Формула цилиндра: Объем цилиндра формула и калькулятор онлайн

Содержание

формула через диаметр и высоту

Sign in

Password recovery

Восстановите свой пароль

Ваш адрес электронной почты

MicroExcel.ru Математика Геометрия Нахождение объема цилиндра: формула и задачи

В данной публикации мы рассмотрим, как можно найти объем цилиндра и разберем примеры решения задач.

  • Формула вычисления объема цилиндра
    • Через площадь основания и высоту
    • Через радиус основания и высоту
    • Через диаметр основания и высоту
  • Примеры задач

Формула вычисления объема цилиндра

Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

V = S ⋅ H

Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R2. Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14.

Через диаметр основания и высоту

Как нам известно, диаметр круга равняется двум его радиусам: d = 2R. А значит, вычислить объем цилиндра можно следующим образом:

V = π ⋅ (d/2)2 ⋅ H

Примеры задач

Задание 1
Найдите объем цилиндра, если дана площадь его основания – 78,5 см2, а также, высота – 10 см.

Решение:
Применим первую формулу, подставив в нее известные значения:
V = 78,5 см2 ⋅ 10 см = 785 см3.

Задание 2
Высота цилиндра равна 6 см, а его диаметр – 8 см. Найдите объем фигуры.

Решение:
Воспользовавшись третьей формулой, в которой участвует диаметр, получаем:
V = 3,14 ⋅ (8/2 см)2 ⋅ 6 см = 301,44 см3.

ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ

Таблица знаков зодиака

Нахождение площади трапеции: формула и примеры

Нахождение длины окружности: формула и задачи

Римские цифры: таблицы

Таблица синусов

Тригонометрическая функция: Тангенс угла (tg)

Нахождение площади ромба: формула и примеры

Нахождение объема цилиндра: формула и задачи

Тригонометрическая функция: Синус угла (sin)

Геометрическая фигура: треугольник

Нахождение объема шара: формула и задачи

Тригонометрическая функция: Косинус угла (cos)

Нахождение объема конуса: формула и задачи

Таблица сложения чисел

Нахождение площади квадрата: формула и примеры

Что такое тетраэдр: определение, виды, формулы площади и объема

Нахождение объема пирамиды: формула и задачи

Признаки подобия треугольников

Нахождение периметра прямоугольника: формула и задачи

Формула Герона для треугольника

Что такое средняя линия треугольника

Нахождение площади треугольника: формула и примеры

Нахождение площади поверхности конуса: формула и задачи

Что такое прямоугольник: определение, свойства, признаки, формулы

Разность кубов: формула и примеры

Степени натуральных чисел

Нахождение площади правильного шестиугольника: формула и примеры

Тригонометрические значения углов: sin, cos, tg, ctg

Нахождение периметра квадрата: формула и задачи

Теорема Фалеса: формулировка и пример решения задачи

Сумма кубов: формула и примеры

Нахождение объема куба: формула и задачи

Куб разности: формула и примеры

Нахождение площади шарового сегмента

Что такое окружность: определение, свойства, формулы

Цилиндр.

2} — это формула площади круга, а в нашем случае — площадь основания. Поэтому формулу объема цилиндра можно записать через площадь основания и высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

Формула вычисления объема цилиндра

1. Через площадь основания и высоту

Объем (V) цилиндра равняется произведению его высоты и площади основания.

V = S ⋅ H

2. Через радиус основания и высоту

Как мы знаем, в качестве оснований цилиндра (равны между собой) выступает круг, площадь которого вычисляется так: S = π ⋅ R2. Следовательно, формулу для вычисления объема цилиндра можно представить в виде:

V = π ⋅ R2 ⋅ H

Примечание: в расчетах значение числа π округляется до 3,14. 2.

Расшифровать формулу просто:

  • V – объем цилиндра;
  • π – 3,14;
  • R – радиус цилиндра;
  • D – диаметр.

То есть получается, что, если разделить объем на площадь основания, получится высота цилиндра.

Можно поступить проще. Для этого нам придется вычислить площадь боковой поверхности искомого цилиндра. Это легко сделать по формуле: S=2πRH. Слегка изменив формулу, получаем: H=S/2πR.

Таким образом, есть уже два способа, которые помогли вспомнить, как найти высоту цилиндра. Это нетрудно, когда перед глазами стройные формулы.

Способ расчета радиуса цилиндра:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см3. Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см2, а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см2, а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:

Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2πR), являющейся основанием фигуры, на его высоту:

S = 2πRh

Площадь полной поверхности цилиндра через радиус основания и высоту

{S = 2pi r (h+r)}

Формула для нахождения полной поверхности цилиндра через высоту и радиус основания:

{S = 2pi r (h+r)}, где π — число Пи (3,14159…), r — радиус основания цилиндра, h — высота цилиндра.

Источники

  • https://mnogoformul.ru/obem-cilindra
  • https://infofaq.ru/radius-cilindra.html
  • https://MicroExcel.ru/obyom-tsilindra/
  • https://www.calc.ru/radius-tsilindra.html
  • https://MicroExcel.ru/radius-tsilindra/
  • https://mnogoformul.ru/ploshhad-poverkhnosti-cilindra

Высота: Объем:

Высота: Площадь боковой поверхности:

Высота: Площадь полной поверхности:

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где V – объем цилиндра, h – высота

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где Sb – площадь боковой поверхности, h – высота

Цилиндр – геометрическое тело, которое получается при вращении прямоугольника вокруг его стороны. Также, цилиндр представляет собой тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими ее. Эта поверхность образуется при движении прямой параллельно самой себе. При этом выделенная точка прямой перемещается вдоль определенной плоской кривой (направляющая). Данная прямая называется образующей цилиндрической поверхности.
Формула радиуса цилиндра:
где S – площадь полной поверхности, h – высота

Объем цилиндра: определение, формула, примеры

Сталкиваетесь ли вы с трудностями при нахождении объема цилиндра, если его форма искажена? Задумывались ли вы над тем, как найти объем таких цилиндров? Это то, что вы узнаете через мгновение.

Объем цилиндра означает пространство внутри цилиндра, которое может вместить определенное количество материала. Проще говоря, способность цилиндра удерживать предмет — это его объем. Внутри пространства цилиндра вы можете удерживать любой из трех типов материи — твердое, жидкое или газообразное. Эту емкость можно наблюдать только в трехмерном цилиндре, т. е. вы не можете удержать ни жидкость, ни твердое тело, ни газ в двумерном цилиндре.

Совершенный трехмерный цилиндр имеет два конгруэнтных и параллельных одинаковых основания. Это известно как правильный круговой цилиндр. В прямом круговом цилиндре основания круглые, а каждый отрезок является частью боковой криволинейной поверхности, перпендикулярной основаниям. Вы могли видеть правильные круглые цилиндры в своей повседневной жизни. Формы банок, формы рулонов бумаги, прямое стекло и многое другое.

Однако, если форма стакана совершенно прямая, он будет называться правильным круглым цилиндром. Если форма нелинейна, то какой она будет?

Если две конгруэнтные и идентичные параллельные стороны каким-то образом станут непараллельными или деформируются, вы получите любой из следующих цилиндров:

  1. Наклонный цилиндр — это цилиндр, стороны которого наклонены к основанию под углом, не равным равен прямому углу. Это будет форма искаженного стекла, о которой говорилось выше.
  2. Эллиптический цилиндр – это цилиндр, основания которого представляют собой эллипсы.
  3. Прямой круглый полый цилиндр – имеет форму правильного круглого цилиндра. Однако в конце нет замкнутых кругов.

Найти объем цилиндра проще, чем вы думали. Если вам все еще интересно, как найти объем цилиндра, все, что вам нужно, это ведро с водой, весы и пустая плоская поверхность, на которую можно поставить ведро.

Поставьте ванну на ровную пустую поверхность и начните наполнять ее водой. Вы должны убедиться, что вода заполнена до краев. Как только ванна наполнится водой, поместите цилиндр, объем которого вам нужно найти, внутрь ванны. Вы увидите, как вода начнет выходить из ванны.

Соберите выпавшую воду в стакан. Убедитесь, что вода не падает, пока вы делаете преобразование. Поставьте стакан на весы и запишите вес воды. Не забудьте вычесть вес стакана. Вы должны иметь только вес воды.

Согласно закону Архимеда, вес воды, падающей из ванны, будет равен весу цилиндра. Следовательно, вес полученной воды будет равен весу цилиндра. Вам может быть интересно, как найти объем цилиндра?

Согласно физике, если вы находитесь в помещении с комнатной температурой, вес будет равен объему. Это означает, что 1 кг будет эквивалентен 1 литру и так далее. Следовательно, вы получите объем цилиндра из объема воды.

Но что, если вы живете в холодном или жарком регионе? Тогда вам придется использовать другой метод.

Формула для нахождения объема цилиндра

Вы можете найти объем цилиндра, используя формулу. Это универсально и может применяться независимо от вашего региона. Единицами объема являются кубические сантиметры, кубические дюймы или любые стандартные единицы с префиксом «кубический».

Объем цилиндра можно найти двумя способами. Вот они:

  1. Используя площадь и высоту
  2. Используя размеры
  • Нахождение объема цилиндров по площади и высоте есть не что иное, как произведение площади и высоты любой формы. Это правило справедливо для всех трехмерных фигур, известных в математике. Например, в кубоиде, если вы знаете площадь одной его стороны, а затем умножаете ее на высоту или ширину, то есть на оставшуюся сторону, вы получите объем.

В цилиндрах V = площадь x высота 

  • Нахождение площади с известными размерами – Универсальная формула для нахождения объема цилиндра: π r 2 ч, где значение π (пи) равно 3,14. или 22/7, r — радиус верха или низа цилиндра, а h — высота. Используя формулу, можно найти объемы прямых круговых цилиндров и косых цилиндров.

Однако для эллиптических цилиндров формула другая. Поскольку эллиптические цилиндры имеют разные радиусы, формула для нахождения их объемов имеет вид: V = π abh, где π = 22/7 или 3,14, a и b — радиусы основания эллиптического цилиндра, а h — высота .

Кроме того, формула также отличается для полых прямоугольных цилиндров. Объем полого прямоугольного цилиндра определяется формулой: V = π (R 2 — r 2 ) h, где R — внешний радиус круглого основания, r — внутренний радиус, а h — высота цилиндра.

Если вы ищете формулу площади поверхности цилиндра, то вот она: A = 2πr + 2πrh, где r и h — радиус и высота цилиндра соответственно. Единицами площади поверхности будут квадратные единицы.

Шаги для расчета объема цилиндра

Следуя приведенным ниже методам, вы можете найти объем цилиндра.

Шаг 1: Определите тип цилиндра, данный вам в вопросе или в реальной жизни.

Шаг 2: Когда у вас есть тип цилиндра, вам нужно выяснить формулу, по которой можно найти объем цилиндра.

Шаг 3: Теперь у вас есть и формула. Проверьте, какие размеры вам нужны, чтобы найти объем. Убедитесь, что все размеры имеют одинаковые единицы измерения.

Шаг 4: Разместите их на своих местах и ​​рассчитайте объем.

Шаг 5: Сохраните единицы измерения после расчетного значения как «кубические единицы». Используйте соответствующую единицу измерения, такую ​​как метр, сантиметр или любую другую, вместо слова единица измерения.

Примеры для нахождения объема цилиндра

Пример 1. Цилиндр имеет радиус 50 см и высоту 100 см. Как найти объем цилиндра?

Решение: Мы знаем, что объем цилиндра находится по формуле – π r 2 h, где r — радиус цилиндра, а h — высота.

Таким образом, подставляя значения, получаем

Пример 2: Как найти объем цилиндра, у которого один из радиусов равен 40 см, а другой — 60 см? Цилиндр имеет высоту 200 см.

Решение: Из приведенных данных видно, что цилиндр эллиптический, так как радиусы разные. Чтобы найти объем эллиптического цилиндра, используется формула V = π abh, где a и b — радиусы, а h — высота.

Следовательно, объем цилиндра = V = π abh

= π x 40 x 60 x 200 = 1507200 см 3 .

Пример 3: Как найти объем полого цилиндра изнутри и имеет внешний и внутренний радиусы единиц 6 и 8 соответственно? Высота этого полого цилиндра составляет 15 единиц.

Решение: Мы знаем, что формула объема полого цилиндра имеет вид V = π (R 2 – r 2 ) h.

Следовательно, ставя значения, получаем,

V = π (R 2 – r 2 ) ч

= π (8 2 – 6 2 ) 15 = 1318,8 ед. 2 .

Пример 4: Однажды Алекс задался вопросом: «Как мне найти объем цилиндра, высота которого равна 6 дюймам, а радиус — 3 дюймам». Можете ли вы помочь ей найти объем этого цилиндра?

Ответ: Да, можно! Вы знаете формулу для нахождения объема цилиндра: V = π r 2 h.

Таким образом, подставив значения, вы получите V = π r 2 ч

= π x 3 2 x 6 = 169,56 в 3 .

Вы можете сказать Алексу, что объем цилиндра равен 169,56 в 3 .

Калькулятор объема цилиндра

Автор: Ханна Памула, кандидат наук

Отзыв от Bogna Szyk и Jack Bowater

Последнее обновление: 06 сентября 2022 г.

Содержание:

  • Как рассчитать объем цилиндра?
  • Объем полого цилиндра
  • Объем наклонного цилиндра
  • Часто задаваемые вопросы

Наш калькулятор объема цилиндра позволяет рассчитать объем этого твердого тела. Если вы хотите выяснить, сколько воды помещается в банку, кофе в вашу любимую кружку или даже объем соломинки для питья — вы находитесь в правильном месте. Другим вариантом является расчет объема цилиндрической оболочки (полого цилиндра).

Как рассчитать объем цилиндра?

Начнем с самого начала – что такое цилиндр? Это твердое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями. Мы можем представить его как твердую физическую банку с крышками сверху и снизу. Для расчета его объема нам нужно знать два параметра – радиус (или диаметр) и высоту:

объем цилиндра = π × радиус цилиндра² × высота цилиндра

Калькулятор объема цилиндра помогает найти объем прямого, полого и наклонного цилиндра: оболочка, представляет собой трехмерную область, ограниченную двумя прямыми круговыми цилиндрами, имеющими одну ось и два параллельных кольцевых основания, перпендикулярных общей оси цилиндров.

Легче понять это определение, представив, например, соломинку для питья или трубку – полый цилиндр – это пластик, металл или другой материал. Формула объема полого цилиндра:

объем_цилиндра = π × (R² - r²) × высота_цилиндра

где R – внешний радиус, а r – внутренний радиус

Чтобы вычислить объем цилиндрической оболочки, возьмем пример из реальной жизни , может. .. рулон туалетной бумаги, а почему бы и нет? 😀

  1. Введите внешний радиус цилиндра . Стандарт равен примерно 5,5 см.

  2. Определить внутренний радиус цилиндра . Это внутренний радиус картонной детали около 2 см.

  3. Узнать высоту цилиндра ; для нас это 9 см.

  4. Тадаам! Объем полого цилиндра равен 742,2 см³.

Помните, что результатом является объем бумаги и картона. Если вы хотите посчитать, сколько пластилина можно положить внутрь картонного рулона, воспользуйтесь стандартной формулой объема цилиндра — калькулятор посчитает в мгновение ока!

Объем косого цилиндра

Косой цилиндр – это тот, который «наклоняется» – стороны не перпендикулярны основаниям, в отличие от стандартного «прямого цилиндра». Как рассчитать объем косого цилиндра? Формула такая же, как и для прямого. Только помните, что высота должна быть перпендикулярна основаниям.

Теперь, когда вы знаете, как рассчитать объем цилиндра, возможно, вы захотите определить объемы других трехмерных тел? Используйте этот общий калькулятор объема!

Если вам интересно, сколько чайных ложек или чашек поместится в ваш контейнер, воспользуйтесь нашим конвертером объема.

Для расчета объема грунта, необходимого для цветочных горшков различной формы, в том числе для цилиндрического, воспользуйтесь калькулятором грунта.

Часто задаваемые вопросы

Где можно найти цилиндры в природе?

Цилиндры вокруг нас , и мы говорим не только о банках Pringles. Хотя вещи в природе редко бывают идеальными цилиндрами, некоторые примеры стволы деревьев и стебли растений, некоторые кости (и, следовательно, тела) и жгутики микроскопических организмов. Они составляют большое количество природных объектов на Земле!

Как нарисовать цилиндр?

Чтобы нарисовать цилиндр, выполните следующие действия:

  1. Нарисуйте слегка приплюснутый круг. Чем более он сплющен, тем ближе вы смотрите на сторону цилиндра на .

  2. Начертить две равные параллельные линии с дальних сторон вашего круга спускается вниз.

  3. Соедините концы двух линий полукруглой линией, которая выглядит так же, как нижняя половина вашего верхнего круга.

  4. При необходимости добавьте тень и штриховку.

Как рассчитать вес баллона?

Для расчета веса баллона:

  1. Возведение в квадрат радиуса цилиндра .

  2. Умножьте квадрат радиуса на число пи и высоту цилиндра .

  3. Умножьте объем на плотность цилиндра. Результат – вес цилиндра.

Как рассчитать отношение площади поверхности к объему цилиндра?

  1. Найдите объем цилиндра по формуле πr²h .

  2. Найдите площадь поверхности цилиндра по формуле 2πrh + 2πr² .

  3. Из двух формул составьте отношение , т. е. πr²h : 2πrh + 2πr².

  4. В качестве альтернативы упростите его до rh : 2(h+r) .

  5. Разделите с обеих сторон на одну из сторон, чтобы получить соотношение в его простейшей форме.

Как найти высоту цилиндра?

Если у вас объем и радиус цилиндра:

  1. Убедитесь, что объем и радиус указаны в тех же единицах , что и (например, см³ и см), а радиус — в радианах .
  2. Квадрат радиус.
  3. Разделите объем на квадрат радиуса и число Пи, чтобы получить высоту в тех же единицах, что и радиус.

Если у вас есть площадь поверхности и радиус (r):

  1. Убедитесь, что поверхность и радиус указаны в тех же единицах , а радиус указан в радианах.
  2. Вычтите 2πr² из площади поверхности.
  3. Разделите результат шага 1 на 2πr.
  4. Результат — высота цилиндра.

Как найти радиус цилиндра?

Если у вас есть объем и высота цилиндра:

  1. Убедитесь, что объем и высота указаны в тех же единицах (например, см³ и см), а радиус указан в радианах .
  2. Разделить объем на пи и высоту.
  3. Квадрат корень результата.

Если у вас есть площадь поверхности и высота (h):

  1. Подставьте высоту, h и площадь поверхности в уравнение, площадь поверхности = πr²h : 2πrh + 2πr².
  2. Разделите с обеих сторон на 2π.
  3. Вычтите площади поверхности/2π с обеих сторон.
  4. Решите полученное квадратное уравнение.
  5. Положительный корень это радиус.

Как найти объем прямоугольного трапециевидного цилиндра?

Правильный трапециевидный цилиндр, также известный как прямоугольная призма , может быть решен следующим образом:

  1. Сложите вместе две параллельные стороны (основания) трапеции.
  2. Разделить результат на 2.
  3. Умножьте результат шага 2 на высоту трапеции (т.е. расстояние, разделяющее две стороны).
  4. Умножьте результат на длину цилиндра.
  5. Результатом является площадь правильного трапециевидного цилиндра.

Как найти объем овального цилиндра?

Чтобы найти объем овального цилиндра:

  1. Умножьте наименьший радиус овала (малая ось) на его наибольший радиус (большая ось).
  2. Умножьте это новое число на пи .
  3. Разделите результат шага 2 на 4. Результатом будет площадь овала.
  4. Умножьте площадь овала на высоту цилиндра.
  5. Результат — объем овального цилиндра.

Как найти объем наклонного цилиндра?

Чтобы вычислить объем наклонного цилиндра:

  1. Найдите радиус , длину стороны и угол наклона цилиндра.
  2. Квадрат радиус.
  3. Умножьте результат на число пи.
  4. Возьмем грех угла .
  5. Умножьте sin на длину стороны.
  6. Умножьте результат шагов 3 и 5 вместе.
  7. В результате получился наклонный объем.

Как рассчитать рабочий объем цилиндра?

Чтобы вычислить рабочий объем цилиндра:

  1. Разделите диаметр отверстия на 2, чтобы получить радиус отверстия .
  2. Квадрат радиус отверстия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *