Химические физические: Физические явления. Химические реакции — урок. Химия, 8–9 класс.

Содержание

Физические и химические свойства полимерных материалов, мембран














Полистирол (ПС, тефлон, Polystyrene, PS) — термопластичный полимер с высокой степенью оптического светопропускания. Жесткий и нетоксичный, с превосходной стабильностью размеров и хорошей химической стойкостью к водным растворам, однако ограниченной устойчивостью к органическим растворителям (кроме разбавленных кислот, спиртов и щелочей) и морозостойкостью до −40 °C. Этот материал с прозрачностью, как у стекла, часто применяется для изготовления одноразовой лабораторной продукции. Изделия из полистирола хрупки при комнатной температуре и могут треснуть или разбиться при падении с высоты стола.


Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP) — термопластичный материал, прозрачный, имеет высокую прочность при воздействии низких температур, обладает химической устойчивостью ;к большинству кислот, оснований и спиртов, подходит для хранения и отбора проб биологических веществ и других водных растворов.

Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene) — термопластический материал, имеет повышенную твердость и прочность, высокую химическую стойкость при воздействии на него агрессивных сред, хорошую пластичность. Используется при температурах в диапазоне от -70 до +50 °С, нетоксичный материал.

Полипропилен (ПП, Polypropylene, PP) — термопластичный материал, обладающий высокой ударной прочностью, имеет газо- и паропрочность, низкую теплопроводностью, по прозрачности уступает полистеролу. Он прозрачен, выдерживает автоклавирование и не растворяется в каких-либо известных растворителях при комнатной температуре. Его чувствительность к сильным окислителям немного выше, чем у полиэтилена. Обладает наилучшей стойкостью к трещинам от напряжения из всех полиолефинов. Изделия из полипропилена хрупки при 0 °С и могут треснуть или разбиться при падении с высоты стола.

Поликарбонат (ПК, polycarbonate, PC) — термопластичный полимер, который не имеет аналогов среди современных полимеров. Он отличается превосходными параметрами светопроницаемости, ударопрочности, а также устойчивостью к температурным перепадам (от -100 до +165 °C). Обладает прозрачностью оконного стекла, удивительно прочен и жесток. Он выдерживает автоклавирование, нетоксичен и самый жесткий из термопластиков. Прочность и стабильность размеров делает этот материал идеальным для изготовления изделий для центрифугирования.

Полисульфон (ПСФ, Polysulphone, PSU) — термопластичный материал, прозрачный, обладает высокой прочностью и устойчивостью при высоких температурах, отличные диэлектрические свойства в широком диапазоне температур и частот; нетоксичен; допускает стерилизацию всех видов.

Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC) — термопластичный материал, прозрачный, отличается химической стойкостью к щелочам, минеральным маслам, многим кислотам и растворителям, устойчивостью при высоких температурах.

Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET) — это термопластичный материал, являющийся самым распространенным среди полиэфиров. Обладает прозрачностью, высокой прочностью, хорошей пластичностью (причем как в нагретом состоянии, так и в холодном), химической стойкостью. Все свои характеристики ПЭТ сохраняет и при низких температурах, до -40 °C, и при высоких, до +75 °C. Высокая устойчивость к деформации.

Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE) — термопластический материал, гибкость и эластичность которого сохраняются при температурах в диапазоне от -70 до +270 °С, имеет очень высокую стойкость к щелочам, кислотам, растворителям и окислителям. Устойчивость к свету и неблагоприятным погодным условиям, к горячему водяному пару. не горюч.

Нейлон (Nylon) — термопластичный материал, непрозрачен, термостойкий, подходит для механической обработки, высокая проницаемость для водяного пара, устойчив к центрифугированию.

Нитрат целлюлозы (Cellulose nitrate) — непрозрачный, химически нестабилен, обладает низкой химической стойкостью к действию кислот и щелочей.

Ацетат целлюлозы (Cellulose acetate) — термопластический материал, светостойка, обладает хорошими физико-механическими свойствами и практически негорюча. Термостабильность ацетилцеллюлозы недостаточно высока: уже при 190-210 °C изменяется окраска материала, а при 230 °С он начинает разлагаться.



Физические свойства










Полистирол (ПС, Polystyrene, PS





Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP)



Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene)




Полипропилен (ПП, Polypropylene, PP)





Поликарбонат (ПК, polycarbonate, PC)





Полисульфон (ПСФ, Polysulphone, PSU)





Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC)





Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET)




Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE)


(тефлон)

Нейлон (Nylon)


Нитрат целлюлозы (Cellulose nitrate)

Ацетат целлюлозы (Cellulose acetate)

Основные свойства

биологически инертный, твердый, с высокой степенью оптического светопропускания.

биологически инертный, твердый, высокая химическая стойкость


биологически инертный, твердый, высокая химическая стойкость


биологически инертный, высокая химическая стойкость, исключительная прочность

биологически инертный, очень прочный, инертный, высокая температурная стойкость

биологически инертный,

Нетоксичен и очень жёсток

биологически инертен,стоек к маслам (кроме эфирных).

биологически инертный, жесткий, прочный, превосходные оптические качества

биологически и химически инертен, очень стойкая скользкая поверхность


термостойкий, подходит для механической обработки, высокая проницаемость для водяного пара


термически нестабильный, обладает низкой хим. стойкостью к действию кислот и щелочей

термостойкий, стойкость к воздействию минеральных масел, нефтепродуктов, ряда ароматических углеводородов

Прозрачность

прозрачный

непрозрачен

полупрозрачный

непрозрачен

прозрачный

прозрачный

прозрачен

прозрачный

непрозрачен

непрозрачен

непрозрачен

прозрачен

Результат автоклавирования

плавится

возможно


плавится


не поддается деформации

выдерживает несколько циклов

возможно

плавится

плавится

допустимо

допустимо

допустимо

допустимо

Устойчивость к центрифугированию

устойчив до 3000g.

устойчив

до 15000 g


-


устойчив до 50000g

устойчив до 50000 g

устойчив до 50000 g

устойчив

до 5000 g

устойчив

до 5000 g

устойчив

до 5000 g

устойчив до 16000 g

устойчив до 50000 g


Температура термической деформации

64-80 °С

121 °С


120 – 138 °C


135 °С

138-143 °С

174 °С

150-220 °С

70 °С

121°С

150-180°С

190-220°С

190-210°С

Скорость горения

медленно

медленно


медленно


медленно

гаснет само-произвольно

гаснет само-произвольно

не горит


не горит

гаснет самопроизвольно

медленно


Воздействие лабораторных реактивов








Полистирол (ПС, Polystyrene, PS

Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP)



Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene)




Полипропилен (ПП, Polypropylene, PP)

Поликарбонат (ПК, polycarbonate, PC)

Полисульфон (ПСФ, Polysulphone, PSU)


Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC)


Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET)

Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE)

(тефлон)

Нейлон (Nylon)


Нитрат целлюлозы (Cellulose nitrate)

Ацетат целлюлозы (Cellulose acetate)


Слабые кислоты


нет


нет


нет


нет


нет


нет


нет


нет


нет


нет

нет

нет


Сильные кислоты


окисляющие кислоты разрушают


окисляющие кислоты разрушают


окисляющие кислоты разрушают


окисляющие кислоты разрушают


возможно разрушение


возможно разрушение


нет


окисляющие кислоты разрушают


нет


нет

разрушение

окисляющие кислоты разрушают


Слабые щелочи


нет


нет


нет


нет


нет


нет


нет


нет


нет


нет

нет

нет


Сильные щелочи


нет


нет


нет


нет


медленное разрушение


нет


нет


нет


нет


нет

нет

нет


Органические растворители


растворим в ароматических хлор-содержащих углеводородах


устойчив при температуре ниже 80оС


набухает в ароматических соединениях и галогенированных углеводородах


устойчив при температуре ниже 80оС


растворим в хлор-содержащих углеводородах; частично растворим в ароматических


неустойчив, разрушается эфирами и ароматическими углеводородами



нет


растворим в ароматических или хлор-содержащих углеводородах


устойчив


устойчив


растворим в орг. растворителях: спиртоэфирной смеси, ацетоне, частично в этиловом спирте


растворим в орг.растворителях: спиртоэфирной смеси, ацетоне, этилацетате, частично в этиловом спирте

Проницаемость тонкостенных изделий для газа







Полистирол (ПС, Polystyrene, PS





Полиэтилен высокого давления (ПЭВД, high pressure polyethylene, PEHP)



Полиэтилен высокой плотности (низкого давления, ПЭВП, ПНД, HDPE, High Density Polyethylene)



Полипропилен (ПП, Polypropylene, PP)





Поликарбонат (ПК, polycarbonate, PC)





Полисульфон (ПСФ, Polysulphone, PSU)





Поливинилхлорид (ПВХ, Polyvinyl chloride, PVC)





Полиэтилен-терефталат (ПЭТ, Polyethylene terephthalate, PET)





Политетрафторэтилен (ПТФЭ, Polytetrafluoroethylene, PTFE)




(тефлон)



Нейлон (Nylon)

Ацетат целлюлозы


О2


низкая


высокая


низкая


высокая


очень низкая


очень низкая


очень низкая


очень низкая


очень низкая


очень низкая

низкая


N2


очень низкая


низкая


очень низкая


низкая


очень низкая


очень низкая


очень низкая


очень низкая



очень низкая

очень низкая


СО2


высокая


очень высокая


высокая


очень высокая


низкая



очень низкая





очень низкая

Кафедра физической химии | Санкт-Петербургский горный университет

 

Заведующий кафедрой:

Доктор технических наук, профессор

Ольга Владимировна Черемисина

Телефон: (812)328-84-56.
местный 1492

Аудитория: 3426

e-mail: [email protected]

В составе кафедры 
9 сотрудников,
из них:
2 профессора,
4 доцентов,
2 ассистента
2 доктора наук,
6 кандидатов наук

История кафедры

1774 год – основаны химические классы Горного училища. Под руководством А.М. Карамышева были оборудованы первые лаборатории для занятий по химии, металлургии и пробирному делу. Лаборатория была оснащена всем необходимым для анализа минерального сырья.

1774 – 1779 гг. член-корреспондент Петербургской и Стокгольмской академий наук, бергмейстер А.М. Карамышев первый преподаватель в химических классах.

1798 – 1801 гг. академик Петербургской и Стокгольмской академий наук В. М. Севергин преподавал химию, металлургию и пробирное искусство. Автор первого учебника по пробирному искусству на русском языке.

1808 год – приглашен преподавать химию в Горном корпусе академик А.И. Шерер, который разделил преподавание химии и металлургии, издал первый учебник по химии «Руководство к преподаванию химии» на русском языке, предусматривающий лабораторный практикум.

1815 – 1826 гг. курс общей и физической химии читал профессор Петербургского университета, член-корреспондент Российской академии Соловьев М.Ф., известный разработкой русской химической номенклатуры.

1826 год – построено новое 2-х этажное каменное здание для химической лаборатории (архитектор А.И. Постников). Руководителем лаборатории до 1841 года был член-корреспондент Академии наук П.Г. Соболевский. Деятельность лаборатории была направлена на решение задач горного комплекса и металлургии. Велась исследовательская работа по заказам Департамента горных и соляных дел. У входной двери со двора размещались 2 чугунных сфинкса (в настоящее время находятся во дворе института возле бывшего учебного рудника).

1834 год – профессором по кафедре химии Института корпуса горных инженеров утвержден академик Г.И. Гесс, автор учебника «Основания чистой химии». Главное научное направление школы Гесса: развитие фундаментальных основ химической термодинамики и аналитической химии для решения практических задач минерально-сырьевого комплекса и металлургии.

1839 – 1867 гг. неорганическую и аналитическую химию преподавал горный инженер, заслуженный профессор Иванов Н.А., автор учебника «Начальные основы аналитической химии», удостоенного в 1854 г. Демидовской премии.

1872 год – химическая лаборатория переехала в 1-й этаж классного корпуса (ныне 1-ый корпус), где была оборудована по последнему слову техники.

1876 – 1878 гг. органическую химию преподавал адъюнкт Вреден Ф.Р., открывший в нефти новый класс углеводородов – гидроароматический.

1893 – 1938 гг. в Горном институте преподавал основатель физико-химического анализа, академик Н. С. Курнаков (1893-1899 гг. – неорганическую химию, 1899-1938 гг. аналитическую химию).

1891 – 1918 гг. преподавал неорганическую химию профессор И.Ф. Шредер (1912 – 1917 г.г. директор Горного института). Внес большой вклад в исследование фазовых равновесий.

1899 – 1903 гг. курс неорганической химии читал профессор (с 1923 г. академик) Д.П. Коновалов, автор известных законов Коновалова. 1903 – 1905 г.г. директор Горного института.

1901 – 1906 гг. – возведено новое 3-этажное здание химической лаборатории (ныне 6-ой корпус), в котором находились отделения пробирного искусства, неорганической и физической химии – 1 этаж, количественный анализ- 2 этаж, отделение качественного анализа – 3 этаж.

1908 год – введено преподавание физической химии. Первым профессором по отделению физической химии был в 1908-1919 гг. Петр Петрович фон Веймарн, основоположник коллоидной химии.

1918 – 1938 гг. вел занятия на кафедре общей и физической химии член-корреспондент АН СССР, известный ученый в области фазового анализа Николай Иванович Степанов.

1930 год – на заведование кафедрами утверждены Н.С. Курнаков (кафедра количественного анализа) и П.Я. Сальдау  (кафедра качественного анализа)

1941 – 1951 гг. заведующий кафедрой профессор К.Ф. Белоглазов, известный специалист в области металлургии цветных металлов и обогащения руд.

1966 – 1982 гг. руководила кафедрой профессор Г.В. Иллювиева, ведущий специалист в области экстракции цветных и редких металлов

1982 – 2001 гг. руководил кафедрой профессор И.А. Дибров. Исследования кафедры были ориентированы на решение фундаментальных вопросов физической химии.

2001 – 2014 гг. заведовал кафедрой доктор химических наук, профессор Д.Э.Чиркст, ученый в области гетерогенных равновесий, химической термодинамики и кинетики.

С 2014 года кафедрой общей и физической химии руководит доктор технических наук, профессор Ольга Владимировна Черемисина.

С 01 сентября 2017 года согласно приказу о реорганизации кафедры общей и физической химии заведующей кафедрой физической химии назначена доктор технических наук, профессор Ольга Владимировна Черемисина.

Физико-химические свойства кожи и действие лечебных физических факторов

Хорошо известно, что кожа, являясь пограничным полифункциональным органом, принимает самое активное участие в жизнедеятельности организма, имеет разнообразные связи со всеми внутренними органами и системами, во многом отражает их функциональное состояние и определяет закономерности взаимодействия организма с внешней средой [1—3]. Не вызывает сомнений и важная роль кожи в физиологическом и лечебном действии физических факторов. Так, многочисленные рецепторы, заложенные в коже и трансформирующие энергию различных раздражителей в энергию нервного (рецепторного) потенциала, обеспечивают формирование рефлекторного компонента действия физиотерапевтических факторов [4, 5]. Кожа служит местом синтеза ряда биологически активных веществ (гистамин, гепарин, серотонин, цитокины, гормоны и др.), что предопределяет ее участие в гуморальном механизме действия физических методов лечения [6, 7]. Кроме того, она оказывает ограничительное влияние на распространение, поглощение и распределение энергии физических факторов, модулирует их действие на физическом и других уровнях, способствует развитию защитно-приспособительных реакций и др. [8, 9].

Предполагается, что во всех этих эффектах и реакциях кожи в отношении лечебных физических факторов важную роль играют ее физико-химические свойства. Последние могут существенно изменяться при различных физиотерапевтических воздействиях [10, 11]. Фактических же данных о влиянии физико-химических параметров кожи на действие лечебных физических факторов весьма мало, и они нередко противоречивы. Между тем эти данные могли бы способствовать управлению действием физических факторов и повышению их терапевтической эффективности, что позволяет отнести эту проблему к числу актуальных в физиотерапии. В настоящей статье обобщены важнейшие сведения, включая и собственные данные, о влиянии таких физико-химических свойств кожи, как проницаемость, электропроводность и электросопротивление, уровень рН, а также оптические свойства.


Проницаемость кожи

Под кожной проницаемостью понимают способность вещества диффундировать (проникать) через кожные покровы. Кожу относят к мембранам первого порядка, которые в подавляющем большинстве препятствуют прохождению ионов и пропускают нейтральные молекулы с выраженными липофильными свойствами [12].

Согласно R. Tregear, в большинстве случаев проникновение веществ через кожу происходит по закону Фика, выражаемому простой формулой [13]:

Js=KpΔCs,

где: Js — поступление (приток) вещества; Кр — константа проницаемости; ΔСs — разность концентрации по сторонам мембраны.

Не прибегая к частным данным, в отношении общих закономерностей проникновения веществ через кожу можно констатировать следующее [10]:

1. Кожа человека, как правило, проницаема для жирорастворимых соединений и растворителей липидов, а также для ряда газообразных веществ и недиссоциированных молекул слабых кислот. Она отличается слабой проницаемостью для солей, кислот и оснований, диссоциирующих в водных растворах.

2. Вещества, молекулы которых имеют размеры более 200—300 Å, не проникают через неповрежденный эпидермис.

3. Максимальной проницаемостью обладают вещества, сочетающие растворимость в жирах с умеренной растворимостью в воде. Такие вещества, растворяясь в жирах, легко проникают в эпидермис, а затем растворяются в тканевой жидкости и поступают в более глубокие слои кожи.

4. При длительном контакте с кожей она становится проницаемой для значительно большего числа веществ. Отсюда вытекает целесообразность оставления на коже «солевого плаща» после бальнеологических процедур.

5. Если вещество преодолевает основной барьер кожи, то остальные слои эпидермиса и дерма, как правило, не оказывают существенного сопротивления его продвижению в глубину кожи.

Конкретные сведения о проникновении в кожу и через нее различных химических и лекарственных веществ приведены в ряде книг и обзоров [13—16].

Для усиления проницаемости кожи используют органические растворители и поверхностно-активные вещества (спирт, бензол, диметилсульфоксид (ДМСО), пирролидон, пропиленгликоль, хлороформ, ацетон и др. ), а также физические факторы [17, 18].

Кожная проницаемость представляет большой интерес для физиотерапии, так как она во многом определяет действие и терапевтический эффект некоторых физических методов лечения, прежде всего физико-фармакологических, теплогрязелечения и бальнеотерапии.

В основе физико-фармакологических методов лежит сочетанное действие на организм физических факторов и вводимых лекарственных веществ, во многом определяющих их специфичность. Поступ-ление последних в организм зависит от дозиметрических параметров применяемого физического фактора и степени проницаемости кожи [19, 20]. Поскольку при этих методах вводится в организм сравнительно небольшое количество лекарственных веществ, то нередко прибегают к использованию химических или физических факторов, изменяющих морфофункциональное состояние и повышающих проницаемость кожи.

Так, для повышения проницаемости кожи и увеличения поступления в организм лекарственных веществ при электрофорезе в качестве растворителя применяют 25—50% ДМСО. Более того, на основе использования ДМСО предложен оригинальный метод лекарственного электрофореза — электродрегинг [21]. Отличия электродрегинга от традиционной методики электрофореза:

а) в организм вводится в 1,5—2,0 раза больше лекарственного вещества;

б) лекарственное вещество быстрее убывает из кожного депо и проявляет системное фармакотерапевтическое действие;

в) в крови лекарственное вещество находится в значительно большей концентрации [21, 22].

Высокая эффективность метода продемонстрирована у пациентов с язвенной болезнью двенадцатиперстной кишки, пиелонефритом и хроническим панкреатитом.

Предварительная обработка кожи смесью Блюра и особенно ДМСО существенно повышает эффективность введения лекарственных веществ методом электрофореза [23]. Применение ультразвука, способствующего разрыхлению кожи и повышению ее проницаемости, заметно усиливает поступление лекарственных препаратов в организм при последующем электрофорезе [24]. Результаты этих исследований легли в основу разработки такого метода, как электрофонофорез [25]. Аналогичные данные получены и в отношении индуктотермии (индуктотермоэлектрофорез) и вакуума (вакуум-электрофорез), которые способствуют повышению эффективности электрофоретического введения лекарственных препаратов в организм и созданию более высоких их концентраций в тканях [19, 26].

Накожные аппликации гиалуронидазы, спирто-эфирной смеси, ДМСО, а также локальная гальванизация, вызывающие усиление кожной проницаемости, приводят к значительному увеличению количества вводимого ультразвуком вещества и повышению эффективности лекарственного ультрафонофореза [27].

Для повышения терапевтической эффективности лазерофореза (фотофореза) лекарственных веществ предложено его сочетать с изменяющими проницаемость кожи ультразвуком (сонофотофорез) или гальванизацией (электрофотофорез). Сонофотофорез лекарственных веществ (антибиотики, фотосенсибилизаторы) успешно используется при лечении гнойных ран, атеросклероза сосудов нижних конечностей [28], а лекарственный электрофотофорез — в терапии артериальной гипертензии и атеросклеротической окклюзии периферических сосудов [29].

При применении грязелечения одним из ключевых вопросов является проницаемость кожи, так как она определяет химический компонент действия лечебных грязей. В целях увеличения проникновения через кожу химических ингредиентов (гормоноподобные вещества, аминокислоты, органические соединения и др.) при грязелечении его сочетают с физическими факторами, которые повышают кожную проницаемость и способствуют трансдермальному транспорту веществ (с ультразвуком — пелофонотерапия, с электрическим током — электрогрязелечение, с индуктотермией — индуктотермогрязелечение и др.) [30, 31]. Достижению этой цели также способствуют нагрев лечебных грязей до определенных температур (42—44 оС) и использование грязеразводных ванн [30, 32, 33]. При последних проникновение химических ингредиентов в организм повышается за счет увеличения площади соприкосновения лечебной среды с кожной поверхностью и усиления перемещения веществ в ванне.

Действие бальнеологических процедур также во многом зависит от поступления в кожу и организм растворенных в ванне солей, газов и других физиологически активных веществ, которое определяется прежде всего кожной проницаемостью [30, 34]. Из ванн, согласно опубликованным данным, в организм проникают ионы йода, брома и мышьяка, сероводород, кислород, углекислый газ и др. [30, 31]. Интенсивность поступления химических веществ в кожу при бальнеологических процедурах зависит от их содержания в ванне, ее состава, активной реакции среды (рН), продолжительности воздействия, температуры воды и др. [30, 35]. Варьируя эти параметры бальнеопроцедур, можно повысить проникновение находящихся в ванне веществ через кожу и тем самым усилить действие химического фактора [31, 35]. Этому же способствует применение различных комбинированных бальнеотерапевтических процедур [30, 36].

Таким образом, из представленных данных со всей очевидностью следует, что проницаемость кожи играет существенную роль для многих физиотерапевтических методов, в механизме действия которых присутствует химический фактор. Поэтому увеличение кожной проницаемости может быть использовано для усиления специфического влияния химического компонента таких физиотерапевтических методов и повышения их эффективности. К сожалению, из-за недостаточности данных и противоречивости некоторых из них практическое применение этого подхода в физиотерапии пока ограничено.


рН кожи

Нормальная кожа имеет кислую реакцию: уровень ее рН колеблется от 5,0 до 6,0 [37]. Этот фактор в прошлом обозначали понятием «кислотная мантия», предполагая, что она обладает защитной функцией [38]. «Кислотная мантия» формируется за счет активной реакции всех ее слоев. Сосочковый слой дермы характеризуется слабощелочной (рН 7,6—7,4), шиповидный слой эпидермиса — слабокислой (рН 7,0—6,7), а роговой слой — кислой (рН 6,0—3,0) реакцией [15]. Кожа обладает способностью к стабилизации значений рН примерно на уровне 5,5 даже в присутствии кислот и щелочей. Обобщив точки зрения различных авторов, Н. Behrendt и М. Green [37] пришли к выводу, что кислая реакция здоровой кожи в основном обусловлена молочной кислотой, а вторичное влияние на рН кожи оказывают глутаминовая и аспарагиновая кислоты, находящиеся в поте и эпидермисе. Пирролидонкарбоксиловая кислота также считается важным компонентом, определяющим кислотность поверхности кожи [39]. Буферное состояние в коже достигается за счет системы молочная кислота/лактат, имеющей хорошую буферную емкость при рН от 4,0 до 5,0. Уровень рН является одним из основных факторов, участвующих в механизмах бактерицидности кожи [1, 15].

В свете обсуждаемой проблемы наибольший интерес представляет влияние рН кожи на ее проницаемость. Достаточно подробно этот вопрос рассмотрен в монографии Ф.И. Колпакова [14]. Имеющиеся данные позволяют отметить, что обработка кожи кислотами или щелочами в концентрациях, повреждающих эпидермальный барьер, повышает ее проницаемость для химических веществ. Степень ее повышения зависит от физико-химических свойств проникающего в кожу вещества. Если оно обладает высокой проникающей способностью, то даже незначительное изменение рН кожи может существенно повысить проницаемость для такого вещества.

Изменение рН кожи, а также рН самих лечебных сред (лечебная грязь, минеральные воды) существенно влияет на трансдермальное поступление в организм различных химических веществ [30, 31]. Весьма своеобразно изменение рН кожи сказывается на введении веществ методом электрофореза. Накожные аппликации кислоты сопровождались увеличением электрофоретического переноса в организм анионов и снижением его в отношении катионов; аппликации раствора щелочи приводили к противоположным сдвигам во введении лекарственных ионов электрическим током [23].

Влияние рН кожи на электрофорез лекарственных веществ может быть продемонстрировано в связи с существованием в ней так называемого электрофизиологического барьера [40]. Он располагается на уровне базального слоя эпидермиса и представляет собой двойной электрический слой с разнородными зарядами. Наружный слой вследствие кислой реакции имеет положительный заряд, а обращенный внутрь — отрицательный. Вследствие этого электрофизиологический барьер больше препятствует глубокому проникновению в кожу при электрофорезе катионов, чем анионов. При электроэлиминации веществ из кожи наблюдается противоположная картина. Изменение рН в зоне базального слоя эпидермиса сказывается на структуре двойного электрического слоя, что сопровождается количественными сдвигами электрофоретической проницаемости кожи [19].

рН кожи может, по-видимому, влиять и на особенности действия других физиотерапевтических методов, но фактические данные по этому вопросу в доступной литературе отсутствуют.


Электропроводность и электросопротивление кожи

Значение электрических характеристик кожи для физиотерапии определяется прежде всего тем, что большинство физиотерапевтических методов (воздействий) по своей природе являются электрическими. Это предполагает их тесное взаимодействие с электрическими процессами в биологических тканях, прежде всего в кожных покровах. Применение физиотерапевтических факторов неэлектрической природы также может сопровождаться электрическими взаимодействиями за счет термо-, пьезо- и фотоэлектрического эффектов, вызывая изменения концентрации и состояния ионов, сказывающиеся на электрических свойствах кожи и других тканей [41, 42].

Принято считать, что электрические свойства кожи, в частности электропроводность и электросопротивление, позволяют судить о ее функциональном состоянии и влиянии на нее внешних и внутренних факторов [43, 44]. Электропроводность кожи весьма низкая, определяется электропроводностью эпидермиса, зависимой от его толщины и содержания в нем воды и электролитов. Повышение температуры кожи на 1 оС сопровождается увеличением ее электропроводности на 2% [35]. Величина электропроводности и электросопротивления кожи теснейшим образом связана с интенсивностью потоотделения и концентрацией солей в тканевой жидкости [1, 15, 35]. Чем больше выделяется пота, тем меньше электросопротивление и выше электропроводность кожи. Лишенная потовых желез кожа (при наследственной эктодермальной дисплазии) характеризуется постоянным высоким электросопротивлением. Любые фармакологические воздействия (пилокарпин, ацетилхолин, адреналин и др.), стимулирующие потоотделение, сопровождаются повышением электропроводности кожи [44]. Электропроводность кожи зависит от возраста: у детей и подростков она выше, чем у взрослых. Кожа, находящаяся в состоянии отека, пропитанная тканевой жидкостью или воспалительным экссудатом, обладает по сравнению с нормальной кожей более высокой электропроводностью [19, 35]. На нее влияет состояние нервной и эндокринной систем организма. При возбуждении нервной системы электропроводность кожи повышается, уменьшается ее сопротивление электрическому току. Весьма существенно электропроводность кожи может изменяться при гормональной терапии, хирургических вмешательствах, многих патологических процессах, повреждениях кожного покрова [13, 35, 43]. Все эти нюансы, как известно, учитываются при проведении физиотерапевтических, в особенности электролечебных, процедур.

Весь спектр факторов, влияющих на электропроводность кожи, обобщен П.П. Слынько [35] в виде диаграммы. К сожалению, конкретные сведения о влиянии перечисленных факторов на электрические свойства кожи автором не приведены. Среди названных факторов не указаны лечебные физические факторы, хотя их влияние на электропроводность кожи теоретически представляется несомненным и важным для физиотерапии. Из имеющихся данных можно указать на влияние ультрафиолетовых лучей [45], гальванического тока [19, 46], массажа и электропунктуры [47] на электрические свойства кожи. В руководствах и учебниках указывается, что такие физические факторы, как ультразвук, микроволны и магнитные поля, изменяют электропроводность кожи. В них также подчеркивается, что происходящие изменения электрических свойств кожи играют определенную роль в биофизических механизмах действия этих физических факторов [48—50].

Поскольку показатели проницаемости кожи коррелируют с величиной ее омического сопротивления, то последняя должна существенно влиять и на введение лекарственных веществ с помощью электрофореза. Это предположение во многом подтвердилось в наших исследованиях по лекарственному электрофорезу [19, 23]. Результаты их можно свести к следующим положениям:

1. Смачивание кожи водой, сопровождающееся снижением ее электросопротивления, повышало по сравнению с просушенной кожей количество вводимых постоянным током лекарственных веществ на 17—23%.

2. Обезжиривание кожи с помощью спирта или смеси Блюра, а также удаление загрязнений кожи (туалет), приводящие к уменьшению электросопротивления, достоверно повышают трансдермальное введение лекарственных веществ электрофоретическим способом.

3. Количество вводимого в организм при электрофорезе и других физико-фармакологических методах лекарственного вещества хорошо коррелирует с числом активных желез в области проведения процедур (r=0,82—0,91). Искусственно вызываемое увеличение числа функционирующих кожных желез, характеризующееся снижением электросопротивления кожи, сопровождается повышением количества вводимых электрофорезом веществ.

4. Увеличение температуры кожи приводит к уменьшению электросопротивления. Количественные исследования лекарственного электрофореза показали, что использование рабочих растворов различной температуры, оказывающих влияние на температуру кожного покрова, существенно изменяет трансдермальный транспорт лекарственных веществ гальваническим током: небольшое повышение температуры (на 0,5—1,0 °С) увеличивает его, а охлаждение и применение сильно нагретых растворов тормозит.

5. Сочетание лекарственного электрофореза с физическими факторами (индуктотермия, ультразвук, микроволны), снижающими электросопротивление кожи и повышающими ее проницаемость, способствуют введению большего количества лекарственного вещества и повышают терапевтическую эффективность метода в целом.

Можно также отметить, что состояние электрических свойств кожи в точках акупунктуры не только используется для их нахождения, но и во многом определяет выбор параметров воздействия при пунктурной физиотерапии, в особенности при электропунктуре и электроакупунктуре [51—53].

Таким образом, хотя теоретически представляется весьма значимым влияние электрических свойств кожи на механизм и особенности действия лечебных физических факторов, фактические данные об этом весьма немногочисленны. Надо полагать, что расширение таких сведений будет способствовать более осмысленному и эффективному использованию физических методов лечения в клинической медицине.


Оптические свойства кожи

Гетерогенность внутренней структуры, а также наличие поглощающих свет веществ определяют сложные закономерности взаимодействия оптического излучения различной длины волны с кожей человека и важность ее оптических свойств в фотобиологии и фототерапии. Определению оптических параметров кожи посвящено относительно небольшое число работ. Из них следует, что отражение света слабопигментированной кожей достигает 43—55% и зависит от многих факторов (температура тела, пол, возраст, состояние кровообращения и др.). Пигментированная кожа отражает оптическое излучение на 6—8% слабее. У мужчин коэффициент отражения на 5—7% ниже, чем у женщин [54]. Учитывая важную роль отражения света, при дозиметрии фототерапевтических процедур, в частности лазеротерапии, в лазерных терапевтических аппаратах рекомендуется использовать биофотометрические насадки с нормируемыми характеристиками [55].

Охлаждение участка кожи вызывает уменьшение отражения света на 10—15% [56]. Этот эффект используется нами, например, при комбинировании хлорэтиловых блокад и ультрафиолетовых облучений у пациентов с болевыми синдромами. Нанесение на кожу различных лекарственных веществ также сопровождается изменением ее отражающей способности: в зависимости от лекарственной формы и цветности она может либо возрастать, либо снижаться [57]. Кожа является сильно рассеивающей средой, так как состоит из большого числа случайно распределенных в объеме рассеивающих центров [58, 59], размеры которых в большинстве случаев соизмеримы с длиной волны применяемых оптических излучений. Рассеяние кожей наиболее значительно в области длин волн от 600 до 1500 нм [59, 60]. Степень рассеяния света зависит также и от оптических свойств кожного покрова.

Кожа, как и другие биологические ткани, характеризуется спектральной зависимостью поглощения оптического излучения. Ею усиленно поглощаются ультрафиолетовые и близлежащие к ним лучи, а также лучи с длиной волны более 1400—2000 нм. Наименьшее поглощение света кожей наблюдается в диапазоне длин волн от 800 до 1200 нм. Этот спектральный диапазон в фотобиологии часто называют «терапевтическим окном». Оптические излучения данного диапазона могут использоваться для воздействия на более глубоко расположенные патологические очаги и внутренние органы [54, 56, 61].

Кожа содержит хромофоры, которые поглощают свет в видимой и ближней ультрафиолетовой областях. К их числу относятся витамины, флавины, флавиновые ферменты, гемоглобин, меланин, каратиноиды и др. В инфракрасной области поглощение кожи определяется в основном водой [62]. Можно отметить, что в эпидермисе наибольший коэффициент поглощения имеет меланин, а в дерме — гемоглобин и оксигемоглобин.

Характер и последствия взаимодействия оптического излучения с телом человека определяется и его проникающей способностью, которая во многом зависит от оптических свойств кожных покровов. Глубина проникновения света возрастает при переходе от ультрафиолетового излучения до видимого (оранжевого): с 0,7—0,8 до 2,5 мм, а для красного диапазона излучения соответствует уже 20—30 мм. В ближнем инфракрасном диапазоне оптического излучения проникающая способность достигает максимальных значений (60—70 мм), а затем вновь резко снижается [54, 63].

Нами совместно с физиками проведен анализ важнейших параметров кожи, влияющих на распространение в ней света (лазерного излучения) различной длины волны. К основным параметрам, которые наиболее существенно влияют на закономерности переноса света в среде и требуют учета при дозировании фототерапии, отнесены толщина эпидермиса, концентрация меланина в нем, объемная концентрация кровеносных сосудов, степень оксигенации крови и средний диаметр капилляров в зоне воздействия. По этим данным были рассчитаны значения коэффициента отражения и глубины проникновения лазерного излучения различной длины волны в нормальную и патологически измененную (витилиго, красная волчанка, отек кожи, острая рана) кожу. С учетом глубины проникновения и коэффициента отражения лазерного излучения различной длины волны были построены графики, характеризующие среднюю глубину проникновения лазерного излучения используемых в физиотерапии длин волн, и составлены таблицы поглощенных доз лазерного излучения для различных морфофункциональных состояний кожи [64]. Эти данные, вероятно, могут быть использованы для более точного дозирования лазерной терапии.

Согласно приведенным данным, изменением оптических свойств кожи и выбором длины волны можно влиять на биологическое действие и терапевтическую эффективность оптического излучения. Так, для более поверхностных воздействий (в дерматологии и косметологии) целесообразно использовать источники, работающие в ультрафиолетовой и близлежащих видимых областях спектра, для которых характерны неглубокое проникновение и хорошее поглощение. При необходимости воздействия на глубокорасположенные патологические очаги или внутренние органы, для надвенного облучения крови рекомендуется пользоваться лазерами и другими светотерапевтическими приборами, работающими в инфракрасной области спектра. При этом, вне сомнения, важно учитывать и особенности биологического действия оптических излучений различной длины волны [48].

Отражение и рассеивание света зависит от угла его падения на кожную поверхность [54]. Поэтому при проведении фототерапевтических процедур оптическое излучение следует направлять перпендикулярно к облучаемой поверхности, что обеспечивает минимальное отражение светового потока и его максимальное биологическое действие.

Для снижения отражения кожей оптического излучения можно воспользоваться охлаждением кожного покрова. Как уже отмечалось, охлаждение кожи снижает коэффициент отражения на 10—15%. Повышение температуры кожи увеличивает рассеивание света в дерме и снижает его в подкожно-жировом слое [65].

Изменить отражение кожей световых лучей и тем самым увеличить их действие можно также с помощью минеральных масел, имеющих показатель преломления от 1,46 до 1,48 [66]. Для этих целей предлагается также использовать димексид, глицерин и пропиленгликоль [67]. Применение этих просветляющих агентов хорошо себя зарекомендовало при удалении татуировок [68] и комплексной терапии красного плоского лишая [69]. Данный прием используется также и при чрескожном лазерном облучении крови.

При изучении механизмов взаимодействия света с различными компонентами тканей, а также для повышения избирательности поглощения света патологически измененными структурами клеток или тканей применяют окрашивание (тушь, метиленовая синь и др.). В клинической медицине этот подход находит все большее применение при фотохимиотерапии псориаза и некоторых пролиферативных заболеваний [70, 71].

В последние годы активно развивается антимикробная фотодинамическая терапия, основанная на фотодеструкции патогенных микроорганизмов при сочетанном воздействии красителя-сенсибилизатора и оптического излучения с длиной волны, соответствующей спектру поглощения красителя. Для широкого практического внедрения антимикробной фотодинамической терапии необходимы доступные, разрешенные к использованию сенсибилизаторы, спектральный диапазон поглощения которых соответствует спектру излучения сертифицированных фототерапевтических аппаратов на основе лазерных или светодиодных источников. Нами в качестве фотосенсибилизаторов для фотодинамической терапии изучены различные типы антимикробных лекарственных препаратов, обладающих способностью к генерации синглетного кислорода. Показано, что в качестве таких фотосенсибилизаторов могут быть использованы фурацилин, фурасол, диагиперон, а также настойка эвкалипта. Фотодинамическая терапия с применением в качестве фотосенсибилизатора указанных антибактериальных средств эффективна при лечении нейродистрофических заболеваний женских половых органов, патологий периодонта, гнойно-воспалительных заболеваний ЛОР-органов и др. [72].

При фототерапии, прежде всего при лазеротерапии и лазеропунктуре, для улучшения оптических свойств кожи (и подлежащих тканей) и повышения эффективности лечения прибегают к компрессии (дозированному давлению на кожу торцом световода или излучающей головкой). Этот прием за счет уменьшения толщины ткани и удаления крови из облучаемого участка в несколько раз увеличивает глубину проникновения оптического (лазерного) излучения [73]. Аналогичные изменения оптических свойств кожи вызывает и ее растяжение [66].

Для изменения оптических свойств кожи можно использовать воздействие лечебными физическими факторами. Ультрафиолетовое облучение кожи, например, приводит к возникновению эритемы, образованию меланина, отеку и другим эффектам, которые существенно изменяют оптические параметры кожи и сказываются на эффективности последующих физиотерапевтических, прежде всего фототерапевтических, процедур [66]. Магнитное поле, как полагают многие авторы, изменяет электростатические взаимодействия между диполями, ионами, диполями и ионами, что оказывает влияние на дифракцию и рассеивание света. Оно, снижая их в облучаемой ткани, обеспечивает на этом фоне более глубокое (на 25%) проникновение и эффективное действие лазерного облучения [48, 74]. Этот механизм, по-видимому, реализован в методе магнитолазеротерапии, который эффективнее обычной лазеротерапии при многих заболеваниях [48, 61, 74, 75]. Изменение оптических свойств кожи, по нашему мнению, во многом определяет особенности действия и эффективность и других сочетанных методов фототерапии. Дальнейшее углубленное изучение оптических свойств кожи будет содействовать оптимизации светолечебных методов и повышению их терапевтической эффективности при многих заболеваниях.

Заключение

Физико-химические свойства кожи, являющейся входными воротами при абсолютном большинстве физических методов лечения, во многом определяют закономерности отражения, распространения, проникновения и поглощения энергии физических факторов. С одной стороны, важно знать, как и какие физиотерапевтические методы влияют на физико-химические параметры кожи, чтобы использовать их для коррекции нарушений при различных заболеваниях. Сегодня имеются отдельные сведения о влиянии лечебных физических факторов на проницаемость, уровень рН, оптические и электрические свойства кожи, однако их явно недостаточно для широкого практического использования. С другой стороны, большой интерес представляет использование изменений физико-химических характеристик кожи для оптимизации физиотерапевтических процедур и повышения их эффективности. Особенно важны эти данные для сочетанных физиотерапевтических методов, при которых один физический фактор, изменяющий физико-химические свойства кожи, может существенно влиять на действие сочетаемых с ним других физиотерапевтических агентов. Имеющиеся отдельные положительные примеры использования изменений физико-химических свойств кожи (проницаемости и уровня рН для повышения эффективности физико-фармакологических методов; оптических свойств в фототерапии; электрических свойств для повышения количества вводимых лекарственных веществ с помощью электрофореза и сочетанных методов и др.) позволяют отнести данную проблему к числу актуальных для физиотерапии и считать необходимым проведение дальнейших углубленных комплексных исследований с использованием современных методов и технологий.


Дополнительная информация


Источник финансирования:
поисково-аналитическая работа по подготовке статьи проведена на личные средства автора.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.


Сведения об авторах

Улащик Владимир Сергеевич, д.м.н., проф., академик НАНБ [Vladimir S. Ulashchik, MD, PhD, Professor]; адрес: Республика Беларусь, 220072, Минск, проспект Победителей, 47 [address: 47 Pobediteley prosp., 220072 Minsk, Republic of Belarus]; ORCID: http://orcid.org/0000-0002-0593-8861; eLibrary SPIN: 8293-5162; e-mail: [email protected]

Кафедра физической химии

Особенностью образовательных программ кафедры физической химии можно назвать междисциплинарный характер изучаемых дисциплин с особым вниманием к смежным областям химии, физики и механики материалов.

Дорогие друзья!

Спасибо Вам за интерес к нашей кафедре. Прогресс науки и техники неразрывно связан с получением новых веществ и материалов на их основе, а эти задачи решает химия. Улучшение качества и времени жизни человека также в значительной степени зависит от искусственно создаваемых материалов.

Возрастающий спрос на рынке труда специалистов-материаловедов в самых разных сферах человеческой деятельности, а также ориентирование факультета информационно-измерительных и биотехнических систем на биомедицинское направление побудили нас начать подготовку магистров по образовательной программе «Биосовместимые материалы» в рамках направления «Биотехнические системы и технологии«. Обучение по данной программе носит междисциплинарный характер (на пересечении химии, физики и механики материалов).

Также наша кафедра осуществляет поддержку бакалавриата на других кафедрах Университета, заинтересованных в дополнительной подготовке своих специалистов по химическим дисциплинам (курсы химии, экологической химии, материаловедения и технологии конструкционных материалов и др.).

Кафедра заинтересована в привлечении интересующихся созданием новых материалов и технологий, и желающих приобрести опыт и квалификацию в области наук о материалах молодых людей. Приходите — мы будем рады Вас видеть и в качестве гостей, и в качестве своих будущих учеников и коллег!

Дополнительная страница сайта доступна по данной ссылке.

01.12.2020

Подведены итоги внутривузовской олимпиады по химии.

12.02.2019

Торжественное открытие Международного года Периодической таблицы химических элементов состоялось 6 февраля в Москве в Российской Академии наук. Отметить 150-летний юбилей великого открытия и 185-летие со дня рождения гениального химика готовятся и на кафедре физической химии СПбГЭТУ «ЛЭТИ».