D > 0, у уравнения два корня.

Корни у квадратного уравнения находятся по следующей формуле:

X1= -b + √D/2а; X2= -b + √D/2a.

Если D = 0, то Вы можете смело использовать любую из представленных формул. У Вас получится одинаковый ответ в любом случае. А если получается так, что D > 0, то тогда Вам не придется ничего считать, так как корней уравнение не имеет.

Надо сказать, что находить дискриминант — это не так уж сложно, если знать формулы и внимательно осуществлять подсчеты. Иногда возникают ошибки при подстановке отрицательных чисел в формулу (нужно помнить, что минус на минус дает плюс). Будьте внимательны, и все получится!

Квадратное уравнение где дискриминант равен 0. Нахождение дискриминанта, формула, сравнение с нулём

Квадратное уравнение это уравнение которое выглядит как ax 2 + dx + c = 0
. В нем значение а,в
и с
любые числа, при этом а
не равно нулю.

Все квадратные уравнения разделяются на несколько видов, а именно:

Уравнения в которых только один корень.
-Уравнения с двумя разными корнями.
-Уравнения в которых корней нет совсем.

Это и различает линейные уравнения в которых корень всегда единый, от квадратных. Для того что бы понять какое количество корней в выражении и нужен Дискриминант квадратного уравнения
.

Допустим наше уравнение ax 2 + dx + c =0. Значит дискриминант квадратного уравнения

D = b 2 — 4 ac

И это нужно запомнить навсегда. С помощью этого уравнения мы и определяем количество корней в квадратном уравнении. И делаем мы это следующим образом:

Когда D меньше нуля, в уравнении нет корней.
— Когда D равно нулю, имеется только один корень.
— Когда D больше нуля, соответственно, в уравнении два корня.
Запомните что дискриминант показывает сколько корней в уравнении, не меняя знаков.

Рассмотрим для наглядности:

Нужно выяснить какое количество корней в данном квадратном уравнении.

1) х 2 — 8х + 12 = 0
2)5х 2 + 3х + 7 = 0
3) х 2 -6х + 9 = 0

Вписываем значения в первое уравнение, находим дискриминант.
а = 1, b = -8, c = 12
D = (-8) 2 — 4 * 1 * 12 = 64 — 48 = 16
Дискриминант со знаком плюс, значит в данном равенстве два корня.

Делаем тоже самое со вторым уравнением
a = 1, b = 3, c = 7
D = 3 2 — 4 * 5 * 7 = 9 — 140 = — 131
Значение минусовое, значит корней в данном равенстве нет.

Следующее уравнение разложим по аналогии.
а = 1, b = -6, с = 9
D = (-6) 2 — 4 * 1 * 9 = 36 — 36 = 0
как следствие имеем один корень в уравнении.

Важно что в каждом уравнении мы выписывали коэффициенты. Конечно это не много длительный процесс, но это помогло нам не запутаться и предотвратило появление ошибок. Если очень часто решать подобные уравнения, то вычисления сможете производить мысленно и заранее знать сколько у уравнения корней.

Рассмотрим еще один пример:

1) х 2 — 2х — 3 = 0
2) 15 — 2х — х 2 = 0
3) х 2 + 12х + 36 = 0

Раскладываем первое
а = 1, b = -2, с = -3
D =(-2) 2 — 4 * 1 * (-3) = 16, что больше нуля, значит два корня, выведем их
х 1 = 2+?16/2 * 1 = 3, х 2 = 2-?16/2 * 1 = -1.

Раскладываем второе
а = -1, b = -2, с = 15
D = (-2) 2 — 4 * 4 * (-1) * 15 = 64, что больше нуля и так же имеет два корня. Выведем их:
х 1 = 2+?64/2 * (-1) = -5, х 2 = 2-?64/2 *(-1) = 3.

Раскладываем третье
а = 1, b = 12, с = 36
D = 12 2 — 4 * 1 * 36 =0, что равно нулю и имеет один корень
х = -12 + ?0/2 * 1 = -6.
Решать данные уравнения не сложно.

Если нам дано неполное квадратное уравнение. Такое как

1х 2 + 9х = 0
2х 2 — 16 = 0

Данные уравнения отличаются от тех что были выше, так как оно не полное, в нем нет третьего значения. Но не смотря на это оно проще чем полное квадратное уравнение и в нем дискриминант искать не нужно.

Что делать когда срочно нужна дипломная работа или реферат, а времени на его написание нет? Всё это и многое другое можно заказать на сайте Deeplom.by (http://deeplom.by/) и получить высший балл.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax
2 + bx
+ c
= 0, где коэффициенты a
, b
и c
— произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант
.

Дискриминант

Пусть дано квадратное уравнение ax
2 + bx
+ c
= 0. Тогда дискриминант — это просто число D
= b
2 − 4ac
.

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D
  2. Если D
    = 0, есть ровно один корень;
  3. Если D
    > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x
    2 − 8x
    + 12 = 0;
  2. 5x
    2 + 3x
    + 7 = 0;
  3. x
    2 − 6x
    + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a
= 1, b
= −8, c
= 12;
D
= (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a
= 5; b
= 3; c
= 7;
D
= 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a
= 1; b
= −6; c
= 9;
D
= (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D
> 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D
= 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D

  1. x
    2 − 2x
    − 3 = 0;
  2. 15 − 2x
    − x
    2 = 0;
  3. x
    2 + 12x
    + 36 = 0.

Первое уравнение:
x
2 − 2x
− 3 = 0 ⇒ a
= 1; b
= −2; c
= −3;
D
= (−2) 2 − 4 · 1 · (−3) = 16.

D
> 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x
− x
2 = 0 ⇒ a
= −1; b
= −2; c
= 15;
D
= (−2) 2 − 4 · (−1) · 15 = 64.

D
> 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x
2 + 12x
+ 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x
    2 + 9x
    = 0;
  2. x
    2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax
2 + bx
+ c
= 0 называется неполным квадратным уравнением, если b
= 0 или c
= 0, т.е. коэффициент при переменной x
или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b
= c
= 0. В этом случае уравнение принимает вид ax
2 = 0. Очевидно, такое уравнение имеет единственный корень: x
= 0.

Рассмотрим остальные случаи. Пусть b
= 0, тогда получим неполное квадратное уравнение вида ax
2 + c
= 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c
/a
) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax
    2 + c
    = 0 выполнено неравенство (−c
    /a
    ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c
    /a
    )

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c
/a
) ≥ 0. Достаточно выразить величину x
2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax
2 + bx
= 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x
    2 − 7x
    = 0;
  2. 5x
    2 + 30 = 0;
  3. 4x
    2 − 9 = 0.

x
2 − 7x
= 0 ⇒ x
· (x
− 7) = 0 ⇒ x
1 = 0; x
2 = −(−7)/1 = 7.

5x
2 + 30 = 0 ⇒ 5x
2 = −30 ⇒ x
2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x
2 − 9 = 0 ⇒ 4x
2 = 9 ⇒ x
2 = 9/4 ⇒ x
1 = 3/2 = 1,5; x
2 = −1,5.

Квадратное уравнение – решается просто! *Далее в тексте «КУ».
Друзья, казалось бы, что может быть в математике проще, чем решение такого уравнения. Но что-то мне подсказывало, что с ним у многих есть проблемы. Решил посмотреть сколько показов по запросу в месяц выдаёт Яндекс. Вот что получилось, посмотрите:

Что это значит? Это значит то, что около 70000 человек в месяц ищут данную информацию, при чём это лето, а что будет среди учебного года — запросов будет в два раза больше. Это и неудивительно, ведь те ребята и девчата, которые давно окончили школу и готовятся к ЕГЭ, ищут эту информацию, также и школьники стремятся освежить её в памяти.

Несмотря на то, что есть масса сайтов, где рассказывается как решать это уравнение, я решил тоже внести свою лепту и опубликовать материал. Во-первых, хочется чтобы по данному запросу и на мой сайт приходили посетители; во-вторых, в других статьях, когда зайдёт речь «КУ» буду давать ссылку на эту статью; в-третьих, расскажу вам о его решении немного больше, чем обычно излагается на других сайтах. Приступим!
Содержание статьи:

Квадратное уравнение – это уравнение вида:

где коэффициенты a,
b
и с произвольные числа, при чём a≠0.

В школьном курсе материал дают в следующем виде – условно делается разделение уравнений на три класса:

1. Имеют два корня.

2. *Имеют только один корень.

3. Не имеют корней. Здесь стоит особо отметить, что не имеют действительных корней

Как вычисляются корни? Просто!

Вычисляем дискриминант. Под этим «страшным» словом лежит вполне простая формула:

Формулы корней имеют следующий вид:

*Эти формулы нужно знать наизусть.

Можно сразу записывать и решать:

Пример:

1. Если D > 0, то уравнение имеет два корня.

2. Если D = 0, то уравнение имеет один корень.

3. Если D

Давайте рассмотрим уравнение:

По данному поводу, когда дискриминант равен нулю, в школьном курсе говорится о том, что получается один корень, здесь он равен девяти. Всё правильно, так и есть, но…

Данное представление несколько несколько некорректно. На самом деле получается два корня. Да-да, не удивляйтесь, получается два равных корня, и если быть математически точным, то в ответе следует записывать два корня:

х 1 = 3 х 2 = 3

Но это так – небольшое отступление. В школе можете записывать и говорить, что корень один.

Теперь следующий пример:

Как нам известно – корень из отрицательного числа не извлекается, поэтому решения в данном случае нет.

Вот и весь процесс решения.

Квадратичная функция.

Здесь показано, как решение выглядит геометрически. Это крайне важно понимать (в дальнейшем в одной из статей мы подробно будем разбирать решение квадратного неравенства).

Это функция вида:

где х и у — переменные

a, b, с – заданные числа, при чём a ≠ 0

Графиком является парабола:

То есть, получается, что решая квадратное уравнение при «у» равном нулю мы находим точки пересечения параболы с осью ох. Этих точек может быть две (дискриминант положительный), одна (дискриминант равен нулю) и ни одной (дискриминант отрицательный). Подробно о квадратичной функции можете посмотреть
статью у Инны Фельдман.

Рассмотрим примеры:

Пример 1:
Решить 2x
2
+8
x
–192=0

а=2 b=8 c= –192

D = b
2
–4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Ответ: х 1 = 8 х 2 = –12

*Можно было сразу же левую и правую часть уравнения разделить на 2, то есть упростить его. Вычисления будут проще.

Пример 2:
Решить


x 2
–22
x+121 = 0

а=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Получили, что х 1 = 11 и х 2 = 11

В ответе допустимо записать х = 11.

Ответ: х = 11

Пример 3:
Решить

x 2 –8x+72 = 0

а=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Дискриминант отрицательный, решения в действительных числах нет.

Ответ: решения нет

Дискриминант отрицательный. Решение есть!

Здесь речь пойдёт о решении уравнения в случае когда получается отрицательный дискриминант. Вы что-нибудь знаете о комплексных числах? Не буду здесь подробно рассказывать о том, почему и откуда они возникли и в чём их конкретная роль и необходимость в математике, это тема для большой отдельной статьи.

Понятие комплексного числа.

Немного теории.

Комплексным числом z называется число вида

z = a + bi

где a и b – действительные числа, i – так называемая мнимая единица.

a+bi

– это ЕДИНОЕ ЧИСЛО, а не сложение.

Мнимая единица равна корню из минус единицы:

Теперь рассмотрим уравнение:

Получили два сопряжённых корня.

Неполное квадратное уравнение.

Рассмотрим частные случаи, это когда коэффициент «b» или «с» равен нулю (или оба равны нулю). Они решаются легко без всяких дискриминантов.

Случай 1. Коэффициент b = 0.

Уравнение приобретает вид:

Преобразуем:

Пример:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Случай 2. Коэффициент с = 0.

Уравнение приобретает вид:

Преобразуем, раскладываем на множители:

*Произведение равно нулю тогда, когда хотя бы один из множителей равен нулю.

Пример:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 или x–5 =0

x 1 = 0 x 2 = 5

Случай 3. Коэффициенты b = 0 и c = 0.

Здесь понятно, что решением уравнения всегда будет х = 0.

Полезные свойства и закономерности коэффициентов.

Есть свойства, которые позволяют решить уравнения с большими коэффициентами.

а
x
2
+
bx
+
c
=0
выполняется равенство

a
+
b
+ с = 0,
то

— если для коэффициентов уравнения а
x
2
+
bx
+
c
=0
выполняется равенство

a
+ с =
b
,
то

Данные свойства помогают решить определённого вида уравнения.

Пример 1: 5001
x
2
–4995
x
– 6=0

Сумма коэффициентов равна 5001+(
4995)+(
6) = 0, значит

Пример 2: 2501
x
2
+2507
x
+6=0

Выполняется равенство a
+ с =
b
,
значит

Закономерности коэффициентов.

1. Если в уравнении ax 2 + bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 + (а 2 +1)∙х+ а= 0 = > х 1 = –а х 2 = –1/a.

Пример. Рассмотрим уравнение 6х 2 +37х+6 = 0.

х 1 = –6 х 2 = –1/6.

2. Если в уравнении ax 2 – bx + c = 0 коэффициент «b» равен (а 2 +1), а коэффициент «с» численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 +1)∙х+ а= 0 = > х 1 = а х 2 = 1/a.

Пример. Рассмотрим уравнение 15х 2 –226х +15 = 0.

х 1 = 15 х 2 = 1/15.

3. Если в уравнении
ax 2
+ bx

c = 0
коэффициент «b»

равен (a 2

– 1), а коэффициент «c»

численно равен коэффициенту «a»
,
то его корни равны

аx 2 + (а 2 –1)∙х – а= 0 = > х 1 = – а х 2 = 1/a.

Пример. Рассмотрим уравнение 17х 2 +288х – 17 = 0.

х 1 = – 17 х 2 = 1/17.

4. Если в уравнении ax 2 – bx – c = 0 коэффициент «b» равен (а 2 – 1), а коэффициент с численно равен коэффициенту «а», то его корни равны

аx 2 – (а 2 –1)∙х – а= 0 = > х 1 = а х 2 = – 1/a.

Пример. Рассмотрим уравнение 10х 2 – 99х –10 = 0.

х 1 = 10 х 2 = – 1/10

Теорема Виета.

Теорема Виета называется по имени знаменитого французского математика Франсуа Виета. Используя теорему Виета, можно выразить сумму и произведение корней произвольного КУ через его коэффициенты.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

В сумме число 14 дают только 5 и 9. Это корни. При определённом навыке, используя представленную теорему, многие квадратные уравнения вы сможете решать сходу устно.

Теорема Виета, кроме того. удобна тем, что после решения квадратного уравнения обычным способом (через дискриминант) полученные корни можно проверять. Рекомендую это делать всегда.

СПОСОБ ПЕРЕБРОСКИ

При этом способе коэффициент «а» умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски».
Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Если а
± b+c
≠ 0, то используется прием переброски, например:

2х
2 – 11х+
5 = 0 (1) => х
2 – 11х+
10 = 0 (2)

По теореме Виета в уравнении (2) легко определить, что х 1 = 10 х 2 = 1

Полученные корни уравнения необходимо разделить на 2 (так как от х 2 «перебрасывали» двойку), получим

х 1
= 5 х 2
=
0,5.

Каково обоснование? Посмотрите что происходит.

Дискриминанты уравнений (1) и (2) равны:

Если посмотреть на корни уравнений, то получаются только различные знаменатели, и результат зависит именно от коэффициента при х 2:

У второго (изменённого) корни получаются в 2 раза больше.

Потому результат и делим на 2.

*Если будем перебрасывать тройку, то результат разделим на 3 и т.д.

Ответ: х 1 = 5 х 2 = 0,5

Кв. ур-ие и ЕГЭ.

О его важности скажу кратко – ВЫ ДОЛЖНЫ УМЕТЬ РЕШАТЬ быстро и не задумываясь, формулы корней и дискриминанта необходимо знать наизусть. Очень многие задачи, входящие в состав заданий ЕГЭ, сводятся к решению квадратного уравнения (геометрические в том числе).

Что стоит отметить!

1. Форма записи уравнения может быть «неявной». Например, возможна такая запись:

15+ 9x 2 — 45x = 0 или 15х+42+9x 2 — 45x=0 или 15 -5x+10x 2 = 0.

Вам необходимо привести его к стандартному виду (чтобы не запутаться при решении).

2. Помните, что х это неизвестная величина и она может быть обозначена любой другой буквой – t, q, p, h и прочими.

Важно! В корнях четной кратности функция знак не меняет.

Обратите внимание! Любое нелинейное неравенство школьного курса алгебры нужно решать с помощью метода интервалов.

Предлагаю вам подробный алгоритм решения неравенств методом интервалов
, следуя которому вы сможете избежать ошибок прирешении нелинейных неравенств
.

Решение квадратных уравнений с отрицательными дискриминантами

Как мы знаем,

i
2 = — 1.

Вместе с тем

(- i

) 2 = (- 1 i

) 2 = (- 1) 2 i

2 = -1.

Таким образом, существуют по крайней мере два значения корня квадратного из — 1, а именно i

и — i

. Но, может быть, есть еще какие-нибудь комплексные числа, квадраты которых равны — 1?

Чтобы выяснить этот вопрос, предположим, что квадрат комплексного числа а + bi

равен — 1. Тогда

(а + bi

) 2 = — 1,

а
2 + 2аbi

b

2 = — 1

Два комплексных числа равны тогда и только тогда, когда равны их действительные части и коэффициенты при мнимых частях. Поэтому

{ а 2 — b
2 = — 1 ab
= 0 (1)

Согласно второму уравнению системы (1) хотя бы одно из чисел а

и b

должно равняться нулю. Если b

= 0, то из первого уравнения получается а

2 = — 1. Число а

действительное, и поэтому а

2 >
0. Неотрицательное число а

2 не может равняться отрицательному числу — 1. Поэтому равенство b

= 0 в данном случае невозможно. Остается признать, что а

= 0, но тогда из первого уравнения системы получаем: —b

2 = — 1, b

= ± 1.

Следовательно, комплексными числами, квадраты которых равны -1, являются только числа i

и —i

, Условно это записывается в виде:

√-1 = ± i

.

Аналогичными рассуждениями учащиеся могут убедиться в том, что существует ровно два числа, квадраты которых равны отрицательному числу —а

. Такими числами являются √ai

и -√ai

. Условно это записывается так:

— а

= ± √ai

.

Под √a

здесь подразумевается арифметический, то есть положительный, корень. Например, √4 = 2, √9 =.3; поэтому

√-4 = + 2i

, √-9= ± 3i

Если раньше при рассмотрении квадратных уравнений с отрицательными дискриминантами мы говорили, что такие уравнения не имеют корней, то теперь так говорить уже нельзя. Квадратные уравнения с отрицательными дискриминантами имеют комплексные корни. Эти корни получаются по известным нам формулам. Пусть, например, дано уравнение x

2 + 2х

+ 5 = 0; тогда

х
1,2 = — 1 ± √1 -5 = — 1 ± √-4 = — 1 ± 2i

.

Итак, данное уравнение имеет два корня: х

1 = — 1 +2i

, х

2 = — 1 — 2i

. Эти корни являются взаимно сопряженными. Интересно отметить, что сумма их равна — 2, а произведение 5, так что выполняется теорема Виета.

Понятие комплексного числа

Комплексным числом называется выражение вида a + ib , где a и b – любые действительные числа, i – специальное число, которое называется мнимой единицей. Для таких выражений понятия равенства и операции сложения и умножения вводятся следующим образом:

  1. Два комплексных числа a + ib и c + id называются равными тогда и только тогда, когда
    a = b и c = d .
  2. Суммой двух комплексных чисел a + ib и c + id называется комплексное число
    a + c + i (b + d).
  3. Произведением двух комплексных чисел a + ib и c + id называется комплексное число
    ac – bd + i (ad + bc).

Комплексные числа часто обозначают одной буквой, например, z = a + ib . Действительное число a называется действительной частью комплексного числа z , действительная часть обозначается a = Re z . Действительное число b называется мнимой частью комплексного числа z , мнимая часть обозначается b = Im z . Такие названия выбраны в связи со следующими особыми свойствами комплексных чисел.

Заметим, что арифметические операции над комплексными числами вида z = a + i · 0 осуществляются точно так же, как и над действительными числами. Действительно,

Следовательно, комплексные числа вида a + i · 0 естественно отождествляются с действительными числами. Из-за этого комплексные числа такого вида и называют просто действительными. Итак, множество действительных чисел содержится в множестве комплексных чисел. Множество комплексных чисел обозначается . Мы установили, что , а именно

В отличие от действительных чисел, числа вида 0 + ib называются чисто мнимыми. Часто просто пишут bi , например, 0 + i 3 = 3 i . Чисто мнимое число i1 = 1 i = i обладает удивительным свойством:
Таким образом,

№ 4 .1.
В математике числовая функция — это функция, области определения и значений которой являются подмножествами числовых множеств — как правило, множествавещественных чисел или множества комплексных чисел .

График функции

Фрагмент графика функции

Способы задания функции

[править]Аналитический способ

Обычно функция задаётся с помощью формулы, в которую входят переменные, операции и элементарные функции. Возможно, кусочное задание, то есть различное для различных значений аргумента.

[править]Табличный способ

Функцию можно задать, перечислив все её возможные аргументы и значения для них. После этого, если это необходимо, функцию можно доопределить для аргументов, которых нет в таблице, путём интерполяции или экстраполяции. Примерами могут служить программа передач, расписание поездов или таблица значений булевой функции:

[править]Графический способ

Осциллограмма задаёт значение некоторой функции графически.

Функцию можно задать графически, отобразив множество точек её графика на плоскости. Это может быть приблизительный набросок, как должна выглядеть функция, или показания, снятые с прибора, например, с осциллографа. Этот способ задания может страдать от недостатка точности, однако в некоторых случаях другие способы задания вообще не могут быть применены. Кроме того, такой способ задания один из самых презентативных, удобных для восприятия и качественного эвристического анализа функции.

[править]Рекурсивный способ

Функция может быть задана рекурсивно, то есть через саму себя. В этом случае одни значения функции определяются через другие её значения.

  • факториал;
  • числа Фибоначчи;
  • функция Аккермана.

[править]Словесный способ

Функцию можно описать словами на естественном языке каким-либо однозначным способом, например, описав её входные и выходные значения, или алгоритм, с помощью которого функция задаёт соответствия между этими значениями. Наряду с графическим способом, иногда это единственный способ описать функцию, хотя естественные языки и не столь детерминированы, как формальные.

  • функция, возвращающая цифру в записи числа пи по её номеру;
  • функция, возвращающая число атомов во вселенной в определённый момент времени;
  • функция, принимающая в качестве аргумента человека, и возвращающая число людей, которое родится на свет после его рождени

Среди всего курса школьной программы алгебры одной из самых объемных тем является тема о квадратных уравнениях. При этом под квадратным уравнением понимается уравнение вида ax 2 + bx + c = 0, где a ≠ 0 (читается: а умножить на икс в квадрате плюс бэ икс плюс цэ равно нулю, где а неравно нулю). При этом основное место занимают формулы нахождения дискриминанта квадратного уравнения указанного вида, под которым понимается выражение, позволяющее определить наличие или отсутствие корней у квадратного уравнения, а также их количество (при наличии).

Формула (уравнение) дискриминанта квадратного уравнения

Общепринятая формула дискриминанта квадратного уравнения выглядит следующим образом: D = b 2 – 4ac. Вычисляя дискриминант по указанной формуле, можно не только определить наличие и количество корней у квадратного уравнения, но и выбрать способ нахождения этих корней, которых существует несколько в зависимости от типа квадратного уравнения.

Что значит если дискриминант равен нулю \ Формула корней квадратного уравнения если дискриминант равен нулю

Дискриминант, как следует из формулы, обозначается латинской буквой D. В случае, когда дискриминант равен нулю, следует сделать вывод, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, имеет только один корень, который вычисляется по упрощенной формуле. Данная формула применяется только при нулевом дискриминанте и выглядит следующим образом: x = –b/2a, где х – корень квадратного уравнения, b и а – соответствующие переменные квадратного уравнения. Для нахождения корня квадратного уравнения необходимо отрицательное значение переменной b разделить на удвоенное значение переменной а. Полученной выражение будет решением квадратного уравнения.

Решение квадратного уравнения через дискриминант

Если при вычислении дискриминанта по вышеприведенной формуле получается положительное значение (D больше нуля), то квадратное уравнение имеет два корня, которые вычисляются по следующим формулам: x 1 = (–b + vD)/2a, x 2 = (–b – vD)/2a. Чаще всего, дискриминант отдельно не высчитывается, а в значение D, из которого извлекается корень, просто подставляется подкоренное выражение в виде формулы дискриминанта. Если переменная b имеет четное значение, то для вычисления корней квадратного уравнения вида ax 2 + bx + c = 0, где a ≠ 0, можно также использовать следующие формулы: x 1 = (–k + v(k2 – ac))/a, x 2 = (–k + v(k2 – ac))/a, где k = b/2.

В некоторых случаях для практического решения квадратных уравнений можно использовать Теорему Виета, которая гласит, что для суммы корней квадратного уравнения вида x 2 + px + q = 0 будет справедливо значение x 1 + x 2 = –p, а для произведения корней указанного уравнения – выражение x 1 x x 2 = q.

Может ли дискриминант быть меньше нуля

При вычислении значения дискриминанта можно столкнуться с ситуацией, которая не попадает ни под один из описанных случаев – когда дискриминант имеет отрицательное значение (то есть меньше нуля). В этом случае принято считать, что квадратное уравнение вида ax 2 + bx + c = 0, где a ≠ 0, действительных корней не имеет, следовательно, его решение будет ограничиваться вычислением дискриминанта, а приводимые выше формулы корней квадратного уравнения в данном случае применяться не будут. При этом в ответе к квадратному уравнению записывается, что «уравнение действительных корней не имеет».

Поясняющее видео:

Как решать квадратные уравнения через дискриминант

Умение решать квадратные уравнения, очень важный пункт в изучении математики. В решении многих задач алгебры, геометрии, а также физики, химии и других предметов, присутствует часть, где необходимо найти корни квадратного уравнения. Если вы готовитесь к экзаменам ОГЭ или ЕГЭ или другим каким-либо аттестациям по математике, то вам нужно обязательно изучить эту тему подробнее, потому что даже знание основных формул, не дает полного понимания этой темы. Прочитав статью полностью, вы разберетесь во всех нюансах решения полных и неполных квадратных уравнений.

Итак, как же решать квадратные уравнения?

В этой статье мы рассмотрим:

  1. что такое квадратное уравнение;
  2. основные формулы нахождения корней квадратного уравнения;
  3. как определить количество решений квадратного уравнения;
  4. как можно графически решить квадратное уравнение;
  5. что значит неполное квадратное уравнение и способы их решения;
  6. какое квадратное уравнение называется приведенным, теорема Виета;
  7. использование квадратных уравнений в решении текстовых задач.

Что такое квадратное уравнение

Уравнение вида

       

называется квадратным уравнением, где — некоторые числа, причем . Как квадратное уравнение отличить от кубического или линейного? Ответ прост: наивысшая степень переменной — 2 (вторая).

Давайте чуть подробнее остановимся на коэффициентах. В уравнении — называется первым коэффициентом (или старшим), (если  , то квадратное уравнение «вырождается» в линейное уравнение ), — называется вторым коэффициентом или коэффициентом при , и — свободным членом.

Основные формулы нахождения корней квадратного уравнения

Чтобы решить квадратное уравнение, нужно подставить значения в формулу дискриминанта

и затем значение дискриминанта в формулы корней

Это базовые формулы нахождения корней квадратного уравнения

Как определить количество решений квадратного уравнения

В зависимости от того какой дискриминант, можно определить сколько решений у квадратного уравнения.

Если , то квадратное уравнение (1) имеет 2 различных корня и , .

Если , то квадратное уравнение (1) имеет одно решение или два равных корня .

Если , то квадратное уравнение (1) не имеет действительных корней или говорят решений нет.

Давайте теперь рассмотрим примеры квадратных уравнений и найдем их корни.

1)

Для начала нужно определить чему равны  :

старший коэффициент при ,  ,

второй коэффициент при , ,

свободный член .

Найдем дискриминант, подставив в формулу значения   

Так как , то корней два. Найдем их по формулам:

Итак, уравнение имеет два корня .

2)

Выпишем коэффициенты: .

Найдем дискриминант: .

Так как , то корней два. Найдем их:

Обратите внимание, я каждый раз прописываю все формулы не смотря на то, что отлично их знаю. Совет: никогда не ленитесь также их прописывать. Во-первых, прописывая их каждый раз вы лучше запоминаете их. Во-вторых, проверяющий будет знать, что вы знаете формулы, и если где-то не правильно посчитано, то скорее всего из-за невнимательности. В-третьих, у вас вообще меньше шансов ошибиться — это проверено статистически.

Как можно графически решить квадратное уравнение

Давайте теперь рассмотрим наши уравнения на координатной плоскости, как же они будут выглядеть визуально? И можно ли по рисунку определить корни?

1)

Рассмотрим квадратичную функцию .

Графиком квадратичной функции является парабола, на координатной плоскости она будет выглядеть вот так:

рисунок 1

Обратите внимание, парабола пересекает ось Ох в точках и , которые являются корнями уравнения . Мы рассматриваем точки пересечения с осью Ох, так как она совпадает с прямой .

Итак, становится понятно, какой визуальный смысл заложен в квадратном уравнении: квадратный трехчлен , имеющий форму параболы, в зависимости от того сколько корней имеет, столько раз  пересекает ось абсцисс (ось Ох).

Если 2 корня, то парабола пересекает ось Ох в двух точках, как парабола q пересекает ось абсцисс в точках D и E, а парабола r — в точках H и I. (рисунок 2)

рисунок 2

Если корень один, то парабола пересекает ось Ох в одной точке, так параболы p и h, касаются оси Ох в точках M и N соответственно (рисунок 3).

рисунок 3

Если корней нет, то парабола не пересекает ось Ох (рисунок 4).

рисунок 4

Итак, точки пересечения парабол с осью Ох и есть корни квадратных уравнений. Если по рисунку можно определить их значение, то корни найдены. Но часто эти значения приблизительны и поэтому такой способ решения практически не используют.

Что значит неполное квадратное уравнение и способы их решения

Иногда в квадратном уравнении отсутствует какое-либо слагаемое, и тогда ребята часто впадают в ступор, «а как же решать тогда уравнение?» Ответ прост: также как и полное квадратное уравнение, лишь только учитывая, что какой-то из коэффициентов равен нулю. Но давайте разбираться поэтапно.

Квадратное уравнение называется полным, если все коэффициенты ,

а если или , то квадратное уравнение называется неполным (случай когда не рассматриваем, поскольку в этом случае пропадает слагаемое с  и квадратное уравнение вырождается в линейное).

Итак.

1) Если , , то уравнение будет выглядеть так:

то есть отсутствует слагаемое с . Можно как и в полном квадратном уравнении найти дискриминант , но так как , то , и если один из коэффициентов отрицательный, то , а корней будет 2.

Но путь этот громоздкий в смысле числовых вычислений, поэтому есть более простой способ, без использования формул дискриминанта .

Давайте внимательно посмотрим на данное уравнение

мы как и в линейном уравнении можем разделить переменную с   и свободное слагаемое, то есть перенесем коэффициент в другую сторону от знака равно, при этом не забывая поменять знак на противоположный:

разделим обе стороны на :

если правая сторона от , то получим следующие корни уравнения:

если же — то корней нет.

2) Если , , то уравнение будет выглядеть так:

В этом случае тоже можно использовать формулы дискриминанта и корней уравнения. Но мы рассмотрим сразу другой способ.

Во-первых, можно вынести за скобку из обоих слагаемых

получили произведение двух множителей и , их произведение равно 0, тогда когда хотя бы один из множителей равен 0. Значит, мы приравниваем к 0 каждый из них и решаем новые, уже линейные уравнения.

в первом уравнении все понятно, во втором как при решении линейного уравнения, переносим свободное слагаемое в право от равно и делим обе стороны на коэффициент перед :

В этом случае получили два корня .

3) Если , то получаем уравнение

В этом случае корни совпадают и равны 0, то есть .

Какое квадратное уравнение называется приведенным, теорема Виета

Рассмотрим случай, когда в полном квадратном уравнении , тогда уравнение будет иметь вид:

и называется приведенным.

Такое квадратное уравнение также решают через формулы дискриминанта.

Но иногда решая приведенное квадратное уравнение, очень удобно находить корни по теореме Виета.

Согласно этой теореме должно выполнятся два условия:

причем оба условия должны выполнятся одновременно, поэтому его правильнее записать так

Часто в книгах эти условия записываются в другом порядке:

— по своему опыту, советую использовать первый вариант — так легче подобрать корни.

Чтобы было понятно как действует теорема Виета, нужно рассмотреть эти условия на конкретных примерах.

1) Дано квадратное уравнение .

Здесь . Нам нужно найти какие два числа при умножении друг на друга будут давать , а в сумме . Явно существует только два числа, произведение которых равно 3 — это 1 и 3, их сумма как раз будет равна 4:

Значит, корни уравнения .

Еще несколько примеров, чтобы все было понятно:

2) . Здесь сумма равна -4. То есть значения чисел те же, но знаки другие. Поэтому попробуем . Значит, корни .

3)  Корни .

4)  Корни .

5) , казалось бы, такие большие числа! Как найти подходящие корни? И кстати, решая через формулы дискриминанта, нас бы ждали громоздкие вычисления!

Но не будем впадать в панику, и просто посмотрим какие подходящие варианты чисел могут подойти в данном случае:    Значит, корни .

6) .

Еще раз акцентирую ваше внимание, что сумма корней равна , поэтому во втором условии всегда будет противоположный знак, чем у коэффициента b.

рисунок 5

Когда значение свободного коэффициента , то оба корня имеют одинаковые знаки, то есть оба либо положительные, либо отрицательные.

Соответственно, если , то корни находятся по разные стороны от 0, то есть один отрицательный, а другой положительный.

7) 

Обратите внимание, в первом варианте системы подобраны корни не верно, об этом говорит то, что во втором условии не выполнилось равенство. А во второй системе выполняются оба условия. Значит, корни уравнения .

В этот раз первый вариант корней сразу выполнил оба условия и  получаем .

Конечно, не во всех приведенных квадратных уравнениях легко по теореме Виета подобрать корни, и после нескольких тщетных попыток условия не выполняются. В таких случаях приходится находить корни через формулы дискриминанта, и чаще всего выясняется, что дискриминант либо отрицательный, либо = 0.

Использование квадратных уравнений в решении текстовых задач

Ну и конечно же, нужно рассмотреть, где же используются квадратные уравнения.

Итак, задача о нахождении периметра участка для постройки вокруг него забора.

Существует дачный участок прямоугольной формы. Известно, что длина этого участка на 10 м длиннее его ширины, а площадь участка равна 6 соткам (то есть 600 кв.м.). Найти длину забора вокруг этого участка.

В тех случаях, когда изначально не известны исходные параметры (в нашем случае не известно ни длины, ни ширины участка), а известна только зависимость их между собой, то вводим неизвестную переменную . Я обычно через обозначаю меньший из параметров, но это не важно — главное соблюсти все условия.

Пусть м. — ширина участка, тогда длина — ( +10) м. Так как площадь участка находится путем умножения длины на ширину, и у нас площадь равна 600 кв.м., то получим квадратное уравнение:

раскроем скобки и перенесем свободное слагаемое в левую сторону от равно, приведем его к стандартному общему виду:

Я по теореме Виета найду корни. Получаем . По условиям теоремы

Оба условия выполняются верно. Значит, корни уравнения .

Второй корень нам не подходит по смыслу задачи, так как ширина участка не может быть отрицательной. Значит, ширина участка равна 20 м., а длина соответственно 20+10=30 м.  Проверим, площадь участка:

Корень найден правильно. Найдем теперь периметр участка, чтобы узнать длину забора:

Получили длину забора вокруг участка: 100 м.

Тема квадратных уравнений обычно не вызывает сложностей у ребят. Особенно решение уравнений явно общего вида с использованием формул дискриминанта. Но когда квадратное уравнение задано не явно и необходимо его преобразовать и привести к общему виду, вот тогда возникают трудности. Такие виды уравнений я рассмотрю в следующей статье.

Как решать квадратное уравнение

Как решать квадратные уравнения

Алгоритм решения квадратного уравнения


Речь идет о поиске только действительных корней квадратного уравнения.

Шаг 1:  Записываем уравнение в стандартном виде

В общем виде квадратное уравнение можно записать так:

Здесь — любое ненулевое число,  — любые числа, a — то число, которое необходимо найти. Такой вид уравнения называют стандартным. Например, — квадратное уравнение в стандартном виде, причем , и . Число называют старшим коэффициентом, число — свободным коэффициентом. А все выражение вида называют квадратным трехчленом.

Типичная ошибка: считать, что , то есть забыть про знак «-«.

Cтоит заметить, что все коэффициенты уравнения можно уменьшить в раза. Уравнение примет вид . Числа , и , естественно, изменились (уменьшились!). Зато корни уравнения остались прежними. Поэтому всегда стоит проверять, а нельзя ли таким образом упростить уравнение, чтобы легче было далее находить корни.

Итак, первым делом необходимо привести квадратное уравнение  к стандартному виду. Для этого можно раскрывать скобки, приводить подобные слагаемые, переносить слагаемые из одной части уравнения в другую (при этом слагаемые меняют знак). Например, . Раскрываем скобки: . Приводим подобные слагаемые: . Переносим все слагаемые из правой части в левую: (повторю: такие слагаемые меняют свой знак).  И опять приводим подобные слагаемые: . Получим квадратное уравнение в стандартном виде. Причем , и .

Типичная ошибка: забыть поменять знак слагаемого при переносе.

Типичная ошибка: перепутать слагаемые местами и неправильно определить коэффициенты. Например, . И кажется, что , и . На самом деле, , и .

Интересный случай: предположим, что получилось уравнение . Чему равно ? На этот вопрос не каждый может ответить уверенно. Ответ: .

Интересный случай: дано уравнение . Мы смело раскрываем скобки и переносим и из правой части в левую. Но после приведения подобных слагаемых получается уравнение .  Нет ! Ни о каком стандартном виде квадратного уравнения здесь не может быть и речи просто потому, что это не квадратное уравнение, а совсем другая история под названием «Линейное уравнение».

Замечание: опытные в квадратных уравнениях математики советуют всегда делать коэффициент положительным. Для этого левую и правую части уравнения всегда можно домножить на . Например, заменим на . По-простому говоря, каждое слагаемое меняет знак. Да, это другое уравнение и коэффициенты другие. Но корни у него такие же, как и у исходного уравнения. Поэтому далее спокойно можно работать с новым. Зачем делать положительным? Например, затем, чтобы было меньше арифметических ошибок, когда будем находить дискриминант. Что такое дискриминант, узнаем в следующем шаге.

Шаг 2: Находим дискриминант.

У нас есть квадратное уравнение в виде . Вычисляем число , которое называется дискриминантом квадратного уравнения. Например, для уравнения дискриминант равен .

Типичная ошибка: часто вместо пишут  , то есть забывают скобки, но это уже , а не .

Типичная ошибка: неправильно определяют коэффициенты , и

Типичная ошибка: в слагаемом неправильно определяют окончательный знак. Например, в все-таки в итоге получается , а не .

Редкая ошибка: дискриминант пишут с большой буквы, видимо, из уважения или считая, что это фамилия.

Шаг 3: Находим корни уравнения

У нас есть дискриминант . Далее все зависит от его знака.

Если , то корней у уравнения нет. Ответ: корней нет. Вот так внезапно решение закончилось. Например, в уравнении дискриминант равен . Поэтому корней нет. Кстати, что это значит? Это значит, что какое бы число вы не выбрали, подстановка его в выражение вместо никогда не даст . Проверим число , например: . Не ноль. То есть — не корень. Аналогично с любым другим числом: ноль никогда не получится.

Если , то . Числа и — это как раз те коэффициенты из стандартной записи уравнения. Например, в уравнении дискриминант . Тогда . Ответ: .

Типичная ошибка: неправильно подставляют в формулу . Ошибаются со знаком. Ведь если , например, то .

Если . То в ответе будет два корня, которые можно найти по формулам и . Например, в уравнении дискриминант . Тогда и . Так как , то и . Ответ: .

Замечание: часто для сокращения пишут две формулы в одной: .

Замечание: иногда дискриминант может оказаться «некрасивым», например, . Такое может быть, и терять самообладание не стоит. Совет один: перепроверить решение и, если ошибка не найдена, со спокойной совестью решать дальше. Чаще всего задачи придумывают так, чтобы дискриминант были полным квадратом (кстати, полезно выучить таблицу квадратов чисел от 1 до 20). Но иногда попадаются ответы вида .

Типичная ошибка: неправильно находят . Например, считают, что . На самом деле, . Отрицательным выражение быть не может (по определению арифметического квадратного корня).

Вот и весь алгоритм. Конечно, есть еще много деталей. Например, есть неполные квадратные уравнения, когда лучше решать способами без дискриминанта. Есть еще уравнения, сводящиеся к квадратным. Есть еще поиск комплексных корней квадратного уравнения (для ЕГЭ это излишне). Кстати, проверить свое решение квадратного уравнения всегда можно здесь. Далее стоит изучить теорему Виета, понять, а как возникает формула для дискриминанта, как быть с уравнением третьей степени.

Полный пример решения квадратного уравнения.

Условие

Решить уравнение

Решение

Согласно алгоритму, раскрываем скобки: .
На всякий случай, расписал все подробно. Но вообще такие действия надо научиться делать почти устно. Более того, лучше заметить, что к первому слагаемому применима формула сокращенного умножения, точнее, разность квадратов. Такие формулы позволяют значительно экономить время и силы (потренироваться можно здесь).
Но продолжим решение: . Приводим подобные слагаемые и переносим в левую часть уравнения: .
Изменим знак : .
Находим дискриминант. Так как , и , то . Дискриминант , поэтому у уравнения два корня: и .
Осталось заметить, что корни можно упростить, ведь .
Получаем окончательный ответ, который запишем одной формулой: .
Как видите, малейшая неточность в арифметических вычислениях — и весь труд в итоге напрасен.
Поэтому стоит потренироваться выполнять арифметические вычисления устно и без ошибок.

Ответ:  

Задачи для самостоятельного решения

Номера 41, 42, 43, 51, 52, 53  (ответы находятся после условий)

все статьи по математике

 

{п \ выбрать 2} $? Это станет ясно ниже!)
Это выражение симметрично в $ x_i $, то есть, если мы каким-то образом переставляем $ x_i $, это меняет местами несколько факторов и меняет несколько знаков, но все отменяется, так что сам продукт не изменяется. Теперь есть важная теорема о том, что любое полиномиальное выражение от $ n $ переменных, которое является симметричным, может быть записано как полиномиальное выражение от $ n $ элементарных симметричных многочленов $ s_1 = x_1 + \ ldots + x_n $, $ s_2 = x_1x_2 + x_1x_3 + \ ldots + x_1x_n + x_2x_3 + \ ldots x_ {n-1} x_n $, $ \ ldots $, $ s_n = x_1x_2 \ cdots x_n $.2 \ end {align} $$
То есть $ \ Delta $ выглядит как как квадрат. В частности, если все $ x_i $ действительны, тогда $ \ Delta $ будет квадратом действительного числа, т.е. неотрицательным. С другой стороны, каждая пара комплексно сопряженных корней дает нам чисто мнимый множитель, то есть смену знака для $ \ Delta $. В случае квадратичного $ p $ это вся история. Для более высоких степеней, конечно, небольшая информация, содержащаяся в однобитном «знаке $ \ Delta $», может рассказать нам только часть истории.

Дискриминант в квадратных уравнениях — наглядное пособие с примерами, практическими задачами и бесплатным PDF-файлом для печати

Чтобы понять, что делает дискриминант, важно хорошо понимать:

Предварительное требование 2: Какое решение квадратное уравнение:

Отвечать

Решение можно представить двумя разными способами.2 + \ blue bx + \ color {green} c $$.

  • Графически, поскольку y = 0 — ось x, решение находится там, где парабола пересекает ось x. (работает только для реальных решений) .
  • На рисунке ниже левая парабола имеет 2 реальных решения (красные точки), средняя парабола имеет 1 реальное решение (красная точка), а самая правая парабола не имеет реальных решений (да, у нее есть мнимые решения).

    Как выглядит дискриминант?

    Отвечать

    Похоже на … число.

    5, 2, 0, -1 — каждое из этих чисел является дискриминантом для 4 различных квадратных уравнений.

    Что вообще такое дискриминант?

    Отвечать

    Дискриминант — это число , которое можно вычислить из любого квадратного уравнения.2-4 \ cdot \ красный 3 \ cdot \ color {зеленый} 5
    \\
    \ text {Дискриминант} = \ в коробке {6}
    $

    Что говорит нам эта формула?

    Отвечать

    Дискриминант сообщает нам следующую информацию о квадратном уравнении:

    • Если решение — действительное число или мнимое число.
    • Рациональное ли решение или иррациональное.2 + 2x + 1 $$.

      Практика 1

      Вычислите дискриминант, чтобы определить количество и характер решений следующего квадратного уравнения:
      $$ y = x² — 2x + 1 $$.2-4 \ cdot \ красный 1 \ cdot \ color {зеленый} 1
      \\
      & = \ в коробке {0}
      \ end {выровнен}
      $$

      Поскольку дискриминант равен нулю, мы должны ожидать 1 реальное решение, которое вы можете увидеть на графике ниже.

      Практика 2

      Воспользуйтесь дискриминантом, чтобы узнать природу и количество решений:
      $$ y = x² — x — 2 $$.2-4 \ cdot \ red 1 \ cdot \ color {green} {-2}
      \\
      & = 1 — -8
      \\
      & = 1 + 8 = \ 9 в штучной упаковке
      \ end {выровнен}
      $$

      Поскольку дискриминант положительный и рациональный, у этого уравнения должно быть 2 реальных рациональных решения. Как вы можете видеть ниже, если вы используете квадратичную формулу для поиска фактических решений, вы действительно получите 2 реальных рациональных решения.

      Практика 3

      Вычислите дискриминант, чтобы определить характер и количество решений: y = x² — 1.2} — 4 \ color {Magenta} {(1)} \ color {Blue} {(- 1)} = 4
      $$

      Поскольку дискриминант положительный и представляет собой полный квадрат, у нас есть два вещественных решения, которые являются рациональными.

      Опять же, если вы хотите увидеть реальные решения и график, просто посмотрите ниже:

      Практика 4

      Вычислите дискриминант, чтобы определить характер и количество решений: y = x² + 4x — 5.2} — 4 \ color {Magenta} {(1)} \ color {Blue} {(- 5)}
      \\
      16-4 (-5) = 16 +20
      \\
      = 36
      $$

      Поскольку дискриминант этого квадратного уравнения является положительным и представляет собой полный квадрат, существуют два рациональных решения.

      Практика 5

      Вычислите дискриминант, чтобы определить характер и количество решений: y = x² — 4x + 5.

      Покажи ответ

      В этом квадратном уравнении y = x² — 4x + 5.2} — 4 \ color {Magenta} {(1)} \ color {Blue} {(5)}
      \\
      = 16-20 = -4
      $$

      Поскольку дискриминант отрицательный, у этого квадратного уравнения нет реальных решений. 2} — 4 \ color {Magenta} {(1)} \ color {Blue} {(4)} = -16
      $$

      Поскольку дискриминант отрицательный, у этого квадратного уравнения есть два мнимых решения.

      Решения: 2i и -2i.

      Ниже приведено изображение этого графика уравнений.

      Практика 7

      Найдите дискриминант, чтобы определить природу и количество решений: y = x² + 25.2} — 4 \ color {Magenta} {(1)} \ color {Blue} {(25)} = -100
      $$

      Поскольку дискриминант отрицательный, у этого квадратного уравнения есть два мнимых решения.

      Решения 5i и -5i.

      Как найти дискриминант квадратного уравнения и прокомментировать природу корней?

      Если, у нас есть квадратное уравнение вида

      , где a, b, c — действительные числа, а

      , тогда как мы можем определить природу корней такого квадратного уравнения?

      Ответ: С помощью дискриминанта можно определить природу корней любого квадратного уравнения.Теперь возникает вопрос, что такое дискриминант.

      Мы часто используем квадратичную формулу,

      , чтобы найти корни любого квадратного уравнения. Подчасти (

      ) квадратичной формулы называется дискриминантом квадратного уравнения.

      Следовательно, дискриминант любого квадратного уравнения =

      Давайте возьмем пример, у нас есть квадратное уравнение,

      , если сравнить его с общей формой квадратного уравнения

      , получаем

      и

      .

      Дискриминант =

      =

      Аналогичным образом можно найти дискриминант других квадратных уравнений.

      Теперь вопрос в том, как определить природу корней по значению дискриминанта квадратного уравнения.

      Если Дискриминант> 0, то два корня квадратного уравнения различны и действительны.

      Если Дискриминант = 0, то два корня квадратного уравнения действительны и равны.

      Если Дискриминант <0, то для данного квадратного уравнения нет действительных корней.

      Возьмем три разных примера, по одному для каждого случая. Предположим, у нас есть три квадратных уравнения:

      (1)

      (2)

      (3)

      Теперь мы определим природу корней этих трех квадратных уравнений с помощью дискриминанта.

      (1)

      Сравнение этого уравнения с общей формой

      , получаем

      и

      .

      Дискриминант =

      Следовательно, дискриминант уравнения больше 0. Следовательно, уравнение имеет действительные и различные корни. Вы также можете проверить это, фактически найдя корни уравнения. Корни уравнения будут

      и

      , которые являются различными и действительными числами.

      (2)

      Сравнение этого уравнения с общей формой

      , получаем

      и

      .

      Дискриминант =

      Следовательно, дискриминант уравнения равен нулю. Следовательно, уравнение имеет равные и действительные корни. Вы также можете проверить это, фактически найдя корни уравнения. Корней получится

      и

      , которые являются равными и действительными числами.

      (3)

      Сравнение этого уравнения с общей формой

      , получаем

      и

      .

      Дискриминант =

      Следовательно, дискриминант уравнения меньше нуля. Следовательно, уравнение не имеет реальных корней. Вы также можете проверить это, фактически пытаясь найти корни уравнения. Когда вы примените формулу корней квадратного уравнения,

      , чтобы найти корни уравнения, вы получите

      в корне квадратном.Все мы знаем, что квадрата отрицательного числа не существует. Следовательно, у этого квадратного уравнения не будет решения. Или вы можете сказать, что у этого квадратного уравнения нет реального решения.

      Примечание *: Решение таких квадратных уравнений может быть сложным, но это выходит за рамки книг, которые мы изучаем в десятом классе. Так что вам не нужно об этом беспокоиться. Вам просто нужно не писать решения или нет реального решения для таких квадратных уравнений.

      Понимание дискриминанта в квадратной формуле

      Квадратное уравнение в алгебре — это уравнение, в котором наибольшая степень неизвестной переменной равна 2.Вы пишете квадратные уравнения, используя следующую формулу: ax² + bx + c = 0

      Вот несколько быстрых примеров квадратных уравнений:

      • 2x² + 5x - 8 = 0
      • 7x² + 9 = 0
      • xx² - 26 = 3x

      В этой статье я покажу вам, как дискриминант влияет на решения квадратных уравнений. Дискриминант квадратной формулы — это часть квадратной формулы, которая определяет тип корня в квадратном уравнении (мнимое, действительное, сингулярное).

      Решения квадратного уравнения

      Решения квадратного уравнения — это значения неизвестной переменной, которые делают уравнение истинным. Есть четыре стандартных способа найти корни квадратного уравнения.

      Метод факторизации

      Этот метод применим, если вы можете разложить коэффициенты квадратного уравнения на множители как av + bx + c = a (rx + n) (px + m) = 0 . Где n и m — корни квадратного уравнения.

      Квадратный метод

      Этот метод полезен, когда вы не можете факторизовать коэффициенты квадратного уравнения, как показано выше.При завершении метода квадратов квадратное уравнение выражается в виде

      • ax² + bx + c = x2 + (b / a) x + (c / a) = 0
      • x² + (b / a) x + (c / a) = (x + ½b) 2 + (c / a) - (b² / 4) = 0
      • (x + ½b) 2 = (b² / 4) - (c / a)

      Решение относительно x дает корни квадратного уравнения.

      Квадратичная формула

      Вы получите квадратную формулу, выполнив метод квадратов.Если квадратное уравнение задано как ax² + bx + c , то корни квадратного уравнения даются как x = (-b + - (b² – 4ac) 1/2) / 2a .

      Графический метод

      В этом методе вы строите квадратное уравнение, и точки, в которых график пересекает ось x, являются корнями уравнения.

      Однако в рамках этой темы мы сосредоточимся на квадратной формуле.

      Дискриминант квадратичной формулы

      Вы можете решить все квадратные уравнения, используя метод квадратных формул.Из-за его универсальности мы называем его всемогущей формулой. Вы можете найти корни квадратного уравнения, используя x = (-b + - (b² - 4ac) 1/2) / 2a .

      Член b² - 4ac под квадратным корнем определяет корни квадратного уравнения и является дискриминантом квадратного уравнения. Для дискриминанта есть три возможных исхода.

      b² - 4ac> 0

      Это происходит, когда b ² больше 4ac. В этом случае вы получите два действительных корня квадратного уравнения.Это верно, потому что квадратный корень любого положительного числа является положительным числом. Если вы построите график квадратного уравнения, он срежет ось x в двух точках.

      b² - 4ac = 0

      Это происходит, когда равно 4ac. Если это ваш результат, у квадратного уравнения есть только один действительный корень. Квадратный корень из нуля равен нулю. Если вы построите график квадратного уравнения, он коснется оси x только в одной точке.

      (b² - 4ac) = 0

      Это происходит, когда b ² меньше 4ac.Это работа для мнимых корней. Корни мнимые, поскольку квадратный корень отрицательного числа является мнимым числом. График такого квадратного уравнения не будет касаться оси абсцисс.

      Проиллюстрируем различные случаи, когда дискриминант определяет корни квадратных уравнений.

      Пример 1

      Найдите корни следующих квадратных уравнений:

      1. x² + 7x + 3 = 0
      2. 3x² - 13x - 12 = 0
      3. 6y² + 10y = 0

      Поскольку мы хотим продемонстрировать, как дискриминант влияет на корни квадратного уравнения, мы будем использовать метод формулы для решения вышеуказанных задач.

      Квадратичная формула: x = (-b + - (b² - 4ac) 1/2) / 2a

      Уравнение 1

      x² + 7x + 3 = 0

      a = 1, b = 7 и c = 3

      Подставьте значения коэффициентов a, b и c в формулу корней квадратного уравнения.

      • (-7 + - (72-4 * 1 * 3) 1/2) / (2 * 1)

      Дискриминант здесь равен (72 - 4 * 1 * 3) и равен 37. Поскольку 37 больше 0, это означает, что у нас есть два действительных корня.Решим и получим корни!

      • (-7 + - (72-4 * 1 * 3) 1/2) / (2 * 1)
      • (-7 + - 371/2) / (2 * 1)
      • (-7 + - 6,08) / (2 * 1)

      Корни

      • (-7 + 6,08) / (2 * 1) и (-7 - 6,08) / (2 * 1)
      • -0,46 и -6,54

      Корни x² + 7x + 3 = 0 равны -0,46 и -6,54

      Уравнение 2

      3x² - 13x - 12 = 0

      a = 3 , b = -13 и c = -12

      После подстановки значений a, b и c в формулу получаем

      • (- (- 13) + - (-132 - 4 * 3 * -12) 1/2) / (2 * 3)
      • (13 + - (313) 1/2) / (2 * 3)
      • (13 + - 17.69) / (2 * 3)

      Корни

      • (13 + 17,69) / (2 * 3) и (13-17,69) / (2 * 3)
      • 5,11 и -0,78

      Корни 3x2 - 13x - 12 = 0 равны 5,11 и -0,78

      Уравнение 3

      6y² + 10y = 0

      a = 6 , b = 10 и c = 0

      Коэффициент c равен нулю, поэтому он не фигурировал в вопросе.

      После подстановки значений a, b и c в формулу корней квадратного уравнения получаем:

      • (-10 + - (102-4 * 6 * 0) 1/2) / (2 * 6)
      • (-10 + - (102) 1/2) / (2 * 6)

      Корни следующие:

      • (-10 + 10) / 12 и (-10-10) / 12
      • 0 и -1.67

      По всем вопросам дискриминант был больше 0. Все корни действительные и попарно.

      Пример 2

      Ваше квадратное уравнение: 2x2 + 4x + 2 = 0 .

      a = 2 , b = 4 и c = 2

      Подставьте значения коэффициентов для a, b и c в квадратное уравнение.

      • (-4 + - (42-4 * 2 * 2) 1/2) / 2 * 2
      • (-4 + - 0) / 4

      Корни

      • (-4 + 0) / 4 или (-4-0) / 4
      • -1 и -1

      Корень квадратного уравнения равен -1.В этом примере дискриминант равен 0, и мы пришли только к одному корню.

      Пример 3

      Найдите корни 3x2 + 2x + 7 = 0 .

      a = 3 , b = 2 и c = 7

      Введите значения a, b и c в формулу корней квадратного уравнения.

      • (-2 + - (22-4 * 3 * 7) 1/2) / 2 * 2
      • (-2 + - (-80) 1/2) / 4
      • (-2 + - 8,9j) / 4

      Корни

      • (-2 + 8.9j) / 4 и (-2 - 8,9j) / 4
      • Вы не можете дальше упрощать корни.

      Корни здесь мнимые. Они содержат мнимую переменную j, которую мы определяем как (-1) 1/2 или квадратный корень из -1. Мы пришли к мнимым корням, потому что дискриминант был меньше нуля.

      Завершение

      Понять, как дискриминант влияет на результат решения квадратного уравнения, так же просто, как запомнить формулу. Если вы когда-либо сталкивались с этой математической задачей, всегда выбирайте квадратную формулу.

      Оставьте первый комментарий ниже. 2 — 4ac ./ \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \

      Некоторые квадратные уравнения записаны в стандартной форме, а другие НЕ . В некоторых уравнениях отсутствует линейный член, в то время как в других отсутствует постоянный член. Некоторые квадратичные функции имеют отрицательный старший коэффициент. Имейте в виду, что этот лабиринт фокусируется только на числовой части дискриминанта. Он только просит студентов попрактиковаться, используя приведенную выше формулу.

      Ответы на вопросы лабиринта даны в двух разных моделях:

      Модель 1 (лабиринт 1) дает ответы с использованием:

      * 1 действительный корень

      * 2 действительных корня

      * 2 комплексных корня

      , а модель Модель 2 (лабиринт 2) дает ответы с использованием:

      * 1 рациональный корень

      * 2 рациональных корня

      * 2 иррациональных корня

      * 2 сложные корни

      Оба лабиринта содержат одинаковый набор вопросов.В этом лабиринте есть 15 квадратных уравнений. От начала до конца ученик сможет ответить на 13 вопросов из 15 предоставленных, чтобы добраться до конца лабиринта.

      Этот лабиринт можно использовать как: способ проверки понимания, обзора, резюме урока, совместного использования пар, совместного обучения, выходного билета, входного билета, домашнего задания, индивидуальной практики, когда у вас остается время конец периода, начало периода (как разминка или работа звонка), перед викториной по теме и т. д.

      «Хотелось бы услышать ваши отзывы». Пожалуйста, не забудьте вернуться и оценить этот продукт, когда у вас будет возможность. Вы также получите кредиты TPT. Наслаждайтесь, и я «Спасибо» за посещение моего «Никогда не сдавайся Math» магазина !!!

      © Never Give Up On Math 2015 (обновлено 2019)

      Этот продукт предназначен только для личного использования в одном классе. Для использования в нескольких классах приобретите дополнительные лицензии.

      ☺ ПРОЙТИ ЧУДЕСНЫЙ ДЕНЬ ☺

      Видео с вопросом: Поиск всех возможных значений константы, которые делают корни данного квадратного уравнения нереальными

      Стенограмма видео

      Если корни уравнения 24𝑥 в квадрате плюс шесть 𝑥 плюс 𝑘 равны нулю, не являются действительными, найдите интервал, содержащий 𝑘.

      Итак, нам сказали, что корни этого квадратного уравнения, в котором 𝑘 является постоянным членом, не являются действительными. Нам нужно вспомнить связь, существующую между коэффициентами квадратного уравнения и типом корней, которые оно имеет.

      Предположим, что у нас есть общее квадратное уравнение: в квадрате плюс 𝑏𝑥 плюс 𝑐 равно нулю. Дискриминант квадратного уравнения — это величина 𝑏 в квадрате минус четыре. Значение или, точнее, знак дискриминанта — это то, что определяет тип корней, которые будет иметь квадратное уравнение.

      Если дискриминант строго положительный, то квадратное уравнение будет иметь два действительных и различных корня. Если значение дискриминанта равно нулю, то квадратное уравнение имеет только один повторяющийся действительный корень. Если значение дискриминанта меньше нуля, то квадратное уравнение не имеет действительных корней, какова ситуация, которую мы задаем в этом вопросе.

      Итак, мы знаем, что дискриминант этой квадратичной функции должен быть меньше нуля. Давайте выясним, чему равен дискриминант в терминах.Сравнивая коэффициенты в нашей квадратичной системе с общей формой, мы видим, что равно 24, 𝑏 равно шести, а 𝑐 равно.

      Следовательно, дискриминант 𝑏 в квадрате минус четыре 𝑎𝑐 равен шести в квадрате минус четыре, умноженным на 24, умноженным на. Это упрощается до 36 минус 96 𝑘. Помните, что корни этого квадратного уравнения ненастоящие. Значит, значение дискриминанта меньше нуля. Следовательно, имеем неравенство 36 минус 96 𝑘 меньше нуля.

      Чтобы найти интервал, содержащий, нам нужно решить это неравенство для 𝑘.Первый шаг — вычесть 36 с каждой стороны. Это дает отрицательное 96 𝑘 меньше, чем отрицательное 36. Затем нам нужно разделить обе части неравенства на отрицательное 96.

      Здесь нужно быть очень осторожным. Помните, когда мы делим неравенство на отрицательное число, нам нужно изменить направление неравенства на противоположное. Таким образом, знак «меньше» становится знаком «больше». И теперь мы имеем, что больше, чем отрицательное 36 над отрицательным 96. Отрицательное значение в числителе и отрицательное значение в знаменателе взаимно компенсируются.И дробь упрощается до трех на восемь, если числитель и знаменатель разделить на 12.

      Тогда 𝑘 больше трех на восемь. Этот вопрос не требует от нас дать наш ответ неравенством. Он просит нас указать интервал, содержащий. Если 𝑘 должно быть больше трех на восемь, тогда набор возможных значений 𝑘 — все от трех до восьми до бесконечности.

      Поскольку нижний конец интервала представляет собой строгое неравенство, а верхний конец — бесконечность, мы можем выразить это как открытый интервал, на что указывают обращенные наружу квадратные скобки.2 — 4ac).

      В зависимости от природы дискриминанта корни могут быть найдены разными способами.

      1. Если дискриминант положительный , то есть два различных действительных корня.
      2. Если дискриминант равен нулю , то два корня равны.
      3. Если дискриминант отрицателен , то есть два различных комплексных корня.

      Случай 1: Если дискриминант положительный,

      r1 = (-b +? K) / 2a и r2 = (b +? K) / 2a — два корня.2 — 4 * (- 8) * 3
      = 40
      Взаимодействие с другими людьми
      Дискриминант положительный. Следовательно, корни реальны и различны.

      r1 = (-b +? k) / 2a
      = (8 +? 40) / 2 * 2
      = 2,3875

      г2 = (Ь +? к) / 2а
      = (- 8 +? 40) / 2 * 2
      = -0,3875
      Взаимодействие с другими людьми
      r1 = 2,3875 и r2 = -0,3875 — два корня.

      Алгоритм поиска всех корней квадратного уравнения

      1. Введите значение a, b, c.

      2. Вычислить k = b * b — 4 * a * c

      3. Если (d <0)

      Дисплей «Корни мнимые, Calculater1 = (-b + i? K) / 2a и r2 = ( б + я? к) / 2а.

      else if (d = 0)

      Отобразите «Корни равны» и вычислите r1 = r2 = (-b / 2 * a)

      else

      Отобразите «Корни действительны и вычислите r1 = -b +? D / 2 * a andr2 = -b -? D / 2 * a

      4. Выведите r1 и r2.

      5. Завершите алгоритм

      Программа, чтобы найти все корни квадратного уравнения

      Выход

      Вход
      Введите коэффициенты a, b и c: 1 2 3
      Выход-
      корень1 = -1 + 1.41421 и root2 = -1 + 1.41421

      Выход

      Вход
      Введите коэффициенты a, b и c: 1 2 3
      Выход-
      root1 = -1 + 1.41421 и root2 = -1 + 1.41421

      Выход

      Вход
      Введите коэффициенты a, b и c: 1 2 3
      Выход-
      root1 = -1 + 1.41421 и root2 = -1 + 1.41421

      Выход

      Вход
      Введите коэффициенты a, b и c: 1 2 3
      Выход-
      корень1 = -1 + 1.41421 и root2 = -1 + 1.41421

      Временная сложность: O (1)

      Рекомендуемые программы

      Если у вас есть отзывы по этому поводу
      статью и хотите улучшить ее, напишите на [email protected]

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован.