Графики функций и их формулы все: Функции и графики — Математика — Теория, тесты, формулы и задачи

Содержание

Функции и графики — Математика — Теория, тесты, формулы и задачи

Оглавление:

 

Основные теоретические сведения

Координаты и базовые понятия о функциях

К оглавлению…

Длина отрезка на координатной оси находится по формуле:

Длина отрезка на координатной плоскости ищется по формуле:

Для нахождения длины отрезка в трёхмерной системе координат используется следующая формула:

Координаты середины отрезка (для координатной оси используется только первая формула, для координатной плоскости — первые две формулы, для трехмерной системы координат — все три формулы) вычисляются по формулам:

Функция – это соответствие вида f(x) между переменными величинами, в силу которого каждому рассматриваемому значению некоторой переменной величины x (аргумента или независимой переменной) соответствует определенное значение другой переменной величины, y (зависимой переменной, иногда это значение просто называют значением функции). Обратите внимание, что функция подразумевает, что одному значению аргумента х может соответствовать только одно значение зависимой переменной у. При этом одно и то же значение у может быть получено при различных х.

Область определения функции – это все значения независимой переменной (аргумента функции, обычно это х), при которых функция определена, т.е. ее значение существует. Обозначается область определения D(y). По большому счету Вы уже знакомы с этим понятием. Область определения функции по другому называется областью допустимых значений, или ОДЗ, которую Вы давно умеете находить.

Область значений функции – это все возможные значения зависимой переменной данной функции. Обозначается Е(у).

Функция возрастает на промежутке, на котором большему значению аргумента соответствует большее значение функции. Функция убывает на промежутке, на котором большему значению аргумента соответствует меньшее значение функции.

Промежутки знакопостоянства функции – это промежутки независимой переменной, на которых зависимая переменная сохраняет свой положительный или отрицательный знак.

Нули функции – это такие значения аргумента, при которых величина функции равна нулю. В этих точках график функции пересекает ось абсцисс (ось ОХ). Очень часто необходимость найти нули функции означает необходимость просто решить уравнение. Также часто необходимость найти промежутки знакопостоянства означает необходимость просто решить неравенство.

Функцию y = f(x) называют четной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения четной функции равны. График чётной функции всегда симметричен относительно оси ординат ОУ.

Функцию y = f(x) называют нечетной, если она определена на симметричном множестве и для любого х из области определения выполняется равенство:

Это означает, что для любых противоположных значений аргумента, значения нечетной функции также противоположны.  График нечётной функции всегда симметричен относительно начала координат.

Сумма корней чётной и нечетной функций (точек пересечения оси абсцисс ОХ) всегда равна нулю, т.к. на каждый положительный корень х приходится отрицательный корень –х.

Важно отметить: некоторая функция не обязательно должна быть четной либо нечетной. Существует множество функций не являющихся ни четными ни нечетными. Такие функции называются функциями общего вида, и для них не выполняется ни одно из равенств или свойств приведенных выше.

 

График линейной функции

К оглавлению…

Линейной функцией называют функцию, которую можно задать формулой:

График линейной функции представляет из себя прямую и в общем случае выглядит следующим образом (приведен пример для случая когда k > 0, в этом случае функция возрастающая; для случая k < 0 функция будет убывающей, т.е. прямая будет наклонена в другую сторону — слева направо):

 

График квадратичной функции (Парабола)

К оглавлению. ..

График параболы задается квадратичной функцией:

Квадратичная функция, как и любая другая функция, пересекает ось ОХ в точках являющихся её корнями: (x1; 0) и (x2; 0). Если корней нет, значит квадратичная функция ось ОХ не пересекает, если корень один, значит в этой точке (x0; 0) квадратичная функция только касается оси ОХ, но не пересекает её. Квадратичная функция всегда пересекает ось OY в точке с координатами: (0; c). График квадратичной функции (парабола) может выглядеть следующим образом (на рисунке примеры, которые далеко не исчерпывают все возможные виды парабол):

При этом:

  • если коэффициент a > 0, в функции y = ax2 + bx + c, то ветви параболы направлены вверх;
  • если же a < 0, то ветви параболы направлены вниз.

Координаты вершины параболы могут быть вычислены по следующим формулам. Икс вершины (p — на рисунках выше) параболы (или точка в которой квадратный трехчлен достигает своего наибольшего или наименьшего значения):

Игрек вершины (q — на рисунках выше) параболы или максимальное, если ветви параболы направлены вниз (a < 0), либо минимальное, если ветви параболы направлены вверх (a > 0), значение квадратного трехчлена:

 

Графики других функций

К оглавлению…

Степенной функцией называют функцию, заданную формулой:

Приведем несколько примеров графиков степенных функций:

Обратно пропорциональной зависимостью называют функцию, заданную формулой:

В зависимости от знака числа k график обратно пропорциональной зависимости может иметь два принципиальных варианта:

Асимптота — это линия, к которой линия графика функции бесконечно близко приближается, но не пересекает. Асимптотами для графиков обратной пропорциональности приведенных на рисунке выше являются оси координат, к которым график функции бесконечно близко приближается, но не пересекает их.

Показательной функцией с основанием а называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график показательной функции может иметь два принципиальных варианта (приведем также примеры, см. ниже):

Логарифмической функцией называют функцию, заданную формулой:

В зависимости от того больше или меньше единицы число a график логарифмической функции может иметь два принципиальных варианта:

График функции y = |x| выглядит следующим образом:

 

Графики периодических (тригонометрических) функций

К оглавлению…

Функция у = f(x) называется периодической, если существует такое, неравное нулю, число Т, что f(x + Т) = f(x), для любого х из области определения функции f(x).  Если функция f(x) является периодической с периодом T, то функция:

где: A, k, b – постоянные числа, причем k не равно нулю, также периодическая с периодом T1, который определяется формулой:

Большинство примеров периодических функций — это тригонометрические функции. Приведем графики основных тригонометрических функций. На следующем рисунке изображена часть графика функции y = sinx (весь график неограниченно продолжается влево и вправо), график функции y = sinx называют синусоидой:

График функции y = cosx называется косинусоидой. Этот график изображен на следующем рисунке. Так как и график синуса он бесконечно продолжается вдоль оси ОХ влево и вправо:

График функции y = tgx называют тангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Ну и наконец, график функции y = ctgx называется котангенсоидой. Этот график изображен на следующем рисунке. Как и графики других периодических и тригонометрических функций, данный график неограниченно далеко повторяется вдоль оси ОХ влево и вправо.

Построение и решение графиков Функций

Понятие функции

Функция — это зависимость y от x, где x является переменной или аргументом функции, а y — зависимой переменной или значением функции.

Задать функцию значит определить правило, в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:

  • Табличный способ — помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ — наглядно.
  • Аналитический способ — через формулы. Компактно, и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

Область определения — множество х, то есть область допустимых значений выражения, которое записано в формуле.

Например, для функции вида область определения выглядит так

  • х ≠ 0, потому что на ноль делить нельзя. Записать можно так: D (y): х ≠ 0.

Область значений — множество у, то есть это значения, которые может принимать функция.

Например, естественная область значений функции y = x² — это все числа больше либо равные нулю. Можно записать вот так: Е (у): у ≥ 0.

Чтобы ребенок разобрался в теории и чувствовал себя увереннее на школьных контрольных, запишите его на современные уроки математики в онлайн-школу Skysmart.

Интерактивные задания, математические комиксы и карта прогресса в личном кабинете — математика еще никогда не была таким увлекательным приключением!

Понятие графика функции

Графиком функции y = f(x) называется множество точек (x; y), координаты которых связаны соотношением y = f(x). Само равенство y = f(x) называется уравнением данного графика.

График функции — это множество точек (x; y), где x — это аргумент, а y — значение функции, которое соответствует данному аргументу.

Проще говоря, график функции показывает множество всех точек, координаты которых можно найти, просто подставив в функцию любые числа вместо x.

Для примера возьмём самую простую функцию, в которой аргумент равен значению функции, то есть y = x.

В этом случае нам не придётся вычислять для каждого аргумента значение функции, так как они равны, поэтому у всех точек нашего графика абсцисса будет равна ординате.

Отметим любые три точки на координатной плоскости, например: L (-2; -2), M (0; 0) и N (1; 1).

Если мы последовательно от наименьшего значения аргумента к большему соединим отмеченные точки, то у нас получится прямая линия. Значит графиком функции y = x является прямая. На графике это выглядит так:

Надпись на чертеже y = x — это уравнение графика. Ставить надпись с уравнением на чертеже удобно, чтобы не запутаться в решении задач.

Важно отметить, что прямая линия бесконечна в обе стороны. Хоть мы и называем часть прямой графиком функции, на самом деле на чертеже изображена только малая часть графика.

Не обязательно делать чертеж на целый тетрадный лист, можно выбрать удобный для вас масштаб, который отразит суть задания.

Исследование функции

Важные точки графика функции y = f(x):

  • стационарные и критические точки;
  • точки экстремума;
  • нули функции;
  • точки разрыва функции.

Стационарные точки — точки, в которых производная функции f(x) равна нулю.

Критические точки — точки, в которых производная функции f(x) равна нулю либо не существует. Стационарные точки являются подмножеством множества критических точек.

Экстремум в математике — максимальное или минимальное значение функции на заданном множестве. Точка, в которой достигается экстремум, называется точкой экстремума. Соответственно, если достигается минимум — точка экстремума называется точкой минимума, а если максимум — точкой максимума.

Нули функции — это значения аргумента, при которых функция равна нулю.

Асимптота — прямая, которая обладает таким свойством, что расстояние от точки графика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат. По способам их отыскания выделяют три вида асимптот: вертикальные, горизонтальные, наклонные.

Функция непрерывна в точке k, если предел функции в данной точке равен значению функции в этой точке:

Если функция f(x) не является непрерывной в точке x = a, то говорят, что f(x) имеет разрыв в этой точке.

Если нам нужно построить график незнакомой функции, когда заранее невозможно представить вид графика, полезно применять схему исследования свойств функции. Она поможет составить представление о графике и приступить к построению по точкам.

Схема построения графика функции:

 

  1. Найти область определения функции.
  2. Найти область допустимых значений функции.
  3. Проверить не является ли функция четной или нечетной.
  4. Проверить не является ли функция периодической.
  5. Найти нули функции.
  6. Найти промежутки знакопостоянства функции, то есть промежутки, на которых она строго положительна или строго отрицательна.
  7. Найти асимптоты графика функции.
  8. Найти производную функции.
  9. Найти критические точки в промежутках возрастания и убывания функции.
  10. На основании проведенного исследования построить график функции.

Построение графика функции

Чтобы понять, как строить графики функций, потренируемся на примерах.

Задача 1. Построим график функции

Как решаем:

Упростим формулу функции:

Задача 2. Построим график функции

Как решаем:

Выделим в формуле функции целую часть:

График функции — гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части — полезный прием, который применяется в решении неравенств, построении графиков и оценке целых величин.

Задача 3. По виду графика определить знаки коэффициентов общего вида функции y = ax2 + bx + c.

 

Как решаем:

Вспомним, как параметры a, b и c определяют положение параболы.

 

  1. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины

  2. Ветви вверх, следовательно, a > 0.

    Точка пересечения с осью Oy — c = 0.

    Координата вершины , т.к. неизвестное число при делении на положительное дает отрицательный результат, то это число отрицательное, следовательно, b > 0.

  3. Ветви вниз, следовательно, a < 0.

    Точка пересечения с осью Oy — c > 0.

    Координата вершины , т.к. неизвестное число при делении на отрицательное дает в результате положительное, то это число отрицательное, следовательно, b < 0.

Задача 4. Построить графики функций:

а) y = 3x — 1

б) y = -x + 2

в) y = 2x

г) y = -1

Как решаем:

Воспользуемся методом построения линейных функций «по точкам».

а) y = 3x — 1

Как видим, k = 3 > 0 и угол наклона к оси Ox острый, b = -1 — смещение по оси Oy.

б) y = -x + 2

k = -1 > 0 и b = 2 можно сделать аналогичные выводы, как и в первом пункте.

в) y = 2x

k = 2 > 0 — угол наклона к оси Ox острый, B = 0 — график проходит через начало координат.

г) y = -1

k = 0 — константная функция, прямая проходит через точку b = -1 и параллельно оси Ox.

Задача 5. Построить график функции

Как решаем:

Это дробно-рациональная функция. Область определения функции D(y): x ≠ 4; x ≠ 0.

Нули функции: 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты: x = 0, x = 4.

Если x стремится к бесконечности, то у стремится к 1. Значит, y = 1 — горизонтальная асимптота.

Вот так выглядит график:

Задача 6. Построить графики функций:

а) y = x² + 1

б)

в) y = (x — 1)² + 2

г)

д)

Как решаем:

Когда сложная функция получена из простейшей через несколько преобразований, то преобразования графиков можно выполнить в порядке арифметических действий с аргументом.

а)

Преобразование в одно действие типа f(x) + a.

y = x²

Сдвигаем график вверх на 1:

y = x² + 1

б)

Преобразование в одно действие типа f(x — a).

y = √x

Сдвигаем график вправо на 1:

y = √x — 1

в) y = (x — 1)² + 2

В этом примере два преобразования, выполним их в порядке действий: сначала действия в скобках f(x — a), затем сложение f(x) + a.

y = x²

Сдвигаем график вправо на 1:

y = (x — 1)²

Сдвигаем график вверх на 2:

y = (x — 1)² + 2

г)

Преобразование в одно действие типа

y = cos(x)

Растягиваем график в 2 раза от оси ординат вдоль оси абсцисс:

д)

Мы видим три преобразования вида f(ax), f (x + a), -f(x).

Чтобы выполнить преобразования, посмотрим на порядок действий: сначала умножаем, затем складываем, а уже потом меняем знак. Чтобы применить умножение ко всему аргументу модуля в целом, вынесем двойку за скобки в модуле.

Сжимаем график в два раза вдоль оси абсцисс:

Сдвигаем график влево на 1/2 вдоль оси абсцисс:

Отражаем график симметрично относительно оси абсцисс:

В детской школе Skysmart учиники чертят графики на специальной онлайн-доске. Учитель видит, как размышляет ученик и может вовремя его направить в нужную сторону.

Запишитесь на бесплатный вводный урок математики и занимайтесь в современном формате и с поддержкой заботливых учителей.

алгебра все о функциях

Вы искали алгебра все о функциях? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и алгебра все функции, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз.
И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение.
Например, «алгебра все о функциях».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как алгебра все о функциях,алгебра все функции,алгебра график,алгебра графики,алгебра графики функций,алгебра функции,алгебра функции виды,алгебра функции все,алгебра функции их свойства и графики,алгебра функция,алгебра функция это,алгебра что такое функция,в алгебре функция,вид функции,виды графики функций,виды графиков все,виды графиков функции,виды графиков функций,виды графиков функций и их формулы,виды парабол и их графики,виды функции алгебра,виды функции графиков,виды функций,виды функций в математике,виды функций графики,виды функций и их графики,виды функция,все виды графиков,все виды графиков функции и их формулы,все виды функций и их графики,все графики и их функции,все графики функции,все графики функции и их формулы,все графики функций,все графики функций и их формулы,все графики функций и их формулы таблица,все о функциях алгебра,все о функциях и графиках,все функции,все функции алгебра,все функции в алгебре,все функции графики,все функции и их графики,все функции и их графики и свойства,все функции и их графики и свойства таблица,все функции и их графики и свойства таблица 9 класс,все функции и их свойства и графики,высшая математика графики функций,геометрические функции,график алгебра,график и их функции,график общего вида функции,график функции как находить,график функции как решать,график функции как читать,график функции общего вида,график функции определение,график функции примеры,график функции тема,график функции функция,график функции четверти,график функции что это,график функции это,график функции это определение,график функции это что,график функций как решать,графика простая,графика функция,графики алгебра,графики в математике,графики всех функций,графики и их названия,графики и их свойства,графики и их формулы,графики и их функции,графики и их функции и формулы,графики и их функция,графики и формулы,графики и формулы функции,графики и функции,графики и функции все,графики и функции формулы,графики как понять как,графики какие бывают,графики математика,графики математические,графики математических функций,графики основных и обратных функций,графики основных функций,графики по алгебре,графики по математике,графики пример,графики примеры,графики произвольных функций,графики простейших функций,графики простых функций,графики различных функций,графики формулы,графики функции все,графики функции и их графики таблица,графики функции и их свойства,графики функции и их формулы,графики функции и их формулы 9 класс шпаргалка,графики функции и их формулы все,графики функции и формулы,графики функции как строить,графики функции какие бывают,графики функции примеры,графики функций 9 класс и их формулы,графики функций алгебра,графики функций виды,графики функций виды функций,графики функций все,графики функций всех,графики функций высшая математика,графики функций и их,графики функций и их название,графики функций и их названия,графики функций и их свойства,графики функций и их уравнения,графики функций и их формулы,графики функций и их формулы 8 класс алгебра,графики функций и их формулы 9 класс,графики функций и их формулы все,графики функций и их формулы шпаргалка,графики функций и их формулы шпаргалка 9,графики функций и их формулы шпаргалка 9 класс,графики функций и формулы,графики функций как понять,графики функций как строить и решать,графики функций какие бывают,графики функций картинки,графики функций математика,графики функций примеры,графики функций различных,графики функций таблица,графики функций формулы,графиков примеры,графиков функций примеры,графические функции,графіки функції,графіки функцій,для функции y,как изобразить график функции,как называется функция,как найти график функции,как определить график функции по формуле,как определить по формуле график функции,как по формуле определить график функции,как понять графики функций,как решать функции,как решать функции по алгебре,как строить графики функций,как чертить графики функций,как читать график функции,как читать графики функций,как читать функцию,какая функция,какие бывают графики,какие бывают графики функции,какие бывают графики функций,какие бывают функции,какие бывают функции в алгебре,какие бывают функции в алгебре и их графики,какие графики бывают,какие графики функции бывают,какие графики функций бывают,какие есть функции,какие функции,какие функции бывают,какие функции бывают в алгебре,какие функции в,какие функции есть,какой график,какую функцию,картинки графики функций,математика высшая функции,математика графики,математика графики функций,математика функции,математика функции их свойства и графики,математика функция,математика функция это,математика что такое функция,математическая функция,математические графики,математические основные функции,математические функции,название графиков,название графиков функций,название функций,названия графиков,названия графиков функций,названия функций,названия функций графиков,названия функций и их графики,называется графиком функции,описание функций графиков,определение график функции,определение графика функции,определение по графику функции,определение функции,определение функции в алгебре,определение функции график,определение функции графика,определение функции по графику,определение что такое функция в алгебре,определения функция,основные графики и их функции,основные графики функций,основные функции и их графики,основные функции математические,парабола гипербола и другие графики,парабола гипербола и другие графики формулы,понятие графика функции,понятие функции графика функции,построить график функции что значит,приведите пример функции удовлетворяющей следующим условиям графиком является парабола,пример график,пример графика,пример функции,примеры график функции,примеры графики функции,примеры графики функций,примеры графиков,примеры графиков функций,примеры функции,примеры функций,примеры функций графиков,простая графика,простейшие графики и их функции,простейшие функции и их графики,простейшие функции их графики и свойства,простейшие функции их свойства и графики,таблица графики функций,таблица графиков функций и их формулы,таблица функций,тема график функции,типы графиков функций,укажите график функции,уравнения графиков функций,уравнения функций и их графики,формула графика прямой,формула графика функции,формула параболы на графике функции,формула прямой на графике функции,формула функции,формула функции y x,формула функции графика,формулы графики,формулы графики функций,формулы графиков функций,формулы графиков функций 9 класс,формулы и графики,формулы и графики функции,формулы и графики функций,формулы и их графики,формулы и их функции,формулы и функции графики,формулы функции,формулы функции и графики,формулы функций,формулы функций графиков,формулы функций графиков 9 класс,формулы функция,фукция,функ,функции,функции алгебра,функции алгебра все,функции в алгебре,функции в алгебре и их графики,функции в алгебре определение,функции в математике,функции в математике виды и их графики,функции виды,функции виды графиков,функции виды математика,функции все,функции все алгебра,функции геометрические,функции график формулы,функции графика,функции графики,функции графики и формулы,функции графики примеры,функции графиков и их формулы,функции графические,функции и графики,функции и графики формулы,функции и графики шпаргалка,функции и их график,функции и их графики,функции и их графики и свойства,функции и их графики и свойства таблица,функции и их свойства и графики,функции и их формулы,функции и их формулы и графики,функции и формулы,функции и формулы графики,функции их свойства и графики,функции какие есть,функции математика,функции математики,функции математические,функции название,функции определения,функции по алгебре,функции пример,функции примеры,функции таблица,функции формула,функции формулы,функции формулы и графики,функций виды в алгебре,функций их названия и графики,функция алгебра,функция алгебра это,функция в алгебре,функция в алгебре это,функция в математике,функция в математике это,функция виды,функция график функции,функция графика,функция и ее график,функция и их свойства и графики,функция и не функция картинки,функция математика,функция математика что такое,функция математика это,функция математическая,функция формулы,функция это алгебра,функция это в алгебре,функция это в математике,функция это математика,четверти график функции,четверти графика,четверти графика функции,что называется графиком функции,что называют графиком функции,что такое график функции,что такое график функции в алгебре,что такое график функций,что такое значение функции в алгебре,что такое функция в алгебре,что такое функция в алгебре определение,что такое функция в математике,что такое функция определение в алгебре,что является графиком функции. На этой странице вы найдёте калькулятор,
который поможет решить любой вопрос, в том числе и алгебра все о функциях. Просто введите задачу в окошко и нажмите
«решить» здесь (например, алгебра график).

Где можно решить любую задачу по математике, а так же алгебра все о функциях Онлайн?

Решить задачу алгебра все о функциях вы можете на нашем сайте https://pocketteacher.ru. Бесплатный
онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо
сделать — это просто
ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести
вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице
калькулятора.

Подготовка школьников к ЕГЭ (Справочник по математике — Элементы математического анализа

Схема исследования поведения функций, применяемая для построения графиков функций

      Для построения графика функции   y = f (x)   желательно сначала провести исследование поведения функции   y = f (x)   по следующей схеме.

  1. Найти область определения   D ( f ).

  2. Выяснить, является ли функция   y = f (x)   четной или нечетной.

  3. Выяснить, является ли функция   y = f (x)  периодической.

  4. Найти асимптоты графика функции.

  5. Вычислить производную функции   f ‘ (x) .

  6. Найти критические точки функции   y = f (x) .

  7. Найти интервалы возрастания и убывания функции   y = f (x) .

  8. Найти экстремумы функции   y = f (x) .

  9. Найти точки пересечения графика функции   y = f (x)   с осями координат.

    Если не удается точно найти нули функции, то есть точки, в которых график функции пересекает ось абсцисс   Ox,   то нужно попытаться найти интервалы, на которых нули функции располагаются. Часто эти интервалы удается найти, зная точки максимума и минимума функции.

  10. Вычислить вторую производную функции   f »  (x) .

  11. Найти интервалы, на которых функция   y = f (x)   выпукла вверх, а также интервалы, на которых функция   y = f (x)  выпукла вниз.

  12. Найти точки перегиба графика функции  y = f (x) .

      Замечание. Желательно рисовать схему поведения функции параллельно с проведением исследования свойств функции по описанному выше плану.

Примеры построения графиков функций

      Пример 1. Построить график функции

y = x3 + 8x2 + 16x + 128 (1)

      Решение. Областью определения функции (1) является вся числовая прямая.

      Функция (1) не является ни четной, ни нечетной.

      Функция (1) не является периодической.

      Вертикальных асимптот у графика функции (1) нет, так как для любого числа   x0

     Проверим, есть ли у графика функции (1) наклонные асимптоты. Поскольку

то делаем вывод, что наклонных асимптот у графика функции (1) нет.

      Теперь вычислим производную функции (1):

y’ (x) = 3x2 + 16x + 16 .

      Поскольку   y’ (x)   существует для всех , то все критические точки функции являются ее стационарными точками, то есть точками, в которых

y’ (x) = 0 .

      Найдем стационарные точки функции (1), интервалы, на которых   y’ (x)   сохраняет знак, а также экстремумы функции. Для этого решим квадратное уравнение

3x2 + 16x + 16 = 0.

      Изобразим на рисунке 1 диаграмму знаков производной   y’ (x)

Рис.1

      На интервалах и производная   y’ (x)   положительна, значит, функция (1) возрастает. На интервале производная   y’ (x)   отрицательна, значит, функция (1) убывает. Схематически поведение функции (1) изображено на рисунке 2.

Рис.2

      При переходе через точку   x = – 4   производная функции   y’ (x)   меняет знак с   «+»   на   «–» . Следовательно, точка   x = – 4   является точкой максимума функции (1). При переходе через точку производная функции   y’ (x)   меняет знак с   «–»   на   «+» . Следовательно, точка является точкой минимума функции (1).

      Найдем значения функции (1) в стационарных точках:

y (–4) = 256 ,

     Теперь вычислим вторую производную функции (1):

(x) = (y’ (x)) = (3x2 + 16x + 16) = 6x + 16 .

(x) = (y’ (x)) =
= (3x2 + 16x + 16) =
= 6x + 16 .

     Вторая производная    (x)   обращается в нуль при . Изобразим на рисунке 3 диаграмму знаков второй производной    (x)

Рис.3

      При переходе через точку вторая производная функции    (x)   меняет знак с   «–»   на   «+» . Следовательно, – точка перегиба графика функции (1). При функция (1) выпукла вверх, при функция (1) выпукла вниз.

      Дополним схему поведения функции, представленную на рисунке 2, новыми данными о направлении выпуклости функции (рис. 4).

Рис.4

      Для того, чтобы найти точки пересечения функции (1) с осью   Ox ,   решим уравнение

x3 + 8x2 + 16x + 128 = 0 ,

x2 (x + 8) + 16 (x + 8) = 0 ,

(x + 8) (x2 + 16) = 0 .

      Таким образом, точка   (– 8; 0)   является единственной точкой пересечения графика функции (1) с осью   Ox .   Точкой пересечения графика функции (1) с осью   Oy   будет точка   (0; 128) .

      На схеме поведения функции, представленной на рисунке 4, добавим информацию о знаках функции (1) (рис. 5).

Рис. 5

     Принимая во внимание результаты исследования поведения функции (1) (большая часть данных компактно представлена на рисунке 5), мы можем построить график функции (1) (рис.6):

Рис.6

      Пример 2. Построить график функции

(2)

      Решение. Областью определения функции (2) является вся числовая прямая, за исключением точки   x = 0 ,   то есть .

      Функция (2) не является ни четной, ни нечетной.

      Функция (2) не является периодической.

      Прямая   x = 0   является вертикальной асимптотой графика функции (2), так как

      Для того, чтобы выяснить, имеются ли у графика функции (2) наклонные асимптоты, представим правую часть формулы (2) в другом виде:

(3)

      Из формулы (3) получаем равенство

откуда вытекает, что прямая

y = x + 3

является наклонной асимптотой графика функции (2), как при , так и при .

      Теперь вычислим производную функции (2). Проще всего это сделать, воспользовавшись формулой (3):

(4)

      Для того, чтобы найти стационарные точки функции (2), преобразуем правую часть формулы (4):

      Следовательно,

(5)

и стационарными точками функции (2) являются точки   x = – 1   и   x = 2 .   Поскольку   y’ (x)   не существует при   x = 0 ,   то критическими точками функции (2) являются точки

x = – 1 ,   x = 0,   x = 2 .

      Изобразим на рисунке 7 диаграмму знаков производной   y’ (x)

Рис.7

      На интервалах , и производная   y’ (x)   положительна, значит, функция (2) возрастает на этих интервалах. На интервале   (0, 2)   производная   y’ (x)   отрицательна, значит, функция (2) убывает на этом интервале. Схематически поведение функции (2) изображено на рисунке 8.

Рис.8

      При переходе через точку   x = – 1   производная функции   y’ (x)   знак не меняет, значит, в этой точке экстремума нет. При переходе через точку   x = 2   производная функции   y’ (x)   меняет знак с   «–»   на   «+» .   Следовательно, точка   x = 2   является точкой минимума функции (2).

      Найдем значения функции (1) в стационарных точках:

y (–1) = 0 ,

     Теперь перейдем к вычислению второй производной функции (2). Проще всего это сделать, воспользовавшись формулой (4):

      Вторая производная    (x)   обращается в нуль при   x = – 1 .   Изобразим на рисунке 9 диаграмму знаков второй производной    (x)

Рис.9

      При переходе через точку   x = – 1   вторая производная функции    (x)   меняет знак с   «–»   на   «+» . Следовательно,   x = – 1   – точка перегиба графика функции (2). При   x < – 1   функция (2) выпукла вверх, при   x > – 1   функция (2) выпукла вниз.

      Дополним схему поведения функции, представленную на рисунке 8, данными о направлении выпуклости функции (рис. 10).

Рис.10

      Найдем точки пересечения функции (2) с осями координат: точка   (– 1; 0)   является единственной точкой пересечения графика функции (2) с осью   Ox ,   а точек пересечения графика функции (2) с осью   Oy   нет, поскольку   x = 0   не входит в область определения функции (2).

      На схеме поведения функции, представленной на рисунке 10, добавим информацию о знаках функции (2) (рис. 11).

Рис.11

     Принимая во внимание результаты исследования поведения функции (2) (большая часть данных компактно представлена на схеме рисунка 11), мы можем построить график функции (2) (рис.12):

Рис.12

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ по математике.

Онлайн калькулятор: График функции

Данный онлайн калькулятор строит графики функций одной переменной. Функция задается при помощи формулы, в которой могут участвовать математические операции, константы и математические функции. Синтаксис описания формулы см. ниже.

Построитель графиков функций одной переменной

Отображать таблицуТочность вычисления

Знаков после запятой: 2

График функции

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера. — возведение в степень

и следующих функций:

  • sqrt — квадратный корень
  • rootp — корень степени p, например root3(x) — кубический корень
  • exp — e в указанной степени
  • lb — логарифм по основанию 2
  • lg — логарифм по основанию 10
  • ln — натуральный логарифм (по основанию e)
  • logp — логарифм по основанию p, например log7(x) — логарифм по основанию 7
  • sin — синус
  • cos — косинус
  • tg — тангенс
  • ctg — котангенс
  • sec — секанс
  • cosec — косеканс
  • arcsin — арксинус
  • arccos — арккосинус
  • arctg — арктангенс
  • arcctg — арккотангенс
  • arcsec — арксеканс
  • arccosec — арккосеканс
  • versin — версинус
  • vercos — коверсинус
  • haversin — гаверсинус
  • exsec — экссеканс
  • excsc — экскосеканс
  • sh — гиперболический синус
  • ch — гиперболический косинус
  • th — гиперболический тангенс
  • cth — гиперболический котангенс
  • sech — гиперболический секанс
  • csch — гиперболический косеканс
  • abs — абсолютное значение (модуль)
  • sgn — сигнум (знак)

Свойства функций синуса, косинуса, тангенса и котангенса и их графики

Свойства функции y=sin(x) и ее график.

 

График функции (синусоида)

Свойства функции

  1.  Область определения: R (x — любое действительное число) т.е. 
  2. Область значений:
  3. Функция нечетная:

    (график симметричен относительно начала координат).

  4. Функция периодическая с периодом 
  5. Точки пересечения с осями координат:  
  6. Промежутки знакопостоянства: 
  7. Промежутки возрастания и убывания:   

 

Объяснение и обоснование

Описывая свойства функций, мы будем чаще всего выделять такие их характеристики: 1) область определения; 2) область значений; 3) четность или нечетность; 4) периодичность; 5) точки пересечения с осями координат; 6)   промежутки знакопостоянства; 7) промежутки возрастания и убывания; 8) наибольшее и наименьшее значения функции.

Замечание. Абсциссы точек пересечения графика функции с осью Ох (то есть те значения аргумента, при которых функция равна нулю) называют нулями функции.

Напомним, что значение синуса — это ордината соответствующей точки единичной окружности (рис. 1).

 

 Рис.1.

Поскольку ординату можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности всегда можно провести единственную прямую, перпендикулярную оси ординат), то область определения функции — все действительные числа. Это можно записать так:

Для точек единичной окружности ординаты находятся в промежутке [—1; 1] и принимают все значения от —1 до 1, поскольку через любую точку отрезка [—1; 1] оси ординат (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси орди­нат, и получить точку окружности, которая имеет рассматриваемую орди­нату. Таким образом, для функции область значений: . Это можно записать так:.Как видим, наибольшее значение функции sin x равно единице. Это зна­чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при Наименьшее значение функции равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окруж­ности является точка B, то есть при.

Синус — нечетная функция: , поэтому ее график симметричен относительно начала координат.

Синус — периодическая функция с наименьшим положительным периодом : , таким образом, через промежутки длиной вид графика функции повторя­ется. Поэтому при построении графика этой функции достаточно построить график на любом промежутке длиной , а потом полученную линию парал­лельно перенести вправо и влево вдоль оси Ox на расстояние , где k — любое натуральное число.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение , то есть график функции проходит через начало координат.

На оси значение . Поэтому необходимо найти такие значения , при которых , то есть ордината соответствующей точки единичной окруж­ности, равна нулю. Это будет тогда и только тогда, когда на единичной окруж­ности будут выбраны точки C или D, то есть при (см. рис. 1).

Промежутки знакопостоянства. Значения функции синус положительны (то есть ордината соответствующей точки единичной окружности положительна) в I и II четвертях (рис. 2). Таким образом, при всех , а также, учитывая период, при всех .

Значения функции синус отрицательны (то есть ордината соответствую­щей точки единичной окружности отрицательна) в III и IV четвертях, поэто­му при .

Промежутки возрастания и убывания. Учитывая периодичность функции с периодом , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке . 

Если (рис. 3, а), то при увеличении аргумента  ордината соответствующей точки единичной окружности увеличивается (то есть , следовательно, на этом промежутке функция возрас­тает. Учитывая периодичность функции , делаем вывод, что она также возрастает на каждом из промежутков 

Рис.2                                                                            Рис. 3

Если  (рис.3,б), то при увеличении аргумента  ордината соответствующей точки единичной окружности уменьшается (то есть ), таким образом, на этом промежутке функция убыва­ет. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков 

Проведенное исследование позволяет обоснованно построить график функции . Учитывая периодичность этой функции (с периодом ), достаточно сначала построить график на любом промежутке длиной , на­пример на промежутке . Для более точного построения точек графика воспользуемся тем, что значение синуса — это ордината соответствующей точки единичной окружности. На рисунке 4 показано построение графика функции на промежутке . Учитывая нечетность функции  (ее график симметричен относительно начала координат), для построения графика на промежутке отображаем полученную кривую симметрич­но относительно начала координат (рис. 5).

Рис.4

Рис.5

 

Поскольку мы построили график на промежутке длиной , то, учитывая периодичность синуса (с периодом ), повторяем вид графика на каждом промежутке длиной (то есть переносим параллельно график вдоль оси на , где k — целое число).  Получаем график, который называется синусоидой .(Рис.6)

Рис.6

Замечание. Тригонометрические функции широко применяются в ма­тематике, физике и технике. Например, множество процессов, таких как колебания струны, маятника, напряжения в цепи переменного тока и т. п., описываются функцией, которая задается формулой . Та­кие процессы называют гармоническими колебаниями.

График функции можно получить из синусоиды сжатием или растяжением ее вдоль координатных осей и параллельным пере­носом вдоль оси . Чаще всего гармоническое колебание является функцией времени t. Тогда оно задается формулой , где А — амплитуда

колебания, — частота, — начальная фаза, — период колебания.

 

СВОЙСТВА ФУНКЦИИ И ЕЕ ГРАФИК

График функции  (косинусоида).

Свойства функции 

  1. Область определения: R (x — любое действительное число).
  2. Область значений: 
  3. Функция четная:

    (график симметричен относительно оси ).

  4. Функция периодическая с периодом  : 
  5. Точки пересечения с осями координат 
  6. Промежутки знакопостоянства: 
  7. Промежутки возрастания и убывания: 

Объяснение и обоснование

Напомним, что значение косинуса — это абсцисса соответствующей точки единичной окружности (рис.7). Поскольку абсциссу можно найти для любой точки единичной окружности (в силу того, что через любую точку окружности, всегда можно провести единственную прямую, перпендикулярную оси абсцисс), то область определения функции — все действительные числа. Это можно записать так:
.

Рис.7

Для точек единичной окружности абсциссы находятся в промежутке и принимают все значения от -1 до 1, поскольку через любую точку отрезка оси абсцисс (который является диаметром единичной окружности) всегда можно провести прямую, перпендикулярную оси абсцисс, и получить
точку окружности, которая имеет рассматриваемую абсциссу. Следовательно, область значений функции . Это можно записать так: .

Как видим, наибольшее значение функции равно единице. Это зна­чение достигается только тогда, когда соответствующей точкой единичной окружности является точка A, то есть при .

Наименьшее значение функции cos x равно минус единице. Это значение достигается только тогда, когда соответствующей точкой единичной окруж­ности является точка B, то есть при .

Косинус — четная функция: , поэтому ее график симметричен относительно оси .

Косинус — периодическая функция с наименьшим положительным периодом : . Таким об­разом, через промежутки длиной вид графика функции повторяется.

Чтобы найти точки пересечения графика функции с осями координат, напомним, что на оси значение . Тогда соответствующее значение . На оси значение . Поэтому необходимо найти такие значения , при которых , то есть абсцисса соответствующей точки единичной окружности будет равна нулю. Это будет тогда и только тогда, когда на единичной окружности будут выбраны точки C или D, то есть при .

Промежутки знакопостоянства. Значения функции косинус положительны (то есть абсцисса соответствующей точки единичной окружности положительна) в I и IV четвертях (рис. 8). Следова­тельно, 0 при , а также, учитывая период, при всех .

Значения функции косинус отрицательны (то есть абсцисса соответству­ющей точки единичной окружности отрицательна) во II и III четвертях, поэтому  при 

Промежутки возрастания и убывания. Учитывая периодичность функции , достаточно исследовать ее на возрастание и убывание на любом промежутке длиной , например на промежутке .

Если (рис. 9, а), то при увеличении аргумента  абсцис­са соответствующей точки единичной окружности уменьшается (то есть ), следовательно, на этом промежутке функция убывает. Учитывая периодичность функции , делаем вывод, что она также убывает на каждом из промежутков .

Если (рис. 9, б), то при увеличении аргумента  аб­сцисса соответствующей точки единичной окружности увеличивается (то есть ), таким образом, на этом промежутке функция  возрастает. Учитывая периодичность функции , делаем вывод, что она возрастает также на каждом из промежутков . 

Рис.8                                                                                                                          Рис.9

Проведенное исследование позволяет построить график функции аналогично тому, как был построен график функции . Но график функции можно также получить с помощью геометрических преобразований графика функции , используя формулу

Рис.10

Эту формулу можно обосновать, например, так. Рассмотрим единичную окружность (рис. 10), отметим на ней точки а также

абсциссы и ординаты этих точек. Так как , то при повороте

прямоугольника  около точки на угол — против часовой стрел­ки он перейдет в прямоугольник . Но тогда . Следовательно, 00.

Укажем также формулы, которые нам понадобятся далее:.

Тогда,

Таким образом, .

Учитывая, что , график функции можно полу­чить из графика функции его параллельным переносом вдоль оси на  (рис. 11). Полученный график называется косинусоидой (рис. 12).

Рис.11

Рис.12

График функции  (тангенсоида) 

Свойства функции :

1. Область определения: 

2. Область значений: 

3. Функция нечетная: 

4. Функция периодическая с периодом 

5. Точки пересечения с осями координат:   

6. Промежутки знакопостоянства:

7. Промежутки возрастания и убывания:

8. Наибольшего и наименьшего значений функция не имеет.

График функции  (котангенсоида)

Свойства функции :

1. Область определения:

2. Область значений:

3. Функция нечетная: 

4. Функция переодическая с периодом 
5. Точки пересечения с осями координат: 

6. Промежутки знакопостоянства: 

7. Промежутки возрастания и убывания:

 

8. Наибольшего и наименьшего значений функция не имеет.

 

Как построить график функции в Excel

Чтобы правильно построить линейный график функций в Excel необходимо выбрать точечную диаграмму с прямыми отрезками и маркерами. Естественно это не единственный, но весьма быстрый и удобный способ.

Для разного рода данных нужно использовать разные типы графиков. Убедимся в этом, разобрав практический пример с построением математического графика функций в Excel.

Построение графиков функций в Excel

Начнем из анализа и создания графика функций в Excel. Мы убедимся в том, что линейный график в Excel существенно отличается от графика линейной функции, который преподают в школе.

Линейная функция x=y имеет следующие значения: x1=0, x2=1, x3=7. Заполните таблицу этими значениями как показано на рисунке:

Выделите диапазон A1:B4 и выберите инструмент: «Вставка»-«Диаграммы»-«График»-«График с маркерами».

В результате у нас созданы 2 линии на графике, которые наложены одна сверх другой. Так же мы видим, что линии сломаны, а значит, они не соответствуют презентации школьному графику линейной функции. Излом линий, получается, по причине того, что на оси X у нас после значений: 0, 1 сразу идет значение 7 (упущены 2,3,4,5,6).

Вывод один: данный способ графического построения данных нам не подходит. А значит щелкните по нему левой кнопкой мышки (чтобы сделать его активным) и нажмите клавишу DELETE на клавиатуре, чтобы удалить его.



Как построить график линейной функции в Excel

Чтобы создать правильный график функций в Excel выберите подходящий график.

Выделите диапазон A1:B4 и выберите инструмент: «Вставка»-«Диаграммы»-«Точечная»-«Точечная с прямыми отрезками и маркерами».

Как видно на рисунке данный график содержит одинаковое количество значений на осях X и Y. По умолчанию в шаблоне данного графика цена делений оси X равна 2. При необходимости ее можно изменить. Для этого:

  • наведите курсор мышки на любое значение оси X чтобы появилась всплывающая подсказка «Горизонтальная ось (значений)» и сделайте двойной щёлочек левой кнопкой мышки;
  • в появившемся окне «Формат оси» выберите пункт опции: «Параметры оси»-«цена основных делений»-«фиксированное» и установите значение 1 вместо 2.
  • нажмите на кнопку «Закрыть».

Теперь у нас отображается одинаковое количество значений по всем осям.

Очень важно понимать разницу в предназначениях графиков Excel. В данном примере мы видим, что далеко не все графики подходят для презентации математических функций.

Примечание. В принципе первый способ можно было-бы оптимизировать под отображение линейной функции, если таблицу заполнить всеми значениями 0-7. Но это не всегда работающее решение, особенно в том случае если вместо значений будут формулы изменяющие данные. Одним словом если нужно забить гвоздь лучше взять молоток, чем микроскоп. Несмотря на то, что теоретически гвозди можно забивать и микроскопом.

Не существует универсальных графиков и диаграмм, которыми можно отобразить любой отчет. Для каждого типа отчета наиболее подходящее то или иное графическое представление данных. Выбор зависит от того что и как мы хотим презентовать. На следующих примерах вы убедитесь, что выбор имеет большое значение. Существует даже целая наука «Инфографика», которая учит лаконично презентовать информацию с максимальным использованием графики вместо текста, насколько это только возможно.

Определение функций с помощью графиков | Колледж алгебры

Результаты обучения

  • Проверить работу с помощью теста вертикальной линии
  • Проверьте однозначное соответствие с помощью теста горизонтальной линии
  • Определить графики функций инструментария

Как мы видели в примерах выше, мы можем представить функцию с помощью графика. Графики отображают множество пар ввода-вывода на небольшом пространстве. Предоставляемая ими визуальная информация часто упрощает понимание взаимоотношений.Обычно мы строим графики с входными значениями по горизонтальной оси и выходными значениями по вертикальной оси.

Наиболее распространенные графики называют входным значением [latex] x [/ latex] и выходным значением [latex] y [/ latex], и мы говорим, что [latex] y [/ latex] является функцией [latex] x [ / latex] или [latex] y = f \ left (x \ right) [/ latex], если функция называется [latex] f [/ latex]. График функции — это набор всех точек [латекс] \ left (x, y \ right) [/ latex] в плоскости, которая удовлетворяет уравнению [латекс] y = f \ left (x \ right) [/ latex ].Если функция определена только для нескольких входных значений, то график функции представляет собой только несколько точек, где координата x каждой точки является входным значением, а координата y каждой точки является соответствующее выходное значение. Например, черные точки на графике на графике ниже говорят нам, что [латекс] f \ left (0 \ right) = 2 [/ latex] и [latex] f \ left (6 \ right) = 1 [/ latex ]. Однако набор всех точек [latex] \ left (x, y \ right) [/ latex], удовлетворяющих [latex] y = f \ left (x \ right) [/ latex], является кривой.Показанная кривая включает [латекс] \ влево (0,2 \ вправо) [/ латекс] и [латекс] \ влево (6,1 \ вправо) [/ латекс], потому что кривая проходит через эти точки.

Тест с вертикальной линией можно использовать для определения того, представляет ли график функцию. Вертикальная линия включает все точки с определенным значением [latex] x [/ latex]. Значение [latex] y [/ latex] точки, где вертикальная линия пересекает график, представляет собой выход для этого входного значения [latex] x [/ latex]. Если мы можем нарисовать любую вертикальную линию , которая пересекает график более одного раза, тогда график , а не определяет функцию, потому что это значение [latex] x [/ latex] имеет более одного вывода.Функция имеет только одно выходное значение для каждого входного значения.

Как сделать: для данного графика используйте тест вертикальной линии, чтобы определить, представляет ли график функцию.

  1. Проверьте график, чтобы убедиться, что какая-либо вертикальная линия пересекает кривую более одного раза.
  2. Если такая линия есть, график не представляет функцию.
  3. Если ни одна вертикальная линия не может пересекать кривую более одного раза, график действительно представляет функцию.

Пример: применение теста вертикальной линии

Какой из графиков представляет функцию [латекс] y = f \ left (x \ right)? [/ Latex]

Показать решение

Если какая-либо вертикальная линия пересекает график более одного раза, отношение, представленное на графике, не является функцией. Обратите внимание, что любая вертикальная линия будет проходить только через одну точку двух графиков, показанных в частях (a) и (b) графика выше. Из этого можно сделать вывод, что эти два графика представляют функции. Третий график не представляет функцию, потому что при максимальных значениях x вертикальная линия пересекает график более чем в одной точке.

Попробуйте

Представляет ли приведенный ниже график функцию?

Тест горизонтальной линии

После того, как мы определили, что график определяет функцию, простой способ определить, является ли функция взаимно однозначной, — это использовать тест горизонтальной линии .Проведите через график горизонтальные линии. Горизонтальная линия включает все точки с определенным значением [latex] y [/ latex]. Значение [latex] x [/ latex] точки, где вертикальная линия пересекает функцию, представляет вход для этого выходного значения [latex] y [/ latex]. Если мы можем нарисовать любую горизонтальную линию , которая пересекает график более одного раза, тогда график , а не представляет функцию, потому что это значение [latex] y [/ latex] имеет более одного входа.

Практическое руководство. Имея график функции, используйте тест горизонтальной линии, чтобы определить, представляет ли график однозначную функцию.

  1. Проверьте график, чтобы увидеть, пересекает ли нарисованная горизонтальная линия кривую более одного раза.
  2. Если такая линия есть, функция не взаимно однозначная.
  3. Если ни одна горизонтальная линия не может пересекать кривую более одного раза, функция взаимно однозначна.

Пример: применение теста горизонтальной линии

Рассмотрим функции (a) и (b), показанные на графиках ниже.

Являются ли какие-либо функции взаимно однозначными?

Показать решение

Функция в (a) не является взаимно однозначной. Горизонтальная линия, показанная ниже, пересекает график функции в двух точках (и мы даже можем найти горизонтальные линии, которые пересекают его в трех точках).

Функция в (b) взаимно однозначная. Любая горизонтальная линия будет пересекать диагональную не более одного раза.

Определение основных функций набора инструментов

В этом тексте мы исследуем функции — формы их графиков, их уникальные характеристики, их алгебраические формулы и способы решения с ними проблем.Когда учимся читать, мы начинаем с алфавита. Когда мы учимся арифметике, мы начинаем с чисел. При работе с функциями также полезно иметь базовый набор стандартных элементов. Мы называем их «функциями набора инструментов», которые образуют набор базовых именованных функций, для которых нам известны график, формула и специальные свойства. Некоторые из этих функций запрограммированы на отдельные кнопки на многих калькуляторах. Для этих определений мы будем использовать [latex] x [/ latex] в качестве входной переменной и [latex] y = f \ left (x \ right) [/ latex] в качестве выходной переменной.

Мы будем часто видеть эти функции набора инструментов, комбинации функций набора инструментов, их графики и их преобразования на протяжении всей этой книги. Будет очень полезно, если мы сможем быстро распознать эти функции набора инструментов и их возможности по имени, формуле, графику и основным свойствам таблицы. Графики и примерные значения таблицы включены в каждую функцию, показанную ниже.

Попробуйте

В этом упражнении вы построите график функций инструментария с помощью онлайн-инструмента построения графиков.

  1. Изобразите каждую функцию набора инструментов, используя обозначение функций.
  2. Создайте таблицу значений, которая ссылается на функцию и включает как минимум интервал [-5,5].

Внесите свой вклад!

У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

Улучшить эту страницуПодробнее

% PDF-1.3
%
929 0 объект
>
эндобдж
xref
929 57
0000000016 00000 н.
0000001491 00000 н.
0000001714 00000 н.
0000001834 00000 н.
0000001894 00000 н.
0000001954 00000 н.
0000002014 00000 н.
0000002072 00000 н.
0000002131 00000 п.
0000002479 00000 н.
0000002538 00000 н.
0000002597 00000 н.
0000002657 00000 н.
0000002715 00000 н.
0000002839 00000 н.
0000002950 00000 н.
0000003754 00000 н.
0000004030 00000 н.
0000004125 00000 н.
0000004222 00000 п.
0000004319 00000 н.
0000004416 00000 н.
0000004594 00000 н.
0000005172 00000 п.
0000005638 00000 п.
0000005874 00000 н.
0000006104 00000 п.
0000006145 00000 н.
0000006167 00000 н.
0000006811 00000 н.
0000007047 00000 н.
0000007444 00000 н.
0000007466 00000 н.
0000007993 00000 н.
0000008015 00000 н.
0000008445 00000 н.
0000008859 00000 н.
0000009015 00000 н.
0000009037 00000 н.
0000009600 00000 н.
0000009622 00000 н.
0000010168 00000 п.
0000010190 00000 п.
0000010725 00000 п.
0000010747 00000 п.
0000011260 00000 п.
0000011282 00000 п.
0000011821 00000 п.
0000014499 00000 п.
0000014578 00000 п.
0000053486 00000 п.
0000077515 00000 п.
0000077912 00000 п.
0000088692 00000 п.
0000097865 00000 п.
0000003057 00000 н.
0000003732 00000 н.
трейлер
]
>>
startxref
0
%% EOF

930 0 объект
>
эндобдж
931 0 объект
[
932 0 R 933 0 R 934 0 R 935 0 R 936 0 R 937 0 R 938 0 R 939 0 R 940 0 R
941 0 руб. 942 0 руб. 943 0 руб.
]
эндобдж
932 0 объект
>
/ Ж 946 0 Р
>>
эндобдж
933 0 объект
>
/ Ж 947 0 Р
>>
эндобдж
934 0 объект
>
/ Ж 948 0 Р
>>
эндобдж
935 0 объект
>
/ F 5 0 R
>>
эндобдж
936 0 объект
>
/ Ж 10 0 Р
>>
эндобдж
937 0 объект
>
/ Ж 14 0 Р
>>
эндобдж
938 0 объект
>
/ Ж 21 0 Р
>>
эндобдж
939 0 объект
>
/ Ж 22 0 Р
>>
эндобдж
940 0 объект
>
/ Ж 949 0 Р
>>
эндобдж
941 0 объект
>
/ Ж 6 0 Р
>>
эндобдж
942 0 объект
>
/ Ж 45 0 Р
>>
эндобдж
943 0 объект
>
/ Ж 35 0 Р
>>
эндобдж
944 0 объект
>
эндобдж
984 0 объект
>
поток
Hb«`f`AXX8 & 040400800lql | y`mC, JL / ‘: e] H0> d +
T2Kp (Rr ~ 9iBewa_ «T}, 9z: 69qiIʇ: xTf
, 1NG & kx-kd ؅ «ШKu2I-W9l% a ֧ Ec
; s = Lr8aFN @. iVb3k) g0a? Cc / C3ho20.g’a6 [yN13H 3 (

График основных функций

Основные функции

В этом разделе мы графически изображаем семь основных функций, которые будут использоваться на протяжении всего курса. Каждая функция отображается в виде точек. Помните, что f (x) = y и, следовательно, f (x) и y могут использоваться как взаимозаменяемые.

Любая функция вида f (x) = c, где c — любое действительное число, называется постоянной функцией. Любая функция вида f (x) = c, где c — действительное число.. Постоянные функции линейны и могут быть записаны как f (x) = 0x + c. В этой форме ясно, что наклон равен 0, а точка пересечения y равна (0, c). Оценка любого значения x , например x = 2, приведет к c .

График постоянной функции представляет собой горизонтальную линию. Домен состоит из всех действительных чисел ℝ, а диапазон состоит из одного значения { c }.

Далее мы определяем тождественную функцию: линейную функцию, определяемую формулой f (x) = x.е (х) = х. Оценка любого значения для x приведет к тому же значению. Например, f (0) = 0 и f (2) = 2. Идентификационная функция является линейной, f (x) = 1x + 0, с наклоном m = 1 и y -перехват (0, 0).

И домен, и диапазон состоят из действительных чисел.

Функция возведения в квадрат Квадратичная функция, определяемая формулой f (x) = x2., Определяемая формулой f (x) = x2, является функцией, полученной возведением в квадрат значений в области определения. Например, f (2) = (2) 2 = 4 и f (−2) = (- 2) 2 = 4.Результат возведения в квадрат ненулевых значений в домене всегда будет положительным.

Результирующий изогнутый график называется параболой. Изогнутый график, образованный функцией возведения в квадрат. Область состоит из всех действительных чисел ℝ, а диапазон состоит из всех y -значений, больших или равных нулю [0, ∞).

Кубическая функция Кубическая функция, определенная как f (x) = x3., Определенная как f (x) = x3, возводит все значения в области в третью степень.Результаты могут быть положительными, нулевыми или отрицательными. Например, f (1) = (1) 3 = 1, f (0) = (0) 3 = 0 и f (−1) = (- 1) 3 = −1.

И домен, и диапазон состоят из всех действительных чисел ℝ.

Обратите внимание, что функции константы, тождества, возведения в квадрат и куба являются примерами основных полиномиальных функций. Следующие три основные функции не являются полиномами.

Функция абсолютного значения Функция, определенная как f (x) = | x |., Определенная как f (x) = | x |, является функцией, где выходные данные представляют расстояние до начала координат на числовой прямой.Результат вычисления функции абсолютного значения для любого ненулевого значения x всегда будет положительным. Например, f (−2) = | −2 | = 2 и f (2) = | 2 | = 2.

Область функции абсолютного значения состоит из всех действительных чисел ℝ, а диапазон состоит из всех y -значений, больших или равных нулю [0, ∞).

Функция квадратного корня Функция, определяемая как f (x) = x., Определяемая как f (x) = x, не определяется как действительное число, если значения x отрицательны.Следовательно, наименьшее значение в домене равно нулю. Например, f (0) = 0 = 0 и f (4) = 4 = 2.

И домен, и диапазон состоят из действительных чисел, больших или равных нулю [0, ∞).

Обратная функция Функция, определенная как f (x) = 1x., Определенная как f (x) = 1x, является рациональной функцией с одним ограничением на область определения, а именно x ≠ 0. Обратное значение x , очень близкое к нулю, очень велико. Например,

f (1/10) = 1 (110) = 1⋅101 = 10f (1/100) = 1 (1100) = 1⋅1001 = 100f (1/1000) = 1 (11000) = 1⋅10001 = 1 000 900 13

Другими словами, когда значения x приближаются к нулю, их обратные значения будут стремиться либо к положительной, либо к отрицательной бесконечности. Это описывает вертикальную асимптоту — вертикальную линию, к которой график становится бесконечно близким. по оси y . Кроме того, там, где значения x очень большие, результат обратной функции очень мал.

f (10) = 110 = 0,1f (100) = 1100 = 0,01f (1000) = 11,000 = 0,001

Другими словами, когда значения x становятся очень большими, результирующие значения y стремятся к нулю. Это описывает горизонтальную асимптоту — горизонтальную линию, к которой график становится бесконечно близким, где значения x стремятся к ± ∞.по оси x . После нанесения ряда точек можно определить общий вид обратной функции.

И область, и диапазон обратной функции состоят из всех действительных чисел, кроме 0, который может быть выражен с использованием обозначения интервала следующим образом: (−∞, 0) ∪ (0, ∞).

Таким образом, основными полиномиальными функциями являются:

Основные неполиномиальные функции:

Кусочно определенные функции

Кусочная функция Функция, определение которой изменяется в зависимости от значений в домене. , или функция разделения Термин, используемый при ссылке на кусочную функцию., — это функция, определение которой изменяется в зависимости от значения в домене. Например, мы можем написать функцию абсолютного значения f (x) = | x | как кусочная функция:

f (x) = | x | = {x, если x≥0 − x, если x <0

В этом случае используемое определение зависит от знака значения x . Если значение x положительное, x≥0, то функция определяется как f (x) = x. И если значение x отрицательное, x <0, тогда функция определяется как f (x) = - x.

Ниже приведен график двух частей на одной прямоугольной координатной плоскости:

Пример 1

График: g (x) = {x2, если x <0x, если x≥0.

Решение:

В этом случае мы строим график функции возведения в квадрат по отрицательным значениям x и функции квадратного корня по положительным значениям x .

Обратите внимание на открытую точку, используемую в начале координат для функции возведения в квадрат, и на закрытую точку, используемую для функции извлечения квадратного корня.Это было определено неравенством, которое определяет область определения каждой части функции. Вся функция состоит из каждой части, нанесенной на одну и ту же координатную плоскость.

Ответ:

При оценке значение в домене определяет подходящее определение для использования.

Пример 2

Для функции h найти h (−5), h (0) и h (3).

ч (t) = {7t + 3ift <0−16t2 + 32tift≥0

Решение:

Используйте h (t) = 7t + 3, где t отрицательно, что обозначено t <0.

h (t) = 7t + 5h (−5) = 7 (−5) + 3 = −35 + 3 = −32

Если t больше или равно нулю, используйте h (t) = — 16t2 + 32t.

h (0) = — 16 (0) +32 (0) h (3) = 16 (3) 2 + 32 (3) = 0 + 0 = −144 + 96 = 0 = −48

Ответ: h (−5) = — 32, h (0) = 0 и h (3) = — 48

Попробуй! График: f (x) = {23x + 1, если x <0x2, если x≥0.

Ответ:

Определение функции может отличаться в разных интервалах домена.

Пример 3

График: f (x) = {x3, если x <0x, если 0≤x≤46, если x> 4.

Решение:

В этом случае постройте график кубической функции на интервале (−∞, 0). Изобразите тождественную функцию на интервале [0,4]. Наконец, постройте график постоянной функции f (x) = 6 на интервале (4, ∞). И поскольку f (x) = 6, где x> 4, мы используем открытую точку в точке (4,6). Где x = 4, мы используем f (x) = x и, таким образом, (4,4) — это точка на графике, обозначенная закрытой точкой.

Ответ:

Функция наибольшего целого числа Функция, которая присваивает любое действительное число x наибольшему целому числу, меньшему или равному x , обозначается f (x) = [[x]]., Обозначается f (x) = [[x]] , присваивает наибольшее целое число, меньшее или равное любому действительному числу в своем домене. Например,

f (2,7) = [[2,7]] = 2f (π) = [[π]] = 3f (0,23) = [[0,23]] = 0f (−3,5) = [[- 3,5]] = — 4

Эта функция связывает любое действительное число с наибольшим целым числом, меньшим или равным ему, и ее не следует путать с округлением.

Пример 4

График: f (x) = [[x]].

Решение:

Если x — любое действительное число, тогда y = [[x]] — наибольшее целое число, меньшее или равное x .

⋮ −1≤x <0⇒y = [[x]] = - 10≤x <1⇒y = [[x]] = 01≤x <2⇒y = [[x]]] = 1 ⋮

Используя это, мы получаем следующий график.

Ответ:

Область определения наибольшей целочисленной функции состоит из всех действительных чисел ℝ, а диапазон состоит из набора целых чисел.Эту функцию часто называют минимальной функцией — термин, используемый для обозначения наибольшей целочисленной функции. и имеет множество приложений в информатике.

Ключевые выводы

  • Точки графика для определения общей формы основных функций. Следует запомнить форму, а также домен и диапазон каждого из них.
  • Основные полиномиальные функции: f (x) = c, f (x) = x, f (x) = x2 и f (x) = x3.
  • Основные неполиномиальные функции: f (x) = | x |, f (x) = x и f (x) = 1x.
  • Функция, определение которой изменяется в зависимости от значения в домене, называется кусочной функцией. Значение в домене определяет подходящее определение для использования.

Тематические упражнения

    Часть A: Основные функции

      Сопоставьте график с определением функции.

      Оценить.

    1. f (x) = x; найти f (−10), f (0) и f (a).

    2. f (x) = x2; найти f (−10), f (0) и f (a).

    3. f (x) = x3; найти f (−10), f (0) и f (a).

    4. f (х) = | х |; найти f (−10), f (0) и f (a).

    5. f (x) = x; найти f (25), f (0) и f (a), где a≥0.

    6. f (x) = 1x; найти f (−10), f (15) и f (a), где a ≠ 0.

    7. f (x) = 5; найти f (−10), f (0) и f (a).

    8. f (x) = — 12; найти f (−12), f (0) и f (a).

    9. График f (x) = 5 с указанием области определения и диапазона.

    10. График f (x) = — 9 и укажите область определения и диапазон.

      Функция кубического корня.

    1. Найдите точки на графике функции, определенной как f (x) = x3, со значениями x в наборе {−8, −1, 0, 1, 8}.

    2. Найдите точки на графике функции, определенной как f (x) = x3, со значениями x в наборе {−3, −2, 1, 2, 3}. Воспользуйтесь калькулятором и округлите до ближайшей десятой.

    3. Постройте график функции корня куба, определяемой как f (x) = x3, путем нанесения точек, найденных в предыдущих двух упражнениях.

    4. Определите область и диапазон функции кубического корня.

      Найдите упорядоченную пару, которая задает точку P .

    Часть B: кусочные функции

      Постройте график кусочных функций.

    1. g (x) = {2, если x <0x, если x≥0

    2. g (x) = {x2, если x <03, если x≥0

    3. h (x) = {xifx <0xifx≥0

    4. h (x) = {| x |, если x <0x3ifx≥0

    5. f (x) = {| x |, если x <24ifx≥2

    6. f (x) = {xifx <1xifx≥1

    7. g (x) = {x2ifx≤ − 1xifx> −1

    8. g (x) = {- 3ifx≤ − 1x3ifx> −1

    9. h (x) = {0ifx≤01xifx> 0

    10. h (x) = {1xifx <0x2ifx≥0

    11. f (x) = {x2ifx <0xif0≤x <2−2ifx≥2

    12. f (x) = {xifx <−1x3if − 1≤x <13ifx≥1

    13. g (x) = {5ifx <−2x2if − 2≤x <2xifx≥2

    14. g (x) = {xifx <−3 | x | если − 3≤x <1xifx≥1

    15. h (x) = {1xifx <0x2if0≤x <24ifx≥2

    16. h (x) = {0ifx <0x3if0 2

      Оценить.

    1. f (x) = {x2ifx≤0x + 2ifx> 0

      Найдите f (−5), f (0) и f (3).

    2. f (x) = {x3ifx <02x − 1ifx≥0

      Найдите f (−3), f (0) и f (2).

    3. g (x) = {5x − 2ifx <1xifx≥1

      Найдите g (−1), g (1) и g (4).

    4. g (x) = {x3ifx≤ − 2 | x | ifx> −2

      Найдите g (−3), g (−2) и g (−1).

    5. h (x) = {- 5ifx <02x − 3if0≤x <2x2ifx≥2

      Найдите h (−2), h (0) и h (4).

    6. h (x) = {- 3xifx≤0x3if0 4

      Найдите h (−5), h (4) и h (25).

    7. f (x) = [[x − 0,5]]

      Найдите f (−2), f (0) и f (3).

    8. f (x) = [[2x]] + 1

      Найдите f (−1.2), f (0.4) и f (2.6).

      Оцените по графику f .

    1. Найдите f (−4), f (−2) и f (0).

    2. Найдите f (−3), f (0) и f (1).

    3. Найдите f (0), f (2) и f (4).

    4. Найдите f (−5), f (−2) и f (2).

    5. Найдите f (−3), f (−2) и f (2).

    6. Найдите f (−3), f (0) и f (4).

    7. Найдите f (−2), f (0) и f (2).

    8. Найдите f (−3), f (1) и f (2).

    9. Стоимость автомобиля в долларах выражается через количество лет, прошедших с момента приобретения нового автомобиля в 1975 году:

      1. Определить стоимость автомобиля в 1980 году.
      2. В каком году автомобиль оценивается в 9 000 долларов?
    10. Стоимость единицы нестандартных ламп в долларах зависит от количества произведенных единиц в соответствии со следующим графиком:

      1. Какова стоимость единицы, если производится 250 нестандартных ламп?
      2. Какой уровень производства минимизирует удельную стоимость?
    11. Продавец автомобилей получает комиссию на основе общего объема продаж каждый месяц x в соответствии с функцией:
      г (х) = {0. 03x, если 0≤x <20,0000,05x, если 20,000≤x <50,0000,07x, если x≥50,000

      1. Если общий объем продаж продавца за месяц составляет 35 500 долларов, какова его комиссия в соответствии с функцией?
      2. Сколько ей потребуется для перехода на следующий уровень в структуре комиссионных?
    12. Аренда лодки стоит 32 доллара за час, а каждый дополнительный час или неполный час стоит 8 долларов.Постройте график стоимости аренды лодки и определите стоимость аренды лодки на 412 часов.

    Часть C: Обсуждение

    1. Объясните начинающему изучающему алгебру, что такое асимптота.

    2. Изучите и обсудите разницу между функциями пола и потолка.Какие приложения вы можете найти, которые используют эти функции?

ответы

  1. f (−10) = — 10, f (0) = 0, f (a) = a

  2. f (−10) = — 1000, f (0) = 0, f (a) = a3

  3. f (−10) = 5, f (0) = 5, f (a) = 5

  4. Домен: ℝ; диапазон: {5}

  5. {(−8, −2), (−1, −1), (0,0), (1,1), (8,2)}

  1. f (−5) = 25, f (0) = 0 и f (3) = 5

  2. г (-1) = — 7, г (1) = 1 и г (4) = 2

  3. h (−2) = — 5, h (0) = — 3 и h (4) = 16

  4. f (−2) = — 3, f (0) = — 1 и f (3) = 2

  5. f (−4) = 1, f (−2) = 1 и f (0) = 0

  6. f (0) = 0, f (2) = 8 и f (4) = 0

  7. f (−3) = 5, f (−2) = 4 и f (2) = 2

  8. f (−2) = — 1, f (0) = 0 и f (2) = 1

графиков: типы, примеры и функции — математический класс [видео 2021 года]

Линейные графики

Линейные графики создаются линейными функциями этой формы:

Линейная функция

Линейные функции имеют переменные первой степени и две константы, определяющие положение графика. Эти функции всегда отображаются в виде линии. Константа м определяет наклон линии вниз или вверх. Если он положительный, линия будет наклоняться вверх, а если отрицательная, то линия будет наклоняться вниз.

Линейный график

Графики мощности

Графики мощности создаются функциями только с одним членом и степенью. Мощность может быть положительной, отрицательной или даже дробной.

Функция мощности

Графики, создаваемые этими типами функций, зависят от мощности.Если степень положительная, график меняет направление в зависимости от числа степеней. Если степень четная, у графа оба ребра будут идти в одном направлении. Если степень нечетная, у графа одно ребро поднимается вверх, а другое опускается. Если мощность отрицательная, она будет состоять из двух частей. Каждая часть будет избегать строки x = 0, потому что это приведет к делению на ноль. Когда степень является дробной, график идет вверх при x = 0, а затем, когда y положителен, он начинает изгибаться в направлении оси x.

График мощности

Квадратичные графики

Квадратичные — это функции, в которых наивысшая степень равна двум.

Квадратичная функция

Они построены на параболах. Константы a , b, и c определяют положение параболы на графике. Модель a сообщает вам, будет ли парабола открываться вверх или вниз.Если он положительный, он откроется и улыбнется. Если он отрицательный, он откроется и нахмурится.

Квадратичный граф

Полиномиальные графы

Полиномы являются более общей функцией, чем квадратичная, и позволяют использовать более высокие степени, которые по-прежнему являются целыми числами.

Полиномиальная функция

Эти функции создают более интересные графики с большим количеством кривых.Наивысшая степень функции показывает, сколько кривых или подъемов и падений может иметь график.

Полиномиальный граф

Rational Graphs

Графы Rational взяты из функций, которые являются делением двух многочленов. Когда они будут построены, вы увидите, что график разделен на части. Области, которые избегает график, — это места, где происходит деление на ноль.

Рациональный график

Экспоненциальные графики

Показатели — это степень, в которой переменная x представляет собой степень.

Экспоненциальная функция

Когда b больше единицы, вы увидите экспоненциальный рост. Если он меньше единицы, но больше нуля, вы увидите экспоненциальный спад. Рост — это когда график поднимается вправо. Распад — это когда он падает вправо.

Экспоненциальный график

Логарифмические графики

Логарифмические функции включают построение логарифмов.

Логарифмическая функция

Эти графики похожи на экспоненты, за исключением того, что они растут раньше и растут медленнее.

Логарифмический график

Синусоидальный

Синусоидальный график использует функции, внутри которых есть синусоидальная функция.

Синусоидальная функция

На графике отображается волновая картина.

Синусоидальный график

Резюме урока

Различные типы графиков зависят от типа отображаемой функции. Восемь наиболее часто используемых графиков: линейные, степенные, квадратичные, полиномиальные, рациональные, экспоненциальные, логарифмические и синусоидальные. У каждого есть уникальный график, который легко визуально отличить от остальных.

Вы можете увидеть другие типы графиков, которых здесь нет. Это потому, что существует множество различных типов функций, и чем больше вы продолжаете изучать математику, тем больше вы будете подвергаться воздействию.То, что вы узнали в этом уроке, является хорошей начальной основой для типов графиков, которые вы увидите.

Результат обучения

После того, как вы закончите этот урок, вы сможете назвать и определить восемь наиболее часто используемых графиков.

Представление функций в виде правил и графиков (Алгебра 1, Обнаружение выражений, уравнений и функций) — Mathplanet

Давайте начнем с примера:

В магазине морковь стоит 2 доллара. 50 / фунт. Цена, которую платит покупатель, зависит от того, сколько фунтов моркови он покупает. Другой способ сказать это — сказать, что общая стоимость является функцией купленных фунтов стерлингов. Мы можем записать это в виде уравнения.

$$ итого \: стоимость = цена \: за \: фунт \: \ cdot \: вес \: куплено $

или

$$ y = 2,50 \ cdot x $$

Функция — это уравнение, которое показывает взаимосвязь между входом x и выходом y, причем для каждого входа существует ровно один выход. Другое слово для ввода — это домен, а для вывода — диапазон.Как мы заявляли ранее, цена y, которую должен заплатить покупатель, зависит от того, сколько фунтов моркови x покупает покупатель. Количество купленных фунтов называется независимой переменной, поскольку это то, что мы меняем, тогда как общая цена называется зависимой переменной, поскольку она зависит от того, сколько фунтов мы фактически покупаем.

Входная переменная = Независимая переменная = Домен

Выходная переменная = Зависимая переменная = Диапазон

Функции обычно представлены правилом функции, в котором зависимая переменная y выражается через независимую переменную x.

$$ y = 2,50 \ cdot x $$

Вы можете представить свою функцию в виде графика. Самый простой способ построить график — начать с создания таблицы, содержащей входы и соответствующие им выходы. Мы снова используем пример с морковью

.

Вход, x (фунт) Объем производства, г ($)
0 0
1 2,50
2 5.00
3 7,50

Пара входного значения и соответствующего ему выходного значения называется упорядоченной парой и может быть записана как (a, b). В упорядоченной паре первое число, вход a, соответствует горизонтальной оси, а второе число, выход b, соответствует вертикальной оси.

Таким образом, мы можем записать наши значения в виде упорядоченных пар

(0, 0) — эта упорядоченная пара также называется исходной точкой
(1, 2. 5)
(2, 5)
(3, 7,5)

Затем эти упорядоченные пары можно отобразить в виде графика.

Сопряжение любого набора входов с соответствующими выходами называется отношением. Каждая функция — это отношение, но не все отношения — это функции. В приведенном выше примере с морковью каждый ввод дает ровно один вывод, который квалифицирует его как функцию.

Если вы не уверены, является ли ваше отношение функцией или нет, вы можете провести вертикальную линию прямо через ваш график.Если отношение не является функцией, график содержит как минимум две точки с одинаковой x-координатой, но с разными y-координатами.

Отношение, изображенное на графике слева, показывает функцию, тогда как отношение на графике справа не является функцией, поскольку вертикальная линия пересекает график в двух точках.


Видеоурок

Напишите правило для функции:

Ввод 0 1 2 4 5
выход 4 3 2 0 -1