Это определение физика: Что такое физика? (статья) | Академия Хана

2}$

 

 

Содержание

В чем сила измеряется?

Во всех учебниках и умных книжках, силу принято выражать в Ньютонах, но кроме как в моделях которыми оперируют физики ньютоны ни где не применяются. Это крайне неудобно.

Ньютон newton (Н) — производная единица измерения силы в Международной системе единиц (СИ).
Исходя из второго закона Ньютона, единица ньютон определяется как сила, изменяющая за одну секунду скорость тела массой один килограмм на 1 метр в секунду в направлении действия силы.

Таким образом, 1 Н = 1 кг·м/с².   

Килограмм-сила (кгс или кГ) — гравитационная метрическая единица силы, равная силе, которая действует на тело массой один килограмм в гравитационном поле земли. Поэтому по определению килограмм-сила равна 9,80665 Н. Килограмм-сила удобна тем, что её величина равна весу тела массой в 1 кг.
1 кгс = 9,80665 ньютонов (примерно ≈ 10 Н)
1 Н ≈ 0,10197162 кгс ≈ 0,1 кгс

1 Н = 1 кг x 1м/с2.

 

 

 

Закон тяготения

Каждый объект Вселенной притягивается к любому другому объекту с силой, пропорциональной их массам и обратно пропорционально квадрату расстояния между ними. 2 \right ) }$. Знак минус означает, что сила, действующая на пробное тело, всегда направлена по радиус-вектору от пробного тела к источнику гравитационного поля, т.е. гравитационное взаимодействие приводит всегда к притяжению тел.
Поле тяжести потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность поля тяжести влечёт за собой закон сохранения суммы кинетической и потенциальной энергии, что при изучении движения тел в поле тяжести часто существенно упрощает решение.
В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал и сила зависят только от положения тела в данный момент времени.

 

 

Тяжелее — Легче

Вес тела ${\large P}$ выражается произведением его массы ${\large m}$ на ускорение силы тяжести ${\large g}$. 2 }$ 

 

В результате произведение ${\large m \cdot g }$, а следовательно и вес уменьшаются в 6 раз.

Но нельзя обозначить оба эти явления одним и тем же выражением «сделать легче». На луне тела становятся не легче, а лишь менее стремительно падают они «менее падучи»))).

 

 

Векторные и скалярные величины

Векторная величина (например сила, приложенная к телу), помимо значения (модуля), характеризуется также направлением. Скалярная же величина (например, длина) характеризуется только значением. Все классические законы механики сформулированы для векторных величин.

 


 

 

 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Рисунок 1.

 

На рис. 1 изображены различные варианты расположения вектора ${ \large \overrightarrow{F}}$ и его проекции ${ \large F_x}$ и ${ \large F_y}$ на оси ${ \large X}$ и ${ \large Y}$ соответственно:

  • A.    величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми и положительными
  • B.    величины ${ \large F_x}$ и ${ \large F_y}$ являются ненулевыми, при этом ${\large F_y}$ — положительная величина, а ${\large F_x}$ — отрицательная, т.к. вектор ${\large \overrightarrow{F}}$ направлен в сторону, противоположную направлению оси ${\large X}$ 
  • C.    ${\large F_y}$ — положительная  ненулевая величина, ${\large F_x}$ равна нулю, т.к. вектор ${\large \overrightarrow{F}}$ направлен перпендикулярно оси ${\large X}$

 

Момент силы

Моментом силы называют векторное произведение радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Т.е. согласно классическому определению момент силы — величина векторная. В рамках нашей задачи, это определение можно упростить до следующего: моментом силы ${\large \overrightarrow{F}}$, приложенной к точке с координатой ${\large x_F}$, относительно оси, расположенной в точке ${\large x_0}$ называется скалярная величина, равная произведению модуля силы ${\large \overrightarrow{F}}$, на плечо силы — ${\large \left | x_F — x_0 \right |}$. А знак этой скалярной величины зависит от направления силы: если она вращает объект по часовой стрелке, то знак плюс, если против — то минус.

Важно понимать, что ось мы можем выбирать произвольным образом — если тело не вращается, то сумма моментов сил относительно любой оси равна нулю. Второе важное замечание — если сила приложена к точке, через которую проходит ось, то момент этой силы относительно этой оси равен нулю (поскольку плечо силы будет равно нулю). 

 

 

Проиллюстрируем вышесказанное примером, на рис.2. Предположим, что система, изображенная на рис. {gr}}}$

Теперь рассмотрим условие равенства моментов сил, действующих на опору, относительно оси, проходящей через точку А (и, как мы договаривались ранее, перпендикулярную плоскости рисунка):

 

${\large N \cdot l_1 — N_2 \cdot \left ( l_1 +l_2 \right ) = 0}$

Обратите внимание, что в уравнение не вошёл момент силы ${\large \overrightarrow{N_1}}$, поскольку плечо этой силы относительно рассматриваемой оси равно ${\large 0}$. Если же мы по каким-либо причинам хотим выбрать ось, проходящую через точку С, то условие равенства моментов сил будет выглядеть так:

 

${\large N_1 \cdot l_1 — N_2 \cdot l_2  = 0}$

Можно показать, что с математической точки зрения два последних уравнения эквивалентны.

 

 

Центр тяжести

Центром тяжести механической системы называется точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю.

 

 

 

Центр масс

Точка центра масс замечательна тем , что если на частицы образующие тело (неважно будет ли оно твердым или жидким, скоплением звезд или чем то другим) действует великое множество сил (имеются ввиду только внешние силы, поскольку все внутренние силы компенсируют друг друга), то результирующая сила приводит к такому ускорению этой точки, как будто в ней вся масса тела ${\large m}$.

Положение центра масс определяется уравнением:

 

${\large R_{c.m.} = \frac{\sum m_i\, r_i}{\sum m_i}}$

 

Это векторное уравнение, т.е. фактически три уравнения — по одному для каждого из трех направлений. Но рассмотрим только ${\large x}$ направление.  Что означает следующее равенство?

 

${\large X_{c.m.} = \frac{\sum m_i\, x_i}{\sum m_i}}$

 

Предположим тело разделено на маленькие кусочки с одинаковой массой ${\large m}$, причем полная масса тела равна будет равна числу таких кусочков ${\large N}$, умноженному на массу одного кусочка, например 1 грамм. Тогда это уравнение означает, что нужно взять координаты ${\large x}$ всех кусочков, сложить их и результат разделить на число кусочков. Иными словами, если массы кусочков равны то ${\large X_{c.m.}}$ будет просто средним арифметическим ${\large x}$ координат всех кусочков.

 

 


 

центр масс сложного тела

лежит на линии, соединяющей центры масс

двух составляющих его частей

 

 

 

Масса и плотность

Масса — фундаментальная физическая величина. Масса характеризует сразу несколько свойств тела и сама по себе обладает рядом важных свойств.

 

  • Масса служит мерой содержащегося в теле вещества.
  • Масса является мерой инертности тела. Инертностью называется свойство тела сохранять свою скорость неизменной (в инерциальной системе отсчёта), когда внешние воздействия отсутствуют или компенсируют друг друга. При наличии внешних воздействий инертность тела проявляется в том, что его скорость меняется не мгновенно, а постепенно, и тем медленнее, чем больше инертность (т.е. масса) тела. Например, если бильярдный шар и автобус движутся с одинаковой скоростью и тормозятся одинаковым усилием, то для остановки шара требуется гораздо меньше времени, чем для остановки автобуса.
  • Массы тел являются причиной их гравитационного притяжения друг к другу (см. раздел «Сила тяготения»).
  • Масса тела равна сумме масс его частей. Это так называемая аддитивность массы. Аддитивность позволяет использовать для измерения массы эталон — 1 кг.
  • Масса изолированной системы тел не меняется со временем (закон сохранения массы).
  • Масса тела не зависит от скорости его движения. Масса не меняется при переходе от одной системы отсчёта к другой.
  • Плотностью однородного тела называется отношение массы тела к его объёму:

 ${\large p = \dfrac {m}{V} }$

 

Плотность не зависит от геометрических свойств тела (формы, объёма) и является характеристикой вещества тела. Плотности различных веществ представлены в справочных таблицах. Желательно помнить плотность воды: 1000 кг/м3.

 

 

Второй и третий законы Ньютона

Взаимодействие тел можно описывать с помощью понятия силы. Сила — это векторная величина, являющаяся мерой воздействия одного тела на другое.
Будучи вектором, сила характеризуется модулем (абсолютной величиной) и направлением в пространстве. Кроме того, важна точка приложения силы: одна и та же по модулю и направлению сила, приложенная в разных точках тела, может оказывать различное воздействие. Так, если взяться за обод велосипедного колеса и потянуть по касательной к ободу, то колесо начнёт вращаться. Если же тянуть вдоль радиуса, никакого вращения не будет.

Второй закон Ньютона

Произведение массы тела на вектор ускорения есть равнодействующая всех сил, приложенных к телу:

${\large m \cdot \overrightarrow{a} = \overrightarrow{F} }$

Второй закон Ньютона связывает векторы ускорения и силы. Это означает, что справедливы следующие утверждения.

  1. ${\large m \cdot a = F}$, где ${\large a}$ — модуль ускорения, ${\large F}$ — модуль равнодействующей силы.
  2. Вектор ускорения имеет одинаковое направление с вектором равнодействующей силы, так как масса тела положительна.

Третий закон Ньютона

Два тела действуют друг на друга с силами, равными по модулю и противоположными по направлению. Эти силы имеют одну и ту же физическую природу и направлены вдоль прямой, соединяющей их точки приложения.

 

 

 

Принцип суперпозиции

Опыт показывает, что если на данное тело действуют несколько других тел, то соответствующие силы складываются как векторы. Более точно, справедлив принцип суперпозиции.
Принцип суперпозиции сил. Пусть на тело действуют силы ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$  Если заменить их одной силой ${\large \overrightarrow{F} =  \overrightarrow{F_1} + \overrightarrow{F_2} \ldots + \overrightarrow{F_n}}$, то результат воздействия не изменится.
Сила ${\large \overrightarrow{F}}$ называется равнодействующей сил ${\large \overrightarrow{F_1}, \overrightarrow{F_2},\ \ldots \overrightarrow{F_n}}$ или результирующей силой.
 

 

 

Величина (физика) — это… Что такое Величина (физика)?

Величина (физика)

Физи́ческая величина́ — это количественная характеристика объекта или явления в физике, либо результат измерения.

  • Размер физической величины — количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу. Размер ФВ выражается его значением в виде произведения числового значения (т. е. отвлечённого числа) и единицы измерения.
  • Размерность физической величины — выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные с коэффициентом пропорциональности, равным 1. Понятие размерности физической величины было введено Фурье в 1822 году.

Пример

Если некоторое значение мощности записано в виде

P = 42,3 × 103 Вт = 42,3 кВт,

то

Р — это обозначение величины (мощности)
42,3 × 103 — это числовое значение
к обозначает приставку системы СИ «кило», соответствующую 103
Вт — это обозначение ватта, единицы мощности.

Система величин, виды величин

  • Система физических величин — совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин
  • Основная физическая величина — физическая величина, входящая в систему величин и условно принятая в качестве независимой от других величин этой системы
  • Производная физическая величина — физическая величина, входящая в систему величин и определяемая через основные величины этой системы
  • Размерная физическая величина — физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю
  • Безразмерная физическая величина — физическая величина, в размерность которой основные физические величины входят в степени, равной нулю
  • Аддитивная физическая величина — физическая величина, разные значения которой могут быть суммированы, умножены на числовой коэффициент, разделены друг на друга
  • Неаддитивная физическая величина — физическая величина, для которой суммирование, умножение на числовой коэффициент или деление друг на друга ее значений не имеет физического смысла

Символы

В качестве символов физических величин обычно выступают одиночные буквы латинского или греческого алфавита, как прописные, так и строчные. Часто к символам добавляют верхние или нижние индексы, обозначающие, к чему относится величина, например Eп часто обозначает потенциальную энергию, а cp — теплоёмкость при постоянном давлении.

Экстенсивные и интенсивные величины

Величина называется

От некоторых экстенсивных величин образуются производные величины:

Некоторые физические величины, такие как момент импульса, площадь, сила, длина, время, не относятся ни к экстенсивным, ни к интенсивным.

См. также

Wikimedia Foundation.
2010.

  • Величе Шумуликоски
  • Величит душа моя Господа

Смотреть что такое «Величина (физика)» в других словарях:

  • Величина (значения) — Величина может означать: Величина (математика) одно из основных математических понятий, смысл которого с развитием математики подвергался ряду обобщений. Величина (физика) физическое свойство материального объекта, физического явления, процесса,… …   Википедия

  • ФИЗИКА. — ФИЗИКА. 1. Предмет и структура физики Ф. наука, изучающая простейшие и вместе с тем наиб. общие свойства и законы движения окружающих нас объектов материального мира. Вследствие этой общности не существует явлений природы, не имеющих физ. свойств …   Физическая энциклопедия

  • Физика звёзд — Физика звезд  одна из отраслей астрофизики, изучающая физическую сторону звезд (масса, плотность, …). Содержание 1 Размеры, массы, плотность, светимость звезд 1.1 Масса звёзд …   Википедия

  • ФИЗИКА — наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, св ва и строение материи и законы её движения. Понятия Ф. и её законы лежат в основе всего естествознания. Ф. относится к точным наукам и изучает количеств …   Физическая энциклопедия

  • Физика взрыва —         (a. explosion physics; н. Physik der Explosion; ф. physique de l explosion; и. fisica de explosion, fisica de estallido, fisica de detonacion) наука, изучающая явление взрыва и механизм его действия в среде.          Hарушение механич.… …   Геологическая энциклопедия

  • Физика —         I. Предмет и структура физики          Ф. – наука, изучающая простейшие и вместе с тем наиболее общие закономерности явлений природы, свойства и строение материи и законы её движения. Поэтому понятия Ф. и сё законы лежат в основе всего… …   Большая советская энциклопедия

  • ФИЗИКА — (от древнегреч. physis природа). Древние называли физикой любое исследование окружающего мира и явлений природы. Такое понимание термина физика сохранилось до конца 17 в. Позднее появился ряд специальных дисциплин: химия, исследующая свойства… …   Энциклопедия Кольера

  • Физика — 1) Ф. и ее задачи. 2) Методы Ф. 3) Гипотезы и теории. 4) Роль механики и математики в Ф. 5) Основные гипотезы Ф.; вещество и его строение. 6) Кинетическая теория вещества. 7) Действие на расстоянии. 8) Эфир. 9) Энергия. 10) Механические картины,… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ФИЗИКА ТВЕРДОГО ТЕЛА — раздел физики, изучающий структуру и свойства твердых тел. Научные данные о микроструктуре твердых веществ и о физических и химических свойствах составляющих их атомов необходимы для разработки новых материалов и технических устройств. Физика… …   Энциклопедия Кольера

  • Физика низких температур — Содержание 1 Методы получения 1.1 Испарение жидкостей …   Википедия

Книги

  • Перенапряжения и молниезащита. Учебное пособие, Титков Василий Васильевич, Халилов Фрундин Халил Оглы. Рекомендовано УМО по университетскому политехническому образованию в качестве учебного пособия для студентов вузов, обучающихся по направлению подготовки магистров&171;Техническая… Подробнее  Купить за 2292 грн (только Украина)
  • Перенапряжения и молниезащита. Учебное пособие, Титков Василий Васильевич, Халилов Фрундин Халил Оглы. Рекомендовано УМО по университетскому политехническому образованию в качестве учебного пособия для студентов вузов, обучающихся по направлению подготовки магистров «Техническая физика» . Дано… Подробнее  Купить за 1789 руб
  • Перенапряжения и молниезащита, Титков В., Халилов Ф.. Учебное пособие. Дано понятие об электрических перенапряжениях. Рассмотрены основные характеристики перенапряжений: величина (кратность), форма, повторяемость и широта охвата сети.… Подробнее  Купить за 1114 руб

Другие книги по запросу «Величина (физика)» >>

Формула времени в физике

Содержание:

Определение и формула времени

В понятие времени отражаются такие свойства мира как постоянное развитие, изменение его в сознании человека. Процессы идут в определенной последовательности, при этом имеют определённую продолжительность.

Определение

Время – физическая величина, отражающая свойство материальных процессов иметь определенную продолжительность,
следовать друг за другом в установленной последовательности и развиваться этапно. Обозначают время буквой t.

Особенности времени как физической величины

Время неотделимо от материи и ее движения, так как является ее формой существования. Нет смысла говорить о времени самом по себе, так как в отрыве от материальных процессов течение времени становится бессодержательным. Только исследование процессов, происходящих в материальном мире и их взаимосвязей, делает понятие времени физически содержательным.

В череде процессов, происходящих в природе, особенное место занимают повторяющиеся процессы (повторение дней и ночей, дыхание, перемещение звезд по небосводу и т. д). Исследование и сравнение подобных процессов между собой ведет к идее о длительности материальных процессов, сравнение их длительности приводит к идее об их измерении.

Эталоном измерения является периодический процесс, который называют часами. Существуют системы отсчета, в которых возможно введение единого времени с достаточной для практики точностью. Введение единого времени хорошо подтверждается экспериментом. Теория дает возможность предсказать отклонения единого времени, что можно проверить эмпирически.

Длительность физического процесса, который происходит в некоторой точке, определяют при помощи часов, которые располагают в той же точке. При этом применяется прямое сравнение, сравниваются длительности процессов, которые текут в одной точке. Измерение длительности сводят к фиксации начала и окончания рассматриваемого процесса на шкале процесса, который принимают за эталонный. При этом говорят как о фиксации показаний часов в момент начала и окончания процесса, и это не имеет отношения к фактическому месту нахождения часов (процесса) в точке рассмотрения.

Синхронизация часов и изучения законов распространения физических сигналов развивались параллельно, при этом происходили взаимные уточнения и дополнения. Синхронизацию проводят при помощи сигналов, которые распространяются с конечной скоростью. Этот метод использует определение постоянной скорости: если из точки, в которой часы показывают t0, исходит сигнал, перемещающийся со скоростью v=const, то тогда, когда сигнал придет в точку на расстоянии s, часы в этой точке должны показать время:

$$t=t_{0}+\frac{s}{v}(1)$$

Такая синхронизация согласуется с синхронизацией с использованием световых сигналов. Тогда часы синхронизируются по формуле:

$$t=t_{0}+\frac{s}{c}(2)$$

где c=299792,4562 км/с – скорость света, которая не зависит от скорости источника и приемника по всем направлениям пространства одинакова.

Особенности времени как физической величины

Перемещение ($\bar{s}$), равно:

$$\bar{s}\left(t_{2}, t_{1}\right)=\bar{s}\left(t_{2}\right)-\bar{s}\left(t_{1}\right)(3)$$

где $\bar{s}(t_2)$ – радиус-вектор в момент времени
$t_2, \bar{s}(t_1)$ – радиус-вектор в момент времени
$t_1$ .

Мгновенная скорость ($\bar{v}$):

$$\bar{v}=\frac{d \bar{s}}{d t}(4)$$

Мгновенное ускорение ($\bar{a}$):

$$\bar{a}=\frac{d \bar{v}}{d t}(5)$$

Единицы измерения времени

Основной единицей измерения момента силы в системах СИ и СГС является: [t]=c

Единицы измерения времени основываются на периоде вращения Земли около своей
оси и вокруг Солнца, Луни вокруг Земли. Внесистемные единицы измерения времени: час, минута, сутки и т.д.

Примеры решения задач

Пример

Задание. Движения двух тел заданы уравнениями: и s1(t)=5t и s2(t)=150-10t. Найдите время встречи.

Решение. В точке встречи s1(t)=s2(t). Приравняем правые части функцийx(t), имеем:

$$5 t=150-10 t \rightarrow 15 t=150 \rightarrow t=10$$

Ответ. t=10 c

Слишком сложно?

Формула времени не по зубам? Тебе ответит эксперт через 10 минут!

Пример

Задание. Движение материальной точки, задано уравнением: x=4t-0,05t2 .
В какой момент времени, скорость точки равна нулю? Коэффициенты имеют размерности: 4 м/с, 0,05м/с2 .
Изобразите графики зависимости модуля ускорения от времени.

Решение. В условиях задачи задана функция x(t), скорость можно найти как:

$$v=\frac{d x}{d t}=4-0,1 t(2.1)$$

Приравняем скорость к нулю, найдем время:

$$4-0,1 t=0 \rightarrow t=\frac{4}{0,1}=40(c)$$

Определим, какова зависимость модуля ускорения от времени, для этого возьмем производную по времени от функции v(t) (2.1):

$$a(t)=\frac{d v}{d t}=-0,1(2.2)$$

Тогда график зависимости a(t) имеет вид:

Ответ. t=40 c

Читать дальше: Формула длины волны.

Потенциальная энергия: определение, виды, формулы



Определение потенциальной энергии


Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии. А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.


Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

Виды потенциальной энергии


Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.


Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.


Знакомьтесь: наш мир. Физика всего на свете.


Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

Формулы потенциальной энергии


Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается. К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается. Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.


А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:


А = F*s = mg*s = mg*(h1
— h2) = mgh1
— mgh2
= Eп1
— Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.


Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.


Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков. Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.


Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.


Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):


А = –Fупр(ср.)*s,


Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.


Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:


Fупр(ср. ) = (Fупр(нач.) + Fупр(конеч.))/2


И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:


А = —kх*s/2


Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.


В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.


Что еще почитать?

Методические советы учителям


1) Обязательно обратите внимание учащихся на связь энергии и работы.


2) Не давайте учащимся формулы потенциальной энергии без вывода.


3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.


4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.


5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

#ADVERTISING_INSERT#

Урок 2. равномерное прямолинейное движение материальной точки — Физика — 10 класс

Физика, 10 класс

Урок 2. Равномерное прямолинейное движение материальной точки

Перечень вопросов, рассматриваемых в теме: 1) основная задача механики; 2) относительность механического движения; 3) система отсчёта, материальная точка, перемещение, траектория, скорость; 4) кинематическое уравнение.

Глоссарий по теме:

Раздел механики, в котором изучается движение тел без выяснения причин, вызывающих данное движение, называют кинематикой.

Механическим движением тела называется изменение положения тела в пространстве относительно других тел с течением времени.

Материальной точкой называют тело, размерами и формой которого в условиях рассматриваемой задачи можно пренебречь. Тело, относительно которого рассматривается движение, называется телом отсчета. Совокупность тела отсчета, связанной с ним системы координат и часов называют системой отсчета.

Траектория — линия, по которой движется точка в пространстве.

Длину траектории, по которой двигалось тело в течение какого-то промежутка времени, называют путем, пройденным за этот промежуток времени.

Перемещением тела (материальной точки) называется вектор, соединяющий начальное положение тела с его последующим положением.

Равномерное прямолинейное движение – это движение, при котором за любые равные промежутки времени тело совершает равные перемещения.

Скорость равномерного прямолинейного движения точки – величина, равная отношению перемещения к промежутку времени, в течение которого это перемещение произошло.

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н.. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2016.– С.10-30.

Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.

Открытые электронные ресурсы по теме урока:

http://kvant.mccme.ru/1974/12/byvaet_li_ravnomernoe_dvizheni.htm.

Теоретический материал для самостоятельного изучения

Основная задача классической механики — определить положение тела в пространстве в любой момент времени. По характеру решаемых задач классическую механику делят на кинематику, динамику и статику. В кинематике описывают движение тел без выяснения причин, вызывающих данное движение. Раздел механики, в котором изучаются причины движения, называют динамикой. Статика — раздел механики, в котором изучаются условия равновесия абсолютно твердых тел. Законы сохранения импульса и энергии являются следствиями законов Ньютонов.

Механическим движением тела называется изменение положения тела в пространстве относительно других тел с течением времени. Сформулируем закон относительности движения: характер движения тела зависит от того, относительно каких тел мы рассматриваем движение. Нет абсолютно неподвижных тел.

Рассмотрим самое простое движение – прямолинейное равномерное движение. Описать движение тела – это значит, указать способ определения его положения в пространстве в любой момент времени.

Для описания движения нужно ввести некоторые понятия: материальная точка, траектория, путь, перемещение, координата, момент времени, промежуток времени, скорость. Материальной точкой называют тело, размерами которого в условиях рассматриваемой задачи можно пренебречь. Это первая физическая модель реальных тел. Практически всякое тело можно рассматривать как материальную точку в тех случаях, когда расстояния, проходимые точками тела, очень велики по сравнению с его размерами. Например, материальными точками считают Землю и другие планеты при изучении их движения вокруг Солнца. В данном случае различия в движении разных точек любой планеты, вызванные её суточным вращением, не влияют на величины, описывающие годовое движение. Но при решении задач, связанных с суточным вращением планет (например, при определении времени восхода солнца в разных местах поверхности земного шара), считать планету материальной точкой нельзя, так как результат задачи зависит от размеров этой планеты и скорости движения точек её поверхности.

Тело, движущееся поступательно, можно принимать за материальную точку даже в том случае, если его размеры соизмеримы с проходимыми им расстояниями. Поступательным называется такое движение абсолютно твердого тела, при котором любой отрезок, соединяющий любые две точки тела, остается параллельным самому себе.

Что нужно знать для того, чтобы в любой момент времени указать положение тела? Надо, во-первых, знать, где оно было в начальный момент времени; во-вторых, каков вектор перемещения в любой момент времени. Мы уже знаем, что движение любого тела относительно. Поэтому, изучая движение тела, мы обязательно указываем, относительно какого тела это движение рассматривается. Тело, относительно которого рассматривается движение, называется телом отсчета. Чтобы рассчитать положение материальной точки относительно выбранной точки отсчета, надо связать с ним систему координат и измерить время. Совокупность тела отсчета, связанной с ним системы координат и часов называют системой отсчета.

Рассмотрим два наиболее часто применяемых способа описания движения тел: координатный и векторный. В координатном способе положение тела в пространстве задается координатами, которые с течением времени меняются.

Рассмотрим движение материальной точки М с координатами (х, y, z) в момент времени t.

Математически это принято записывать в виде:

Количество координат зависит от условия задачи: на прямой – одна, в плоскости – две, в пространстве – три.

В векторном способе используется радиус-вектор. Радиус-вектор – это направленный отрезок, проведенный из начала координат в данную точку. Закон (или уравнение) движения в векторной форме — зависимость радиуса-вектора от времени:

Итак, для задания закона движения материальной точки необходимо указать либо вид функциональной зависимости всех трех ее координат от времени, либо зависимость от времени радиус-вектора этой точки.

Три скалярных уравнения или эквивалентное им одно векторное уравнение называются кинематическими уравнениями движения материальной точки.

Двигаясь, материальная точка занимает различные положения в пространстве относительно выбранной системы отсчета. При этом она «описывает» в пространстве какую-то линию. Линия, по которой движется точка в пространстве, называется траекторией. По форме траектории все движения делятся на прямолинейные и криволинейные. Траектория движения указывает все положения, которые занимала точка, но, зная траекторию, ничего нельзя сказать о том, быстро или медленно проходила точка отдельные участки траектории. Длину траектории, по которой двигалось тело в течение какого-то промежутка времени, называют путём, пройденным за этот промежуток времени, его обозначают буквой S. Путь – скалярная величина.

Для описания движения тела нужно указать, как меняется положение точек с течением времени. Если участки криволинейные, то изменение координат тела описывают с помощью такого понятия как перемещение. Перемещением тела (материальной точки) называется вектор, соединяющий начальное положение тела с его последующим положением. Обозначается на чертежах как направленный отрезок, соединяющий начальное и конечное положение тела в пространстве:

Путь и модуль перемещения могут совпадать по значению, только в том случае, если тело движется вдоль одной прямой в одном направлении.

Важной величиной, характеризующей движение тела, является его скорость. Скорость – векторная величина. Она считается заданной, если известен ее модуль и направление. Скорость равномерного прямолинейного движения точки – векторная величина, равная отношению перемещения к промежутку времени, в течение которого это перемещение произошло. Пусть радиус-вектор задает положение точки в начальный момент времени t0, а радиус-вектор- в момент времени t. Тогда промежуток времени:

,

и перемещение:

.

Подставляя выражение для скорости, получим:

Если начальный момент времени t0 принять равным нулю, то скорость равна:

Выразим отсюда радиус-вектор :

Это и есть уравнение равномерного прямолинейного движения точки, записанное в векторной форме. Оно позволяет найти радиус-вектор точки при этом движении в любой момент времени, если известны скорость точки и радиус-вектор, задающий ее положение в начальный момент времени. В проекциях на ось ОХ уравнение можно записать в виде:

х=х0+vхt.

Это уравнение есть уравнение равномерного прямолинейного движения точки, записанное в координатной форме. Оно позволяет найти координату х тела при этом движении в любой момент времени, если известны проекция его скорости на ось ОX и его начальная координата х0.

Путь S, пройденный точкой при движении вдоль оси ОХ, равен модулю изменения ее координаты:

Его можно найти, зная модуль скорости

Строго говоря, равномерного прямолинейного движения не существует. Но приближенно на протяжении не слишком большого промежутка времени движение автомобиля можно считать равномерным и прямолинейным с достаточной для практических целей точностью. Таково одно из упрощений действительности, позволяющее без больших усилий описывать многие движения.

Полученные результаты можно изобразить наглядно с помощью графиков. Для прямолинейного равномерного движения график зависимости проекции скорости от времени очень прост. Это прямая, параллельная оси времени.

Как мы уже знаем, зависимость координаты тела от времени описывается формулой х=х0+𝞾хt. График движения представляет собой прямую линию:

Из второго рисунка видим, что углы наклона прямых разные. Угол наклона второй прямой больше угол наклона первой прямой , т.е за одно и тоже время тело, движущееся со скоростью , проходит большее расстояние, чем при движении со скоростью А значит А что же в случае 3, когда угол α < 0? В случае 3 тело движется в сторону, противоположную оси ОХ. Проекция скорости в случае 3 имеет отрицательное значение и график проходит ниже оси ОХ. Проекция скорости определяет угол наклона прямой х(t) к оси t и численно равна тангенсу угла

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта. В рамках классической механики время есть величина абсолютная, то есть протекающее во всех системах отсчета одинаково.

Примеры и разбор решения заданий

1. Тело движется равномерно и прямолинейно в положительном направлении оси ОХ. Координата тела в начальный момент времени равна xо = -10м. Найдите координату тела через 5с, если модуль её скорости равен ʋ=2 м/с. Какой путь проделало тело за это время?

Дано: xо = — 10 м, t = 5 c, ʋ = 2 м/с. Найти s, х.

Решение: координату точки найдем по формуле:

х = х0 + 𝞾х t

Так как направление вектора скорости совпадает с направлением оси координат, проекция вектора скорости положительна и равна ʋx=ʋ; тогда вычисляем:

х = — 10 + 2· 5 = 0 (м).

Пройденный путь найдем s = ʋ t; s = 2·5 = 10 м.

2. Равномерно друг за другом движутся два поезда. Скорость первого равна 72 км/ч, а скорость второго — 54 км/ч. Определите скорость первого поезда относительно второго.

Дано:

Найти .

Решение: Из условия задачи ясно, что векторы скоростей поездов направлены в одну сторону. По закону сложения скоростей запишем:

,

где — искомая величина.

Находим проекцию скоростей на ось ОХ и записываем, чему равен модуль искомой величины

Ответ: .

суть и принцип для начинающих чайников

Что такое ЭДС (электродвижущая сила) в физике? Электрический ток понятен далеко не каждому. Как космическая даль, только под самым носом. Вообще, он и ученым понятен не до конца. Достаточно вспомнить Николу Тесла с его знаменитыми экспериментами, на века опередившими свое время и даже в наши дни остающимися в ореоле тайны. Сегодня мы не разгадываем больших тайн, но пытаемся разобраться в том, что такое ЭДС в физике.

Определение ЭДС в физике

ЭДС – электродвижущая сила.  Обозначается буквой E или маленькой греческой буквой эпсилон.

Электродвижущая сила — скалярная физическая величина, характеризующая работу сторонних сил (сил неэлектрического происхождения), действующих в электрических цепях переменного и постоянного тока.

ЭДС, как и напряжение, измеряется в вольтах. Однако ЭДС и напряжение – явления разные.

Напряжение (между точками А и Б) – физическая величина, равная работе эффективного электрического поля, совершаемой при переносе единичного пробного заряда из одной точки в другую.

Объясняем суть ЭДС  «на пальцах»

Чтобы разобраться в том, что есть что, можно привести пример-аналогию. Представим, что у нас есть водонапорная башня, полностью заполненная водой. Сравним эту башню с батарейкой.

Схема водонапорной башни

Вода оказывает максимальное давление на дно башни, когда башня заполнена полностью. Соответственно,  чем меньше воды в башне, тем слабее давление и напор вытекающей из крана воды. Если открыть кран, вода будет постепенно вытекать сначала под сильным напором, а потом все медленнее, пока напор не ослабнет совсем. Здесь напряжение – это то давление, которое вода оказывает на дно. За уровень нулевого напряжения примем само дно башни.

Водокачка

То же самое и с батарейкой. Сначала мы включаем наш источник тока (батарейку) в цепь, замыкая ее. Пусть это будут часы или фонарик. Пока уровень напряжения достаточный и батарейка не разрядилась, фонарик светит ярко, затем постепенно гаснет, пока не потухнет совсем.

Но как сделать так, чтобы напор не иссякал? Иными словами, как поддерживать в башне постоянный уровень воды, а на полюсах источника тока – постоянную разность потенциалов. По примеру башни ЭДС представляется как бы насосом, который обеспечивает приток в башню новой воды.

Советская батарейка

Природа ЭДС

Причина возникновения ЭДС в разных источниках тока разная. По природе возникновения различают следующие типы:

  •  Химическая ЭДС.  Возникает в батарейках и аккумуляторах вследствие  химических реакций.
  • Термо ЭДС.  Возникает, когда находящиеся при разных температурах контакты  разнородных проводников соединены.
  • ЭДС индукции. Возникает в генераторе при  помещении вращающегося проводника в магнитное поле. ЭДС будет наводиться в проводнике, когда проводник  пересекает силовые линии постоянного магнитного поля или когда магнитное поле изменяется по величине.
  • Фотоэлектрическая ЭДС. Возникновению этой ЭДС способствует явление  внешнего или внутреннего фотоэффекта.
  • Пьезоэлектрическая ЭДС. ЭДС возникает при растяжении или сдавливании веществ.

Дорогие друзья, сегодня мы рассмотрели тему «ЭДС для чайников». Как видим, ЭДС  –  сила неэлектрического происхождения, которая поддерживает протекание электрического тока в цепи. Если Вы хотите узнать, как решаются задачи с ЭДС, советуем обратиться к нашим авторам – скрупулезно отобранным и проверенным специалистам, которые быстро и доходчиво разъяснят ход решения любой тематической задачи.  И по традиции в конце предлагаем Вам посмотреть обучающее видео. Приятного просмотра и успехов в учебе!

 

Автор:
Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Что такое «сигма»? • Физика элементарных частиц • LHC на «Элементах»

Сигмой (σ) в статистическом анализе обозначают стандартное отклонение. Опуская тонкости, которые будут обсуждены ниже, можно сказать, что стандартное отклонение — это та погрешность, то «± сколько-то», которым обязательно сопровождают измерение величины. Если вы измерили массу предмета и получили результат 100 ± 5 грамм, то величина «110 грамм» отличается от измеренного результата на два стандартных отклонения (то есть на 2 сигмы), величина «50 грамм» отличается на 10 стандартных отклонений (на 10 сигм).

Зачем всё это нужно: сигмы и вероятности

При обсуждении погрешностей мы уже говорили, что фраза «измеренная масса равна 100 ± 5 грамм» вовсе не означает, что истинная масса гарантированно лежит в интервале от 95 до 105 грамм. Она может оказаться и за пределами этого интервала «± 1σ», но, как правило, недалеко. В небольшом проценте случаев может даже случиться, что она выходит за пределы интервала «± 2σ», и уж совсем редко она оказывается за пределами «± 3σ». В общем, тенденция ясна: количество сигм связано с вероятностью того, что истинное значение будет настолько отличаться от измеренного.

Пропустим все математические подробности и покажем результат для самого простого и распространенного случая, который называется «нормальное распределение» (см. рисунок). Вероятность попасть в интервал ± 1σ — примерно 68%, в интервал ± 2σ — примерно 95%, в интервал ± 3σ — примерно 99,8%, и т. д. Итак, можно сформулировать некую договоренность:

Договоренность: выражение какого-то отличия в количестве сигм — это сообщение о том, какова вероятность, что такое или еще более сильное отличие могло произойти за счет случайного стечения обстоятельств при измерении.

Использовать эту договоренность можно разными способами. Если вы просто сообщаете результат измерения (100 ± 5 грамм) и уверены в том, что нормальное распределение применимо, то вы можете сказать, что истинное значение массы с вероятностью 68% лежит в этом интервале, с вероятностью 95% лежит в интервале от 90 до 110 грамм, и т. д.

Вы можете также сравнивать результат вашего измерения с чужим измерением той же самой величины или с теоретическими расчетами. Вы видите, что числа отличаются, и хотите понять, имеете ли вы право утверждать, что между двумя результатами есть статистически значимое расхождение — то есть несогласие, которое нельзя списать на случайную статистическую флуктуацию в данных. Тогда утверждения звучат так:

  • Если отличие составляет меньше 1σ, то вероятность того, что два числа согласуются друг с другом, больше 32%. В таком случае просто говорят, что два результата совпадают в пределах погрешностей.
  • Если отличие составляет меньше 3σ, то вероятность того, что два числа согласуются друг с другом, больше 0,2%. В физике элементарных частиц такой вероятности недостаточно для каких-либо серьезных выводов, и принято говорить: различие между двумя результатами не является статистически значимым.
  • Если отличие от 3σ до 5σ, то это повод подозревать что-то серьезное. Впрочем, даже в этом случае физики говорят осторожно: данные указывают на существование различия между двумя результатами.
  • И только если два результата отличаются на 5σ или больше, физики четко заявляют: два результата отличаются друг от друга.

Эти выражения особенно стандартны, когда речь идет о поиске новой частицы. Вы сравниваете экспериментальные данные с теоретическим предсказанием, сделанным без новой частицы, и, если видите отличие от 3 до 5 сигм, вы говорите: получено указание на существование новой частицы (по-английски, evidence). Если же отличие превышает 5 сигм, вы говорите: мы открыли новую частицу (discovery).

«Уверенность» против «статистической значимости»

Заметьте, что в приведенных выше примерах нас интересовали вопросы, на которые можно ответить «да» или «нет». Проступает ли в полученных данных какая-то новая частица? Согласуется ли распределение по импульсу с теоретическими расчетами? Зависит ли сечение процесса от энергии столкновений? Совпадает ли масса у частицы и ее античастицы? Попытка ответить на эти вопросы с помощью данных называется на научном языке проверкой гипотез. Вопросы, которые требуют развернутого ответа (подсчитать что-то, объяснить что-то и т. п.), гипотезами не называются.

В простейшем приближении результат экспериментальной проверки гипотезы выглядит так: ответ «да» с вероятностью p и ответ «нет» с вероятностью 1 – p. Эти вероятности очень важны для сообщения результата; физики обычно избегают абсолютных утверждений («мы открыли» или «мы опровергли») без указания вероятностей.

Но тут сразу же надо сделать важное уточнение. Если его четко осознать, то станет понятным, почему такие стандартные для научно-популярных новостей фразы, как «Ученые на 99% уверены, что открыли что-то новое», — обманчивы.

Точная формулировка, которую обычно используют ученые, такова:

При проверке гипотезы получен ответ «да» на уровне статистической значимости p.

При этом величина p часто выражается в виде количества сигм. В англоязычной литературе используется словосочетание confidence level, CL (доверительный уровень). В русскоязычной еще иногда говорят «статистическая достоверность», но такое выражение может привести к путанице в понимании.

Отличие «популярной» фразы от истинного утверждения вот в чём. Во всяком измерении есть не только статистические, но и систематические погрешности. Описанные выше правила связи вероятностей и количества сигм работают только для статистических погрешностей — и то если к ним применимо нормальное распределение. Если статистические погрешности всегда можно обсчитать аккуратно, то систематические погрешности — это немножко искусство. Более того, из многолетнего опыта известно, что сильные систематические отклонения уж точно не описываются нормальным распределением, и потому для них эти правила пересчета не справедливы. Так что даже если экспериментаторы всё перепроверили много раз и указали систематическую погрешность, всегда остается риск, что они что-то упустили из виду. Корректно оценить этот риск невозможно, поэтому вы на самом деле не знаете, с какой истинной вероятностью ваш ответ верен.

Конечно, по умолчанию систематическим погрешностям стоит доверять, особенно если они исходят от опытных экспериментальных групп. Но вековой опыт изучения элементарных частиц показывает, что несмотря на все предосторожности регулярно случаются проколы. Бывает, что коллаборация получает результат, сильно противоречащий какой-то гипотезе, перепроверяет анализ много раз и никаких ошибок у себя не находит. Однако этот результат затем не подтверждается другими — порой намного более точными! — экспериментами. Почему первый эксперимент дал такой странный результат, что в нём было не то, где там ошибка или неучтенная погрешность — всё это зачастую так и остается непонятым (впрочем, иногда источник ошибки быстро вскрывается, как это случилось со «сверхсветовыми» нейтрино в эксперименте OPERA).

Физики к таким оборотам событий уже привыкли, поэтому каждый экспериментальный результат, сильно отличающийся от всей сложившейся к тому времени картины, вызывает оправданный скепсис. Физики так консервативны в своем отношении вовсе не потому, что они ретрограды и намертво уверовали в какую-то одну теорию, как это хотят представить опровергатели физики. Они просто научены всем предыдущим опытом в физике частиц и знают, чем это обычно кончается. Поэтому без независимого подтверждения другими экспериментами подобные сенсации они не поддерживают.

ФЭЧ в сравнении с другими науками

Надо сказать, что сформулированные выше жесткие критерии статистической достоверности характерны именно для физики элементарных частиц и некоторых смежных разделов. Во многих других разделах физики, а тем более в других дисциплинах (в особенности, в биомедицинских науках) критерии намного слабее.

Предположим, вы измерили некие данные и хотите узнать, какова вероятность того, что они «вписываются в норму». Вы проводите статистический тест, который дает вам вероятность того, что «нормальная ситуация» без какого-либо реального отклонения только за счет статистической флуктуации даст вот такое или еще более сильное отклонение. Эта вероятность называется p-значение. В биологии пороговое p-значение, ниже которого уже уверенно говорят про реальное отличие, составляет один или даже несколько процентов. В физике элементарных частиц такое отличие вообще не считают значимым, тут нет даже «указания на существование» какого-то отличия! Ответственное заявление об отличии звучит в ФЭЧ только для p-значений меньше одной двухмиллионной (то есть отклонение больше 5σ). Такой жесткий подход к достоверности утверждений выработался в ФЭЧ примерно полвека назад, в эпоху, когда экспериментаторы видели много отклонений со значимостью в районе 3σ и смело заявляли об открытии новых частиц, хотя потом эти «открытия» не подтверждались. Подробный рассказ об истоках этого критерия см. в постах Tommaso Dorigo (часть 1, часть 2).

Определение физика Merriam-Webster

физ · я · цист

| \ ˈFi-zə-sist

, ˈФиз-сист \

2
архаичный

: специалист в области естественных наук

Чем занимается физик, описание работы и как им им стать.

Физик занимается открытием и изучением способов взаимодействия энергии и материи. Физики часто проводят, исследуют и приходят к решениям или теориям в науке. Они также разрабатывают научное оборудование, например электронные микроскопы, ускорители частиц и лазеры, которые можно использовать для проведения экспериментов.

Посмотрите видео, чтобы узнать, чем занимается физик:

Пройдите бесплатный тест карьеры

Для бесплатного теста карьеры не требуется регистрации, электронной почты или какой-либо личной информации.Это бесплатно, и вы получите полные результаты сразу после ответа на вопросы. В будущем на результаты вашего карьерного теста можно будет ссылаться, и вы получите уникальный код доступа, чтобы вы могли поделиться своими результатами с учителями, семьей и друзьями.

Как стать физиком

Чтобы стать физиком, нужно получить докторскую степень (Ph.D.). Однако со степенью бакалавра физики можно квалифицировать как младшего научного сотрудника и техника в аналогичных областях, таких как информатика и инженерия.Те, кто имеет степень магистра, иногда находят работу в федеральном правительстве или становятся учителями средней или старшей школы.

Если вы хотите преподавать в колледже или сосредоточиться на исследованиях, большинство вакансий требует, чтобы соискатели имели степень доктора философии. степень. Затем вы можете начать свою карьеру на временной постдокторской исследовательской должности на 2-3 года и работать с опытными учеными, пока не получите квалификацию для этой должности.

Должностная инструкция физика

Физика интересуют такие свойства природного мира, как атомные образования или сила гравитации, и он разрабатывает научные теории и модели, которые помогают им понять и объяснить это.Они могут изучать эволюцию Вселенной и фундаментальные свойства молекул и атомов. В случае применения областей практики физик может разрабатывать медицинское оборудование и современные материалы.

Есть физики, которые проводят фундаментальные исследования для расширения научных знаний, работая в группах с другими учеными, инженерами и техниками. Физики могут работать над прикладной физикой, в которой основное внимание уделяется волоконной оптике, медицине или ядерной физике. Это считается более практичным и может быть немедленно использовано широкой публикой, в то время как те, кто работает в области теоретической физики, больше сосредоточены на том, что могло бы быть.Они используют абстрактное мышление и математические уравнения для объяснения физических свойств, которые взаимодействуют с миром или вселенной, таким образом оказывая менее прямое влияние на широкую публику.

Физики в основном работают в лабораториях частных предприятий, больницах, исследовательских центрах или университетах. Большинство из них работают полный рабочий день, но иногда могут работать и за счет грантов. Многие физики представляют результаты своих исследований на конференциях и лекциях, а также пишут научные отчеты, которые иногда публикуются в научных журналах.Основное внимание в этой профессиональной области уделяется разработке, реализации и выводам научных экспериментов, которые, в свою очередь, будут способствовать развитию науки и промышленности. Большинство возможностей появятся в области медицины для тех, кто вступает в эту сферу карьеры.

Ресурсы по физике для студентов и преподавателей

Американское физическое общество (ссылка открывается в новой вкладке) предоставляет бесплатные материалы по физике для учащихся средних и старших классов, студентов и аспирантов.Также они рекомендуют следующие книги для начинающих физиков (ссылки открываются в новой вкладке).

Расшифровка видео о карьере физика

Физики и астрономы исследуют измерения Вселенной… от необъятного межгалактического пространства… до мельчайших субатомных частиц. Они изучают способы взаимодействия различных форм материи и энергии. Физики исследуют законы, управляющие пространством и временем. Они могут сосредоточиться на теоретических областях, таких как формирование Вселенной, или выбрать более практическое направление, такое как разработка технологии лазерной хирургии.

Астрономы изучают планеты, звезды и другие небесные тела. Используя телескопы и космическое оборудование, их исследования могут исследовать нашу солнечную систему или нацеливаться на далекие галактики. Большинство физиков и астрономов работают полный рабочий день, часто в группах с инженерами и другими учеными. Они работают в высших учебных заведениях, научно-исследовательских и опытно-конструкторских организациях, а также в федеральном правительстве (особенно в НАСА и Министерстве обороны). Некоторым необходимо подавать заявки на исследовательские гранты для финансирования своей работы.Астрономы и физики большую часть своей работы выполняют в офисах.

Астрономы время от времени посещают обсерватории, поскольку данные наблюдений стали широко доступны через Интернет. Для некоторых физических экспериментов требуются ускорители частиц или ядерные реакторы, но большинство исследований проводится в небольших лабораториях. Для исследовательских и академических должностей требуется степень доктора философии. Степень магистра дает кандидатам право на большинство должностей в сфере производства и здравоохранения. Федеральное правительство нанимает ученых со степенями от бакалавра до доктора наук.Д., в зависимости от должности и агентства.

Ссылки на статьи

Бюро статистики труда, Министерство труда США, Справочник по профессиональным перспективам, Физики и астрономы.

Национальный центр развития O * NET. 19-2012.00. O * NET в сети.

Видео о карьере находится в открытом доступе Министерством труда, занятости и обучения США.

Что такое физика? — Определение, история и отрасли — Видео и стенограмма урока

Physics is old

Физика существует уже давно.Мы считаем, что древние греки были «основателями» ранней физики, поскольку они стремились к лучшему пониманию окружающего их мира природы. Сюда входят некоторые крупные игроки, с которыми вы, вероятно, знакомы, например Сократ, Платон и Аристотель.

Современная физика появилась столетия спустя, с такими людьми, как Коперник, Галилей и Ньютон в 15 и 1600-х годах. За это время произошло много важных научных открытий, поскольку люди открывали все больше и больше о нашей Вселенной.

Фактически, большая часть знаний, которые мы считаем само собой разумеющимися, была открыта во время этой научной революции.Например, Коперник был первым, кто продемонстрировал, что Земля вращается вокруг Солнца, а не наоборот.

Галилей описал многие фундаментальные физические концепции, но он также сделал много астрономических открытий, таких как солнечные пятна и спутники планет, усовершенствовав телескоп.

Физика, конечно же, не была бы такой же без Исаака Ньютона, о котором вы, несомненно, многое узнаете в своих занятиях по физике. Он, вероятно, наиболее известен своими тремя законами движения и законом всемирного тяготения.Ньютону также приписывают изобретение исчисления, хотя вы можете согласиться или не согласиться с тем, что это хорошо!

Физические дисциплины

Физика — обширная и сложная область. Он охватывает все, от звука и света до ядерной науки и геологии. Из-за этого он был разделен на разные разделы, чтобы ученые могли специализироваться на своих знаниях физики.

Механика — один из основных разделов физики, который фокусируется на поведении объектов и силах, действующих на них.Классическая механика и квантовая механика — две подобласти этой отрасли.

Другой — это термодинамика , что звучит именно так: изучение тепла, температуры и энергии. Хотя это всего лишь раздел физики, это обширная и сложная область сама по себе, изучаемая многими разными учеными и инженерами.

Поскольку физика включает изучение света и звука, можно поспорить, что есть разделы, посвященные каждому из них. Acoustics — это исследование звука и волн, а optics — изучение света и его свойств.Оба эти поля помогают описать, как мы взаимодействуем с окружающим миром с помощью двух наших самых важных органов чувств.

Электромагнетизм — это исследование электрических и магнитных сил, которые являются основными компонентами физики. Без этой области исследований у нас не было бы электричества для питания наших домов, поэтому я большой поклонник этого!

Гидродинамика — это уникальная область физики, которая занимается изучением жидкостей и их физических свойств.Жидкости могут быть жидкостями или газами, и это интересная область, если вам нравится изучать текущие предметы.

Вы когда-нибудь слышали о парне по имени Альберт Эйнштейн? Он довольно известен в мире физики, отчасти из-за своей теории относительности, на основе которой развился раздел физики. Эта ветвь, называемая просто относительностью , специально рассматривает системы со свойствами теории относительности.

Конечно, это лишь краткий список, и есть много междисциплинарных разделов физики.Такие области, как биофизика, физическая химия, геофизика и астрофизика, также существуют, и они помогают устранить пробелы между другими естественными науками и основами физики.

Краткое содержание урока

Без физики вам было бы трудно жить, дышать или заниматься чем угодно. Physics — это исследование материи и энергии, но это простое описание не дает ему должного.

Физика охватывает множество тем — жидкости, тепло, свет, звук, силы, электричество и магнетизм, и это лишь некоторые из них.

Физика считается наиболее фундаментальной наукой, потому что она составляет основу всех других наук. Просто попробуйте заняться биологией или химией без физики, и вы обнаружите, что не справляетесь.

Физика имеет долгую и богатую историю. Люди пытались объяснить природные явления с тех пор, как они существовали на Земле, но считается, что современная физика возникла в результате научной революции 16-17 веков. Благодаря упорному труду пионеров науки, таких как Галилей, Ньютон, Коперник и других, теперь у нас есть обширный и научно подтвержденный объем знаний о нашем естественном мире.

Результаты обучения

После просмотра этого видео-урока вы сможете:

  • Определить физику
  • Обобщить ранние истоки физики и основы современной физики
  • Укажите важных физиков и их вклад
  • Описать различные разделы физики

1.1 Физика: определения и приложения

Физика: прошлое и настоящее

Считается, что слово «физика» произошло от греческого слова phusis , означающего «природа».Позже изучение природы было названо натурфилософией . С древних времен до эпохи Возрождения натурфилософия охватывала множество областей, включая астрономию, биологию, химию, математику и медицину. За последние несколько столетий рост научного знания привел к постоянно растущей специализации и разветвлению натурфилософии на отдельные области, при этом физика сохранила самые основные аспекты. Физика в том виде, в котором она развивалась с эпохи Возрождения до конца 19, 90–139– века, называется классической физикой.Революционные открытия, произошедшие в начале 20–90–139 – годов 90–140-го века, превратили физику из классической физики в современную физику.

Классическая физика не является точным описанием Вселенной, но это отличное приближение при следующих условиях: (1) материя должна двигаться со скоростью менее примерно 1 процента от скорости света, (2) объекты, с которыми имеют дело должен быть достаточно большим, чтобы его можно было увидеть невооруженным глазом, и (3) может быть задействована только слабая гравитация, например, создаваемая Землей.Очень маленькие объекты, такие как атомы и молекулы, не могут быть адекватно объяснены классической физикой. Эти три условия применимы практически ко всему повседневному опыту. В результате большинство аспектов классической физики должны иметь смысл на интуитивном уровне.

Многие законы классической физики были изменены в течение 90–139– века, что привело к революционным изменениям в технологиях, обществе и нашем взгляде на Вселенную. В результате многие аспекты современной физики, которые выходят за рамки нашего повседневного опыта, могут показаться странными или невероятными.Так почему же большая часть этого учебника посвящена классической физике? Есть две основные причины. Во-первых, знание классической физики необходимо для понимания современной физики. Вторая причина заключается в том, что классическая физика по-прежнему дает точное описание Вселенной в широком диапазоне повседневных обстоятельств.

Современная физика включает две революционные теории: относительность и квантовую механику. Эти теории имеют дело с очень быстрым и очень маленьким соответственно. Теория относительности была разработана Альбертом Эйнштейном в 1905 году.Изучая, как два наблюдателя, движущиеся относительно друг друга, будут видеть одни и те же явления, Эйнштейн разработал радикально новые идеи о времени и пространстве. Он пришел к поразительному выводу, что измеренная длина объекта, движущегося с высокой скоростью (более одного процента от скорости света), короче, чем длина того же объекта, измеренная в состоянии покоя. Возможно, еще более странным является представление о том, что время для одного и того же процесса различается в зависимости от движения наблюдателя. Время течет медленнее для объекта, движущегося с высокой скоростью.Путешествие к ближайшей звездной системе, Альфе Центавра, может занять у астронавта 4,5 земных года, если корабль движется со скоростью, близкой к скорости света. Однако из-за того, что время замедляется с большей скоростью, астронавт за время полета постареет всего на 0,5 года. Идеи относительности Эйнштейна были приняты после того, как они были подтверждены многочисленными экспериментами.

Гравитация, сила, удерживающая нас на Земле, также может влиять на время и пространство. Например, на поверхности Земли время течет медленнее, чем для объектов, находящихся дальше от поверхности, таких как спутник на орбите.Очень точные часы на спутниках глобального позиционирования должны это исправить. Они медленно опережают часы на поверхности Земли. Это называется замедлением времени и происходит потому, что гравитация, по сути, замедляет время.

Большие объекты, такие как Земля, обладают достаточно сильной гравитацией, чтобы искажать пространство. Чтобы визуализировать эту идею, представьте шар для боулинга, установленный на батуте. Шар для боулинга вдавливает или искривляет поверхность батута. Если вы катите шарик по батуту, он будет следовать за поверхностью батута, скатится в углубление, образованное шаром для боулинга, и ударит по мячу.Точно так же Земля изгибает пространство вокруг себя в форме воронки. Эти изгибы в космосе из-за Земли вызывают притяжение объектов к Земле (т. Е. Гравитацию).

Из-за того, как гравитация влияет на пространство и время, Эйнштейн заявил, что гравитация влияет на пространственно-временной континуум, как показано на рисунке 1.4. Вот почему время у поверхности Земли течет медленнее, чем на орбите. В черных дырах, гравитация которых в сотни раз больше земной, время течет так медленно, что далекому наблюдателю могло показаться, что оно остановилось!

Рисунок 1.4 Теория относительности Эйнштейна описывает пространство и время как переплетенную сетку. Большие объекты, такие как планета, искажают пространство, заставляя объекты падать на планету под действием силы тяжести. Большие объекты также искажают время, заставляя время течь медленнее у поверхности Земли по сравнению с областью за пределами искаженной области пространства-времени.

Таким образом, теория относительности утверждает, что при описании Вселенной важно понимать, что время, пространство и скорость не абсолютны.Вместо этого они могут казаться разными для разных наблюдателей. Способность Эйнштейна обосновывать теорию относительности еще более удивительна, потому что мы не можем видеть эффекты относительности в нашей повседневной жизни.

Квантовая механика — вторая важная теория современной физики. Квантовая механика имеет дело с очень маленькими, а именно с субатомными частицами, из которых состоят атомы. Атомы (рис. 1.5) — это мельчайшие единицы элементов. Однако сами атомы состоят из еще более мелких субатомных частиц, таких как протоны, нейтроны и электроны.Квантовая механика стремится описать свойства и поведение этих и других субатомных частиц. Часто эти частицы ведут себя не так, как ожидает классическая физика. Одна из причин этого в том, что они достаточно малы, чтобы двигаться с огромной скоростью, близкой к скорости света.

Рис. 1.5. Используя сканирующий туннельный микроскоп (СТМ), ученые могут видеть отдельные атомы, составляющие этот лист золота. (Erwinrossen)

На коллайдерах частиц (рис. 1.6), таких как Большой адронный коллайдер на французско-швейцарской границе, физики элементарных частиц могут заставить субатомные частицы перемещаться с очень высокой скоростью в сверхпроводящем туннеле длиной 27 километров (17 миль).Затем они могут изучать свойства частиц на высоких скоростях, а также сталкивать их друг с другом, чтобы увидеть, как они обмениваются энергией. Это привело ко многим интригующим открытиям, таким как частица Хиггса-Бозона, которая придает материи свойство массы, и антивещество, которое вызывает огромное выделение энергии при контакте с веществом.

Рис. 1.6 Коллайдеры частиц, такие как Большой адронный коллайдер в Швейцарии или Фермилаб в США (на фото здесь), имеют длинные туннели, которые позволяют субатомным частицам ускоряться до скорости, близкой к световой.(Andrius.v)

В настоящее время физики пытаются объединить две теории современной физики, теорию относительности и квантовую механику, в единую всеобъемлющую теорию, называемую релятивистской квантовой механикой. Связывание поведения субатомных частиц с гравитацией, временем и пространством позволит нам объяснить, как устроена Вселенная, в гораздо более полной мере.

физик — значение на каннада

Популярность: Сложность:

Формы слова / склонения

физики (существительное множественное число)

Определения и значение слова физик на английском языке

физик

существительное

  1. ученый, получивший образование в области физики

Описание

Фото: Орен Джек Тернер , Принстон, Н.J.
Лицензия: общественное достояние

Физик — ученый, специализирующийся в области физики, которая охватывает взаимодействия материи и энергии на всех длинах и временных масштабах в физической вселенной.
Физики обычно интересуются первопричинами явлений и обычно формулируют свое понимание в математических терминах.
Физики работают в широком диапазоне областей исследований, охватывающих все масштабы длины: от субатомной физики и физики элементарных частиц, через биологическую физику до космологических масштабов длины, охватывающих Вселенную в целом.В эту область обычно входят два типа физиков: физики-экспериментаторы, которые специализируются на наблюдении физических явлений и анализе экспериментов, и физики-теоретики, которые специализируются на математическом моделировании физических систем для рационализации, объяснения и предсказания природных явлений.
Физики могут применять свои знания для решения практических задач или разработки новых технологий.

См. Также «Физик» в Википедии.


Английский на каннада Словарь: физик

Значение и определения физика, перевод физика на каннада с похожими и противоположными словами.Разговорное произношение физика на английском и каннада.

Теги для записи «физик»

Что означает физик на каннаде, физик означает на каннаде, определение физика, объяснение, произношение и примеры физика на каннаде.

См. Также: физик на хинди

Наши приложения тоже хороши!

Словарь. Перевод. Словарь.
Games. Кавычки. Форумы. Списки. И многое другое …

Попробуйте наши словарные списки и викторины.

Основы гостиной

Слова о гостиной, которая является одной из тех комнат, где мы развлекаем наших гостей.

Природные явления

Стихийные бедствия / стихийные бедствия могут причинить вред жизни и имуществу.В этом списке их несколько. Сможете ли вы их всех идентифицировать?

Бобовые

Список распространенных видов бобовых, которые употребляются в повседневной жизни. Можете ли вы их идентифицировать?

Мы предоставляем возможность сохранять слова в списках.

Основные списки слов

Любимые слова
Недавние поиски

Пользовательские списки слов

Вы можете создавать свои собственные списки слов на основе тем.

Создать новый список

Войти / Зарегистрироваться

Для управления списками необходима учетная запись участника.

Вход в соцсети


Вход в соцсети


Факты о физике для детей

Различные примеры физических явлений

Физика — это отрасль науки. Он изучает материю, все силы и их эффекты.Современная физика объединяет идеи о четырех законах симметрии и сохранения энергии, импульса, заряда и четности. Слово физика происходит от греческого слова ἡ φύσις, что означает «природа». Другое мнение: «Физическая наука … относится к порядку природы или, другими словами, к регулярной последовательности событий».

Одна из самых фундаментальных научных дисциплин, главная цель физики — понять, как ведет себя Вселенная.

История

Древнеегипетская астрономия очевидна в таких памятниках, как потолок гробницы Сенемута времен Восемнадцатой династии Египта.

Древняя астрономия

Астрономия — древнейшее естествознание. Шумеры, древние египтяне и цивилизация долины Инда понимали, как движутся объекты в небе еще до 3000 г. до н.э.

Большая часть астрономии пришла из Месопотамии, Вавилонии, Древнего Египта и Древней Греции. Большинство названий созвездий пришло от греческих астрономов.

Натурфилософия

Натурфилософия зародилась в Греции около 650 г. до н.э., когда некоторые философы отвергли суеверия и решили, что что-то должно происходить по какой-то причине.Левкипп и его ученик Демокрит предложили идею атома примерно в этот период.

Физика в средневековом исламском мире

исламских ученых продолжали изучать физику Аристотеля во время Золотого века ислама. Они также разработали раннюю форму научного метода.

Такие ученые, как Ибн Сахл, Аль-Кинди, Ибн аль-Хайтам, Аль-Фариси и Авиценна, много работали над оптикой и зрением. В книге The Book of Optics Ибн аль-Хайтам отвергает предыдущие греческие идеи и предлагает новую теорию зрения.

Классическая физика

Физика стала отдельной областью изучения после научной революции.

Эксперименты Галилея помогли создать классическую физику. И хотя он не изобрел телескоп, он заметил, что звезды и планеты не идеальны. Он также исследовал гравитацию.

Исаак Ньютон использовал идеи Галилея, чтобы составить вместе свои три закона движения.

Современная физика

В ходе исследований ученые обнаружили вещи, которые классическая механика не объясняла.

Классическая механика предсказывала, что скорость света различна, но эксперименты показали, что скорость света осталась прежней. Это было предсказано специальной теорией относительности Альберта Эйнштейна. Эйнштейн предсказал, что скорость электромагнитного излучения через пустое пространство всегда будет одинаковой. Его взгляд на пространство-время заменил древнюю идею о том, что пространство и время — совершенно разные вещи.

Макс Планк придумал квантовую механику, чтобы объяснить, почему металл высвобождает электроны, когда вы светите на него, и почему материя испускает излучение.Квантовая механика применима к очень маленьким вещам, таким как электроны, протоны и нейтроны, из которых состоит атом. Такие люди, как Вернер Гейзенберг, Эрвин Шредингер и Поль Дирак, продолжали работать над квантовой механикой, и в конце концов мы получили Стандартную модель.

Определение

Физика — это изучение энергии и материи в пространстве и времени, а также их взаимосвязи. Физики предполагают существование массы, длины, времени и электрического тока, а затем определяют (придают смысл) все другие физические величины в терминах этих основных единиц.Масса, длина, время и электрический ток никогда не определяются, но всегда определяются стандартные единицы, используемые для их измерения. В Международной системе единиц (сокращенно СИ от французского S ystème I nternational) килограмм является основной единицей массы, метр — основной единицей длины, секунда — основной единицей времени и Ампер — основная единица электрического тока.

В дополнение к этим четырем единицам есть еще три: моль, которая является единицей количества материи, кандела, которая измеряет силу света (мощность освещения), и кельвин, единица измерения температуры.

Физика изучает, как вещи движутся, и силы, которые заставляют их двигаться. Например, скорость и ускорение используются физикой, чтобы показать, как вещи движутся. Кроме того, физики изучают силы гравитации, электричества, магнетизма и силы, скрепляющие вещи.

Физика изучает очень большие вещи и очень маленькие. Например, физики могут изучать звезды, планеты и галактики, но могут также изучать небольшие частицы материи, такие как атомы и электроны, а также звук, свет и другие волны.Кроме того, они могли исследовать энергию, тепло, радиоактивность и даже пространство и время. Физика не только помогает людям понять, как движутся объекты, но и как они меняют форму, как издают шум, насколько горячими или холодными они будут и из чего они сделаны на самом маленьком уровне.

Физико-математические науки

Физика — это количественная наука, потому что она основана на измерении с помощью чисел. Математика используется в физике для создания моделей, которые пытаются угадать, что произойдет в природе.Предположения сравниваются с тем, как работает реальный мир. Физики всегда работают над улучшением своих моделей мира.

Продвинутые знания

Общее описание

Физика — это наука о материи и о том, как материя взаимодействует. Материя — это любой физический материал во Вселенной. Все сделано из материи. Физика используется для описания физической вселенной вокруг нас и для предсказания ее поведения. Физика — это наука, занимающаяся открытием и характеристикой универсальных законов, управляющих материей, движением и силами, пространством и временем, а также другими особенностями природного мира.

Широта и цели физики

Размах физики широк, от мельчайших компонентов материи и сил, удерживающих ее вместе, до галактик и даже более крупных объектов. Есть только четыре силы, которые действуют во всем этом диапазоне. Однако даже эти четыре силы (гравитация, электромагнетизм, слабая сила, связанная с радиоактивностью, и сильная сила, удерживающая протоны и нейтроны в атоме вместе) считаются разными частями одной силы.

Physics в основном ориентирована на создание все более простых, общих и точных правил, определяющих характер и поведение материи и самого пространства. Одна из основных целей физики — создание теорий, применимых ко всему во Вселенной. Другими словами, физику можно рассматривать как изучение тех универсальных законов, которые определяют на самом базовом уровне поведение физической вселенной.

Физика использует научный метод

Физика использует научный метод.То есть собираются данные экспериментов и наблюдений. Создаются теории, которые пытаются объяснить эти данные. Физика использует эти теории не только для описания физических явлений, но и для моделирования физических систем и предсказания поведения этих физических систем. Затем физики сравнивают эти предсказания с наблюдениями или экспериментальными данными, чтобы показать, верна теория или нет.

Теории, которые хорошо подкреплены данными, особенно простые и общие, иногда называют научными законами.Конечно, все теории, в том числе известные как законы, могут быть заменены более точными и более общими законами, когда обнаруживается несогласие с данными.

Физика количественная

Физика более количественна, чем большинство других наук. То есть многие наблюдения в физике могут быть представлены в виде численных измерений. Большинство теорий в физике используют математику для выражения своих принципов. Большинство предсказаний этих теорий числовые. Это связано с тем, что области, которыми занималась физика, лучше работают с количественными подходами, чем другие области.Науки также имеют тенденцию становиться более количественными со временем, поскольку они становятся более развитыми, а физика — одна из старейших наук.

Области физики

Классическая физика обычно включает в себя области механики, оптики, электричества, магнетизма, акустики и термодинамики. Термин «современная физика» обычно используется для обозначения областей, основанных на квантовой теории, включая квантовую механику, атомную физику, ядерную физику, физику элементарных частиц и физику конденсированного состояния, а также более современные области общей и специальной теории относительности.Хотя это различие можно найти в более ранних работах, оно не представляет особого интереса, поскольку теперь понимается, что квантовые эффекты важны даже в областях, которые раньше назывались классическими.

Подходы в физике

Есть много подходов к изучению физики и много разных видов деятельности в физике. В физике есть два основных типа занятий; сбор данных и разработка теорий.

Данные в некоторых разделах физики поддаются эксперименту.Например, физика конденсированного состояния и ядерная физика выигрывают от возможности проводить эксперименты. Экспериментальная физика фокусируется в основном на эмпирическом подходе. Иногда эксперименты проводятся для изучения природы, а в других случаях эксперименты проводятся для получения данных для сравнения с предсказаниями теорий.

Некоторые другие области физики, такие как астрофизика и геофизика, в основном являются науками о наблюдениях, потому что большая часть их данных должна собираться пассивно, а не путем экспериментов.Однако программы наблюдений в этих областях используют многие из тех же инструментов и технологий, которые используются в экспериментальных подобластях физики.

Теоретическая физика часто использует количественные подходы для разработки теорий, которые пытаются объяснить данные. Таким образом, теоретическая физика часто использует инструменты математики. Теоретическая физика часто может включать создание количественных предсказаний физических теорий и количественное сравнение этих предсказаний с данными. Теоретическая физика иногда создает модели физических систем до того, как становятся доступными данные для проверки и поддержки этих моделей.Есть много важных применений физики, например, для измерения домов или каких-либо других мер. Кроме того, его можно использовать для измерения падающих объектов, например самолетов.

Эти два основных вида деятельности в физике, сбор данных и создание теории и тестирование, используют множество различных навыков. Это привело к большой специализации в физике, а также к внедрению, развитию и использованию инструментов из других областей. Например, физики-теоретики используют в своей работе математику, численный анализ, статистику, вероятность и компьютерное программное обеспечение.Физики-экспериментаторы разрабатывают инструменты и методы для сбора данных с использованием инженерных и компьютерных технологий и многих других областей техники. Часто инструменты из этих других областей не совсем подходят для нужд физики, и их необходимо изменить или сделать более продвинутые версии.

Физики

Выдающиеся физики-теоретики

Известных физиков-теоретиков в том числе

Связанные страницы

Картинки для детей

  • Ибн аль-Хайсам (ок.965 — ок. 1040), пионер оптики

  • Классическая физика реализована в акустической инженерной модели отражения звука от акустического диффузора

  • Математика и онтология используются в физике. Физика используется в химии и космологии.

  • Разница между математикой и физикой очевидна, но не всегда очевидна, особенно в математической физике.

  • Применение физических законов при подъеме жидкостей

  • Физика включает моделирование природного мира с помощью теории, обычно количественной. Здесь путь частицы моделируется с помощью математики исчисления, чтобы объяснить ее поведение: область области физики, известной как механика.

Чем занимается физик?

Чем занимается физик?

Физики обычно специализируются на одном из множества подполей, а некоторые пойдут дальше и специализируются на подразделении одного из этих подполей:

Атомная, молекулярная и оптическая физика — состоит из исследований атомов, простых молекул, электронов и света и их взаимодействий

Астрофизика — изучение физических процессов в звездах и других галактических источниках, галактической структуры и эволюции, ранней истории и эволюции Вселенной, Солнца и солнечной активности

Биологическая физика — изучение биологических явлений с помощью физических методов

Химическая физика — обеспечивает понимание широкого диапазона систем, от атомных столкновений до сложных материалов, а также поведения отдельных атомов и частиц, составляющих систему

Computational Physics — исследует использование компьютеров в физических исследованиях и образовании, а также роль физики в развитии компьютерных технологий

Физика конденсированного состояния — основное внимание уделяется таким темам, как сверхпроводимость, полупроводники, магнетизм, сложные жидкости и тонкие пленки

Fluid Dynamics — исследование физики жидкостей с особым акцентом на динамические теории жидкого, пластического и газообразного состояний вещества при всех условиях температуры и давления

Laser Science — или лазерная физика, это раздел оптики, который описывает теорию и практику лазеров

Физика материалов — применяет физику к сложным и многофазным средам, включая материалы, представляющие технологический интерес, и использует физику для описания материалов различными способами, такими как сила, тепло, свет и механика.

Ядерная физика — исследование фундаментальных проблем, связанных с природой материи

Частицы и поля — изучение частиц и полей, их взаимосвязей, взаимодействий и структуры, а также проектирование и разработка ускорителей и измерительных приборов для физики высоких энергий

Физика лучей — исследование природы и поведения лучей и инструменты для их получения и использования

Физика плазмы — плазма, твердое тело, газ и жидкость — четыре состояния материи.Физика плазмы — это изучение заряженных частиц плазмы и жидкостей, взаимодействующих с электрическими и магнитными полями.

Polymer Physics — фокусируется на физике природных и синтетических высокомолекулярных веществ

Каково рабочее место физика?

Физиков можно найти работающими в средних школах, колледжах, университетах, исследовательских лабораториях, больницах, электростанциях, музеях, вооруженных силах, НАСА, юридических фирмах, нефтяных месторождениях, правительстве, различных отраслях промышленности и предприятиях.

Добавить комментарий

Ваш адрес email не будет опубликован.