Что такое периодический закон менделеева: Период — периодический закон, периодическая система элементов

Содержание

Периодический закон Менделеева, суть и история открытия

Периодический закон Дмитрия Ивановича Менделеева — один из фундаментальных законов природы, который увязывает зависимость свойств химических элементов и простых веществ с их атомными массами. В настоящее время закон уточнен, и зависимость свойств объясняется зарядом ядра атома.

Закон был открыт русским ученым в 1869-м году. Менделеев представил его научному сообществу в докладе съезду Русского химического общества (доклад был сделан другим ученым, так как Менделеев был вынужден срочно выехать по заданию Вольного экономического общества Петербурга). В этом же году вышел учебник «Основы химии», написанный Дмитрием Ивановичем для студентов. В нем ученый описал свойства популярных соединений, а также постарался дать логическую систематизацию химических элементов. Также в нем впервые была представлена таблица с периодически расположенными элементами, как графическая интерпретация периодического закона. Всее последующие годы Менделеев совершенствовал свою таблицу, например, добавил столбец инертных газов, которые были открыты спустя 25 лет.

Научное сообщество далеко не сразу приняло идеи великого русского химика, даже в России. Но после того, как были открыты три новых элемента (галлий в 1875-м, скандий в 1879-м и германий в 1886-м годах), предсказанные и описанные Менделеевым в своем знаменитом докладе, периодический закон был признан.

Периодический закон Менделеева:

  • Является всеобщим законом природы.
  • В таблицу, графически представляющую закон, включаются не только все известные элементы, но и те, которые открывают до сих пор.
  • Все новые открытия не повлияли на актуальность закона и таблицы. Таблица совершенствуется и изменяется, но ее суть осталась неизменной.
  • Позволил уточнить атомные веса и другие характеристики некоторых элементов, предсказать существование новых элементов.
  • Химики получили надежную подсказку, как и где искать новые элементы. Кроме этого, закон позволяет с высокой долей вероятности заранее определять свойства еще неоткрытых элементов.
  • Сыграл огромную роль в развитии неорганической химии в 19-м веке.

История открытия

Есть красивая легенда о том, что свою таблицу Менделеев увидел во сне, а утром проснулся и записал ее. На самом деле, это просто миф. Сам ученый много раз говорил, что созданию и совершенствованию периодической таблицы элементов он посвятил 20 лет своей жизни.

Все началось с того, что Дмитрий Иванович решил написать для студентов учебник по неорганической химии, в котором собирался систематизировать все известные на этот момент знания. И естественно, он опирался на достижения и открытия своих предшественников. Впервые внимание на взаимосвязь атомных весов и свойств элементов обратил немецкий химик Дёберейнер, который попытался разбить известные ему элементы на триады с похожими свойствами и весами, подчиняющимися определенному правилу. В каждой тройке средний элемент имел вес, близкий к среднему арифметическому двух крайних элементов. Ученый смог таким образом образовать пять групп, например, Li–Na–K; Cl–Br–I. Но это были далеко не все известные элементы. К тому же, тройка элементов явно не исчерпывала список элементов с похожими свойствами. Попытки найти общую закономерность позже предпринимали немцы Гмелин и фон Петтенкофер, французы Ж. Дюма и де Шанкуртуа, англичане Ньюлендс и Одлинг. Дальше всех продвинулся немецкий ученый Мейер, который в 1864-м году составил таблицу, очень похожую на таблицу Менделеева, но она содержала лишь 28 элементов, в то время как было известно уже 63.

В отличие от своих предшественников Менделееву удалось составить таблицу, в которую вошли все известные элементы, расположенные по определенной системе. При этом, некоторые клетки он оставил незаполненными, примерно вычислив атомные веса некоторых элементов и описав их свойства. Кроме этого, русскому ученому хватило смелости и дальновидности заявить, что открытый им закон является всеобщим законом природы и назвал его «периодическим законом». Сказав «а», он пошел дальше и исправил атомные веса элементов, которые не вписывались в таблицу. При более тщательной проверке, оказалось, что его исправления верны, а открытие описанных им гипотетических элементов стало окончательным подтверждением истинности нового закона: практика доказала справедливость теории.

Таблица Менделеева – универсальный и безграничный язык общения ученых

АМ: Это инициатива, которая поддержана ЮНЕСКО и ООН. Изначально год Периодического закона, год 150-летия открытия Периодического закона, это инициатива, с которой выступила Российская академия наук при поддержке Министерства иностранных дел Российской Федерации. 

Таблица Менделеева — универсальный язык общения ученых, прежде всего химиков. Хотя, если мы посмотрим шире, Менделеев был не только химиком. И открытие Периодического закона – это открытие, которое связывает очень многих ученых. Это и химики, и биологи, и медики, геологи, геохимики…

Для чего нужен этот год? Для того, чтобы еще раз напомнить всему миру, поскольку это международное событие, что мир наш развивается за счет открытий ученых, и что наука — это двигатель, драйвер прогресса человечества.

Во Франции, в ЮНЕСКО, 29 января будет торжественное открытие празднования Международного года Периодического закона. В России такое открытие пройдет 6 февраля в здании Российской академии наук.

Фото РХТУ

Александр Мажуга, ректор Российского химико-технологического университета им. Д.И. Менделеева

АУ: Химия – наука, которая постоянно развивается. Какие ее направления сегодня наиболее востребованы в мире? В чем будущее химических технологий?

АМ: Сегодня, как и многие другие науки, химия выходит на междисциплинарный уровень. И все больше востребованных направлений находятся на стыке наук. Это химия, биология и медицина, биомедицина, биохимия, биоорганическая химия. Надо понимать, что химия — это вообще все, что есть вокруг нас: то, чем мы дышим, что мы едим, к чему мы прикасаемся. Но наиболее востребованные направления сейчас, это — биомедицина, использование новых материалов в медицине; все, что связано с созданием новых конструкционных материалов – это, естественно, тоже химия. А конструкционные материалы – это различные аппараты новые, это различные строительные материалы, материалы для сельского хозяйства. Конечно же химия – это основа наших лекарств. Фармацевтическая химия – синтез новых терапевтических, диагностических агентов. Если химия – все, что вокруг нас, то химическая технология – это то, что позволяет получать те или иные продукты.

АУ: Что интересует молодежь, на какие факультеты и специальности самый высокий конкурс? Куда хотят пойти учиться абитуриенты?

АМ: Самый высокий конкурс в нашем университете на следующих направлениях: химико-фармацевтический факультет – это все, что связано с разработкой фармацевтических субстанций; биотехнологический факультет – наш университет специализируется в области биотехнологий применительно к пищевым добавкам, различным кормам, а также к селекции микроорганизмов, которые используются применительно к утилизации тех или иных техногенных отходов. И факультет нефтегазохимии и полимеров – все, что связано с созданием новых конструкционных материалов, прежде всего полимерного строения.

АУ: Вы упомянули сейчас переработку отходов при помощи различных новых соединений. Это направление, которое очень востребовано, потому что загрязнение окружающей среды – тема, которая постоянно на повестке дня и ООН, и всего мира. Такая научная работа идет обычно закрыто — в институтах и университетах — или же она предполагает международное сотрудничество и есть  какие-то крупные проекты?

Такие работы ведутся в рамках международного сотрудничества и, конечно же, вместе с нашими партнерами из химической и биотехнологической промышленности. И тут нужен не только биотехнологический подход, чтобы решить техногенные проблемы, но и направление, связанное с созданием новых «зеленых» химических производств, производств, которые экологичны, требуют небольшого количества ресурсов – например, замкнутые циклы. Такие химические фабрики будущего – тоже важное направление работы нашего университета.

АУ: Зачастую образование бывает очень академичным, научным… Есть ли практика связи образования с навыками и работой в отрасли, с работой на практический результат?

Основной залог успеха образования в нашей области, в области химической технологии, это непосредственный контакт с предприятиями, с конечными потребителями наших технологий, с компаниями, куда идут работать наши выпускники. Мы стараемся максимально изменять образовательные «траектории» наших студентов так, чтобы они были синхронизированы с предприятиями отрасли.

Фото РХТУ

Новый учебный комлекс РХТУ

АУ: Участвуют ли студенты в каких-то научных разработках, которые потом  претворяются в жизнь?

АМ: Да, конечно. Студенты во время обучения в нашем университете занимаются наукой, как и во многих других университетах в нашей стране. Мы рассматриваем сейчас возможность так называемого «проектного» обучения, когда начиная с первого курса студенты – мы можем также готовить проектные группы – выполняют тот или иной проект, связанный с отраслью химической технологии, и на выходе они получают технологию, которую можно реализовать. И подход, когда дипломный проект — это некий стартап, также реализуется в нашем университете.

АУ: Возвращаясь к теме таблицы Менделеева… Говорят,  оформляя свой Периодический закон в таблицу, Менделеев предусмотрительно оставил свободные места – «на будущее». Как происходит открытие новых элементов, как часто приходится обновлять таблицу?

АМ: Периодическая таблица – это не просто графическое представление элементов. До Менделеева были более ранние варианты, когда элементы располагались по мере увеличения их атомного номера или веса (те элементы, что были открыты на момент той или иной таблицы). Но только Менделеев увидел в расположении элементов периодичность. Так появился Периодический закон: свойства элементов изменяются в рядах, и они повторяются. То есть самое его главное открытие – не просто расположение элементов в ячейках в таблице, а закон периодичности.

Сейчас элементы, которые были совсем недавно открыты – три новых элемента, –  являются сверхтяжелыми, радиоактивными и короткоживущими. На момент открытия таблицы такого количества элементов как сейчас известно не было. Что самое главное, Менделеев своим законом предсказывал существование элементов. В его первоначальной таблице были пустые ячейки – он показывал, что в этой ячейке должен появиться новый элемент. Само доказательство закона происходило позднее, когда эти новые элементы открывались и попадали уже в ячеечку Периодической таблицы. Мало того, Менделеев мог предсказывать и массу этого элемента, причем совпадения были порой с точностью до десятой в атомной массе!

Что касается новых элементов и пустых ячеек, то, как говорят, таблица Менделеева не окончена и, на самом деле, бесконечна. Сейчас мы находимся на таком «минимуме стабильности» химических элементов, но благодаря предсказаниям физиков мы должны будем выйти на элементы, которые будут опять же стабильны. То есть, чем тяжелее элемент, чем больше у него масса, тем менее стабильным он становится. Часто такие элементы — короткоживущие и радиоактивные. Но через какой-то период мы должны выйти опять на более стабильные элементы.

АУ: Есть ли страны-лидеры в открытии новых элементов, которые открыли их больше всего?

АМ: Нельзя сказать, что какая-то одна страна имеет лидерство. И в России было открыто шесть элементов, и в США было открыто достаточно большое количество. Достаточно сложно сказать, в какой стране больше или меньше было открыто. Чаще всего сейчас открытие новых элементов – как последних трех – происходит в коллаборации. Так, последние три были открыты при сотрудничестве России и США вместе: кто-то делает мишень, кто-то ее облучает, кто-то выделяет. И, соответственно, и один из элементов был назван в честь известного российского ученого, академика Юрия Оганесяна. Кстати, это единственный пример в Периодической таблице, когда элемент назван в честь живущего сейчас ученого.

АУ: То есть выдающийся ученый получил таким образом  «памятник при жизни»?

АМ: Да, при жизни. Есть еще ряд элементов, которые названы «московий» — в честь Москвы, «дубний» — в честь г. Дубны, где находится Объединенный институт ядерных исследований, и конечно же «рутений», названный в честь России. Поэтому, ждем новых элементов – в коллаборации с другими странами, другими научными и учебными организациями.

 

Периодический закон — это.

.. Что такое Периодический закон?

Памятник на территории Словацкого технологического университета (Братислава), посвященный Д. И. Менделееву

Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементов и величин их атомных масс.

Определения

Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».[1]

С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).

В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».

Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.

Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».

История

Поиски основы естественной классификации и систематизации химических элементов начались задолго до открытия Периодического закона. Трудности, с которыми сталкивались естествоиспытатели, которые первыми работали в этой области, были вызваны недостаточностью экспериментальных данных: в начале XIX века число известных химических элементов было мало, а принятые значения атомных масс многих элементов неверны.

Триады Дёберейнера и первые системы элементов

В 1829 году немецкий химик Иоганн Вольфганг Дёберейнер предпринял первую значимую попытку систематизации элементов[2]. Он заметил, что некоторые сходные по своим свойствам элементы можно объединить по три в группы, которые он назвал триадами:

Сущность предложенного закона триад Дёберейнера состояла в том, что атомная масса среднего элемента триады была близка к полусумме (среднему арифметическому) атомных масс двух крайних элементов триады. Несмотря на то, что триады Деберейнера в какой-то мере являются прообразами менделеевских групп, эти представления в целом ещё слишком несовершенны. Отсутствие магния в едином семействе кальция, стронция и бария или кислорода в семействе серы, селена и теллура является результатом искусственного ограничения совокупностей сходных элементов лишь тройственными союзами. Очень показательна в этом смысле неудача Деберейнера выделить триаду из четырех близких по своим свойствам элементов: P, As, Sb, Bi. Дёберейнер отчётливо видел глубокие аналогии в химических свойствах фосфора и мышьяка, сурьмы и висмута, но, заранее ограничив себя поисками триад, он не смог найти верного решения. Спустя полвека Лотар Майер скажет, что если бы Дёберейнер хоть ненадолго отвлекся от своих триад, то он сразу же увидел бы сходство всех этих четырех элементов одновременно.

Хотя разбить все известные элементы на триады Дёберейнеру, естественно, не удалось, закон триад явно указывал на наличие взаимосвязи между атомной массой и свойствами элементов и их соединений. Все дальнейшие попытки систематизации основывались на размещении элементов в соответствии с их атомными массами.

Идеи Дёберейнера были развиты другим немецким химиком Леопольдом Гмелиным, который показал, что взаимосвязь между свойствами элементов и их атомными массами значительно сложнее, нежели триады. В 1843 году Гмелин опубликовал таблицу, в которой химически сходные элементы были расставлены по группам в порядке возрастания соединительных (эквивалентных) весов. Элементы составляли триады, а также тетрады и пентады (группы из четырёх и пяти элементов), причём электроотрицательность элементов в таблице плавно изменялась сверху вниз.

В 1850-х годах Макс фон Петтенкофер и Жан Дюма предложили «дифференциальные системы», направленные на выявление общих закономерностей в изменении атомного веса элементов, которые детально разработали немецкие химики Адольф Штреккер и Густав Чермак.

В начале 60-х годов XIX века появилось сразу несколько работ, которые непосредственно предшествовали Периодическому закону.

Спираль де Шанкуртуа

Александр де Шанкуртуа располагал все известные в то время химические элементы в единой последовательности возрастания их атомных масс и полученный ряд наносил на поверхность цилиндра по линии, исходящей из его основания под углом 45° к плоскости основания (т. н. земная спираль)[3]. При развертывании поверхности цилиндра оказывалось, что на вертикальных линиях, параллельных оси цилиндра, находились химические элементы со сходными свойствами. Так, на одну вертикаль попадали литий, натрий, калий; бериллий, магний, кальций; кислород, сера, селен, теллур и т. д. Недостатком спирали де Шанкуртуа было то обстоятельство, что на одной линии с близкими по своей химической природе элементами оказывались при этом и элементы совсем иного химического поведения. В группу щелочных металлов попадал марганец, в группу кислорода и серы — ничего общего с ними не имеющий титан.

Октавы Ньюлендса

Таблица Ньюлендса (1866)

Вскоре после спирали де Шанкуртуа английский учёный Джон Ньюлендс сделал попытку сопоставить химические свойства элементов с их атомными массами[4]. Расположив элементы в порядке возрастания их атомных масс, Ньюлендс заметил, что сходство в свойствах проявляется между каждым восьмым элементом. Найденную закономерность Ньюлендс назвал законом октав по аналогии с семью интервалами музыкальной гаммы. В своей таблице он располагал химические элементы в вертикальные группы по семь элементов в каждой и при этом обнаружил, что (при небольшом изменении порядка некоторых элементов) сходные по химическим свойствам элементы оказываются на одной горизонтальной линии.

Закон октав Ньюлендса

Джон Ньюлендс, безусловно, первым дал ряд элементов, расположенных в порядке возрастания атомных масс, присвоил химическим элементам соответствующий порядковый номер и заметил систематическое соотношение между этим порядком и физико-химическими свойствами элементов. Он писал, что в такой последовательности повторяются свойства элементов, эквивалентные веса (массы) которых отличаются на 7 единиц, или на значение, кратное 7, т. е. как будто бы восьмой по порядку элемент повторяет свойства первого, как в музыке восьмая нота повторяет первую. Ньюлендс пытался придать этой зависимости, действительно имеющей место для лёгких элементов, всеобщий характер. В его таблице в горизонтальных рядах располагались сходные элементы, однако в том же ряду часто оказывались и элементы совершенно отличные по свойствам. Кроме того, в некоторых ячейках Ньюлендс вынужден был разместить по два элемента; наконец, таблица не содержала свободных мест; в итоге закон октав был принят чрезвычайно скептически.

Таблицы Одлинга и Мейера

В 1864 году Уильям Одлинг опубликовал таблицу, в которой элементы были размещены согласно их атомным весам и сходству химических свойств, не сопроводив её, однако, какими-либо комментариями.

В том же 1864 году появилась первая таблица немецкого химика Лотара Мейера; в неё были включены 28 элементов, размещённые в шесть столбцов согласно их валентностям[5]. Мейер намеренно ограничил число элементов в таблице, чтобы подчеркнуть закономерное (аналогичное триадам Дёберейнера) изменение атомной массы в рядах сходных элементов.

Валентность IV Валентность III Валентность II Валентность I Валентность I Валентность II Разность масс
I ряд Li Be ~16
II ряд C N O F Na Mg ~16
III ряд Si P S Cl K Ca ~45
IV ряд As Se Br Rb Sr ~45
V ряд Sn Sb Te I Cs Ba ~90
VI ряд Pb Bi Tl ~90

В 1870 году вышла работа Мейера, содержащая новую таблицу под названием «Природа элементов как функция их атомного веса», состоявшая из девяти вертикальных столбцов. Сходные элементы располагались в горизонтальных рядах таблицы; некоторые ячейки Мейер оставил незаполненными. Таблица сопровождалась графиком зависимости атомного объёма элемента от атомного веса, имеющий характерный пилообразный вид, прекрасно иллюстрирующий термин «периодичность», уже предложенный к тому времени Менделеевым.

Открытие Периодического закона

Портрет Д. И. Менделеева (1861)

В марте 1869 года русский химик Дмитрий Иванович Менделеев представил Русскому химическому обществу сообщение об открытии им Периодического закона химических элементов[6]. В том же году вышло первое издание менделеевского учебника «Основы химии», в котором была приведена его периодическая таблица. В ноябре 1870 года он доложил РХО статью «Естественная система элементов и применение её к указанию свойств неоткрытых элементов», в которой Менделеев впервые употребил термин «периодический закон» и указал на существование нескольких не открытых ещё элементов.

В 1871 году в итоговой статье «Периодическая законность химических элементов» Менделеев дал следующую формулировку Периодического закона: «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса»[7]. Тогда же Менделеев придал своей периодической таблице вид, ставший классическим (т. н. короткопериодный вариант).

В отличие от своих предшественников, Менделеев не только составил таблицу и указал на наличие несомненных закономерностей в численных величинах атомных масс, но и решился назвать эти закономерности общим законом природы. На основании предположения, что атомная масса предопределяет свойства элемента, он взял на себя смелость изменить принятые атомные веса некоторых элементов и подробно описать свойства не открытых ещё элементов. Для предсказания свойств простых веществ и соединений Менделеев исходил из того, что свойства каждого элемента являются промежуточными между соответствующими свойствами двух соседних элементов в группе периодической таблицы (то есть сверху и снизу) и одновременно двух соседних элементов в периоде (слева и справа) (т.  н. «правило звезды»).

Д. И. Менделеев на протяжении многих лет боролся за признание Периодического закона; его идеи получили признание только после того, как были открыты предсказанные Менделеевым элементы: галлий (Поль Лекок де Буабодран, 1875), скандий (Ларс Нильсон, 1879) и германий (Клеменс Винклер, 1886) — соответственно экаалюминий, экабор и экасилиций. С середины 1880-х годов Периодический закон был окончательно признан в качестве одной из теоретических основ химии.

Развитие Периодического закона в XX веке

В начале XX века Периодическая система элементов неоднократно видоизменялась для приведения в соответствие с новейшими научными данными. Д. И. Менделеев и У. Рамзай пришли к выводу о необходимости образования в таблице нулевой группы элементов, в которую вошли инертные газы[8]. Инертные газы явились, таким образом, элементами, переходными между галогенами и щелочными металлами. Б. Браунер нашёл решение проблемы размещения в таблице редкоземельных элементов, предложив в 1902 году помещать все редкоземельные элементы в одну ячейку; в предложенном им длинном варианте таблицы шестой период таблицы был длиннее, чем четвёртый и пятый, которые, в свою очередь, длиннее, чем второй и третий периоды.

Дальнейшее развитие Периодического закона было связано с успехами физики: установление делимости атома на основании открытия электрона и радиоактивности в конце концов позволило понять причины периодичности свойств химических элементов и создать теорию Периодической системы.

Для химии серьёзную проблему составляла необходимость размещения в Периодической таблице многочисленных продуктов радиоактивного распада, имеющих близкие атомные массы, но значительно отличающихся периодами полураспада. Т. Сведберг в 1909 году доказал, что свинец и неон, полученные в результате радиоактивного распада и отличающиеся по величине атомных масс от «обычных» элементов, химически им полностью тождественны. В 1911 году Ф. Содди предложил размещать химически неразличимые элементы, имеющие различные атомные массы (изотопы) в одной ячейке таблицы.

В 1913 году английский физик Г. Мозли установил, что корень из характеристической частоты рентгеновского излучения элемента (ν) линейно зависит от целочисленной величины — атомного номера (Z), который совпадает с номером элемента в Периодической таблице:

ν=R(Z-σ)²(1/m²-1/n²), где R — постоянная Ридберга, σ — постоянная экранирования.

Закон Мозли дал возможность экспериментально определить положение элементов в Периодической таблице.

Атомный номер, совпадающий, как предположил в 1911 г. голландский физик А. Ван ден Брук, с величиной положительного заряда ядра атома, стал основой классификации химических элементов. В 1920 году английский физик Дж. Чедвик экспериментально подтвердил гипотезу Ван ден Брука; тем самым был раскрыт физический смысл порядкового номера элемента в Периодической системе. Периодический закон получил современную формулировку: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от зарядов ядер атомов элементов».

В 1921—1923 годах, основываясь на модели атома Бора-Зоммерфельда, представляющей собой компромисс между классическими и квантовыми представлениями, Н. Бор заложил основы формальной теории Периодической системы. Причина периодичности свойств элементов, как показал Бор, заключалась в периодическом повторении строения внешнего электронного уровня атома.

Были разработаны полудлинный (см. выше) и длинный варианты Периодической таблицы, состоящие из блоков, в которых внешние электронные орбитали атомов одинаковы по орбитальному квантовому числу (в упрощённом представлении — по форме). В химии орбитальные квантовые числа обозначаются буквами s, p, d и f. В s- блок входят щелочные и щёлочноземельные металлы, в d — переходные металлы, в f — лантаноиды и актиноиды, в p — остальные элементы. Термины лантаноиды и актиноиды были предложены профессором ЛГУ С. А. Щукаревым в 1948 году.

В середине XX века В. М. Клечковский эмпирически установил и теоретически обосновал правило, описывающее последовательность заполнения электронных орбиталей атомов по мере роста заряда ядра. В отличие от предыдущих подходов, это правило учитывает взаимодействие между электронами в атоме.

Периодические свойства химических элементов

В принципе, свойства химического элемента объединяют все без исключения его характеристики в состоянии свободных атомов или ионов, гидратированных или сольватированных, в состоянии простого вещества, а также формы и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных атомов и, во-вторых, свойства простого вещества. Большинство этих свойств проявляет явную периодическую зависимость от атомных номеров химических элементов[9]. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:

Проявления периодического закона в отношении энергии ионизации

Зависимость энергии ионизации атома от порядкового номера элемента (рис. 1) носит отчетливо периодический характер. Легче всего удалить электрон из атомов щелочных металлов, включающих по одному валентному электрону, труднее всего — из атомов благородных газов, обладающих замкнутой электронной оболочкой. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы. Наряду с этими резко выраженными минимумами и максимумами на кривой энергии ионизации атомов наблюдаются слабо выраженные минимумы и максимумы, которые по-прежнему нетрудно объяснить с учетом упомянутых эффектов экранирования и проникновения, эффектов межэлектронных взаимодействий и т.  д[10].

Проявления периодического закона в отношении энергии сродства к электрону

Рис. 2 Зависимость сродства к электрону атома от атомного номера элемента (экзоэффект указан со знаком минус, эндоэффект со знаком плюс)

Периодичность значений энергий сродства атомов к электрону объясняется, естественно, теми же самыми факторами, которые уже были отмечены при обсуждении ионизационных потенциалов (см. определение энергии сродства к электрону).

Наибольшим сродством к электрону обладают p-элементы VII группы. Наименьшее сродство к электрону у атомов с конфигурацией s² (Be, Mg, Zn) и s²p6 (Ne, Ar) или с наполовину заполненными p-орбиталями (N, P, As)[11]:

Li Be B C N O F Ne
Электронная конфигурация s1 s²p1 s²p² s²p³ s²p4 s²p5 s²p6
ε, эВ -0,59 0,19 -0,30 -1,27 0,21 -1,47 -3,45 0,22

Проявления периодического закона в отношении электроотрицательности

Рис. 3 Шкала электроотрицательности по Полингу

Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселенности, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остается необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т.  д.

Периодичность атомной электроотрицательности является важной составной частью периодического закона и легко может быть объяснена, исходя из непреложной, хотя и не совсем однозначной, зависимости значений электроотрицательности от соответствующих значений энергий ионизации и сродства к электрону[12].

В периодах наблюдается общая тенденция роста электроотрицательности, а в подгруппах — её падение. Наименьшая электроотрицательность у s-элементов I группы, наибольшая — у p-элементов VII группы.

Проявления периодического закона в отношении атомных и ионных радиусов

Рис. 4 Зависимость орбитальных радиусов атомов от порядкового номера элемента.

Периодический характер изменения размеров атомов и ионов известен давно. Сложность здесь состоит в том, что из-за волновой природы электронного движения атомы не имеют строго определенных размеров. Так как непосредственное определение абсолютных размеров (радиусов) изолированных атомов невозможно, в данном случае часто используют их эмпирические значения. Их получают из измеренных межъядерных расстояний в кристаллах и свободных молекулах, разбивая каждое межъядерное расстояние на две части и приравнивая одну из них к радиусу первого (из двух связанных соответствующей химической связью) атома, а другую — к радиусу второго атома. При таком разделении учитывают различные факторы, включая природу химической связи, степени окисления двух связанных атомов, характер координации каждого из них и т. д[13]. Таким способом получают так называемые металлические, ковалентные, ионные и ван-дер-ваальсовы радиусы. Ван-дер-ваальсовы радиусы следует рассматривать как радиусы несвязанных атомов; их находят по межъядерным расстояниям в твердых или жидких веществах, где атомы находятся в непосредственной близости друг от друга (например, атомы Ar в твердом аргоне или атомы N из двух соседних молекул N2 в твердом азоте), но не связаны между собой какой-либо химической связью.

Но, очевидно, лучшим описанием эффективных размеров изолированного атома является теоретически рассчитанное положение (расстояние от ядра) главного максимума зарядовой плотности его наружных электронов. Это так называемый орбитальный радиус атома. Периодичность в изменении значений орбитальных атомных радиусов в зависимости от порядкового номера элемента проявляется довольно отчетливо (см. рис. 4), и основные моменты здесь состоят в наличии очень ярко выраженных максимумов, приходящихся на атомы щелочных металлов, и таких же минимумов, отвечающих благородным газам. Уменьшение значений орбитальных атомных радиусов при переходе от щелочного металла к соответствующему (ближайшему) благородному газу носит, за исключением ряда Li—Ne, немонотонный характер, особенно при появлении между щелочным металлом и благородным газом семейств переходных элементов (металлов) и лантаноидов или актиноидов. В больших периодах в семействах d- и f-элементов наблюдается менее резкое уменьшение радиусов, так как заполнение орбиталей электронами происходит в пред- предвнешнем слое. В подгруппах элементов радиусы атомов и однотипных ионов в общем увеличиваются.

Проявления периодического закона в отношении энергии атомизации

Энергия атомизации простых веществ является характеристикой, которая во многом определяет их реакционную способность[14]. Зависимость энергии атомизации простых веществ от порядкового номера элемента имеет периодический характер. Основные моменты такой периодической зависимости состоят в следующем: энергия атомизации растет при переходе от щелочного металла (для них эти значения сравнительно невелики и близки 84 кДж/моль) к следующим за ним элементам, достигает максимума, затем убывает, становясь очень небольшой для галогена (63—126 кДж/моль) и, наконец, превращается в нуль в случае примыкающего к галогену благородного газа, который, как известно, при стандартных условиях существует в виде практически не взаимодействующих атомов. Положение максимума энергии атомизации в ряду элементов от щелочного металла до соответствующего (ближайшего) благородного газа зависит от многих факторов, выходящих за рамки настоящего изложения. Так, в ряду Li—Ne наибольшей энергией атомизации характеризуется углерод (718,2 кДж/моль), а в рядах K—Kr и Cs—Rn наибольшими энергиями атомизации обладают переходные металлы: ванадий (516,6 кДж/моль) и вольфрам (844,2 кДж/моль). Неравномерное изменение энергии атомизации в пределах одного ряда элементов от щелочного металла до благородного газа оказывается довольно сложным, особенно если этот ряд включает семейство переходных металлов.

Проявления периодического закона в отношении степени окисления

Одним из основных понятий в химии было и остается понятие степени окисления (степень окисления, состояние окисления, окислительное состояние). Несмотря на то что степень окисления представляется во многом формальной и более искусственной относительно других традиционных химических понятий, она до сих пор остается широко распространенной и сохраняет свою значимость для обобщения и более глубокого понимания основных принципов образования химических соединений[15].

Следует подчеркнуть, что степень окисления элемента, будучи формальной характеристикой, не дает представления ни об эффективных зарядах атомов этого элемента в соединении, ни о валентности атомов, хотя степень окисления часто называют формальной валентностью. Многие элементы способны проявлять не одну, а несколько различных степеней окисления. Например, для хлора известны все степени окисления от −1 до +7, хотя четные очень неустойчивы, а для марганца — от +2 до +7. Высшие значения степени окисления изменяются в зависимости от порядкового номера элемента периодически, но эта периодичность имеет сложный характер. В простейшем случае в ряду элементов от щелочного металла до благородного газа высшая степень окисления возрастает от +1 (RbF) до +8 (XeО4). В других случаях высшая степень окисления благородного газа оказывается меньше (Kr+4F4), чем для предшествующего галогена (Br+7О4). Поэтому на кривой периодической зависимости высшей, степени окисления от порядкового номера элемента максимумы приходятся или на благородный газ, или на предшествующий ему галоген (минимумы — всегда на щелочной металл). Исключение составляет ряд Li—Ne, в котором ни для галогена (F), ни для благородного газа (Ne) вообще неизвестны высокие степени окисления, а наибольшим значением высшей степени окисления обладает средний член ряда — азот; поэтому в ряду Li—Ne изменение высшей степени окисления оказывается проходящим через максимум. В общем случае возрастание высшей степени окисления в ряду элементов от щелочного металла до галогена или до благородного газа происходит отнюдь не монотонно, главным образом по причине проявления высоких степеней окисления переходными металлами. Например, возрастание высшей степени окисления в ряду Rb—Xe от +1 до +8 «осложняется» тем, что для молибдена, технеция и рутения известны такие высокие степени окисления, как +6 (MoО3), +7 (Tc2О7), +8 (RuO4).

Проявления периодического закона в отношении окислительного потенциала

Одной из очень важных характеристик простого вещества является его окислительный потенциал, отражающий принципиальную способность простого вещества к взаимодействию с водными растворами, а также проявляемые им окислительно-восстановительные свойства[16]. Изменение окислительных потенциалов простых веществ в зависимости от порядкового номера элемента также носит периодический характер. Но при этом следует иметь в виду, что на окислительный потенциал простого вещества оказывают влияние различные факторы, которые иногда нужно рассматривать индивидуально. Поэтому периодичность в изменении окислительных потенциалов следует интерпретировать очень осторожно.

Na/Na+(aq) Mg/Mg2+(aq) Al/Al3+(aq)
2,71В 2,37В 1,66В
K/K+(aq) Ca/Ca2+(aq) Sc/Sc3+(aq)
2,93В 2,87В 2,08В

Можно обнаружить некоторые определенные последовательности в изменении окислительных потенциалов простых веществ. В частности, в ряду металлов при переходе от щелочного к следующим за ним элементам происходит уменьшение окислительных потенциалов (Na+(aq) и т. д. — гидратированный катион):

Это легко объясняется увеличением энергии ионизации атомов с увеличением числа удаляемых валентных электронов. Поэтому на кривой зависимости окислительных потенциалов простых веществ от порядкового номера элемента имеются максимумы, отвечающие щелочным металлам. Но это не единственная причина изменения окислительных потенциалов простых веществ.

Внутренняя и вторичная периодичность

s— и р-элементы

Выше рассмотрены общие тенденции в характере изменения значений энергии ионизации атомов, энергии сродства атомов к электрону, электроотрицательности, атомных и ионных радиусов, энергии атомизации простых веществ, степени окисления, окислительных потенциалов простых веществ от атомного номера элемента. При более глубоком изучении этих тенденций можно обнаружить, что закономерности в изменении свойств элементов в периодах и группах значительно сложнее. В характере изменения свойств элементов по периоду проявляется внутренняя периодичность, а по группе — вторичная периодичность (открыта Е. В. Бироном в 1915 году).

Так, при переходе от s-элемента I группы к р-элементу VIII группы на кривой энергии ионизации атомов и кривой изменения их радиусов имеются внутренние максимумы и минимумы[17] (см. рис. 1, 2, 4).

Это свидетельствует о внутреннепериодическом характере изменения этих свойств по периоду. Объяснение отмеченных закономерностей можно дать с помощью представления об экранировании ядра.

Эффект экранирования ядра обусловлен электронами внутренних слоев, которые, заслоняя ядро, ослабляют притяжение к нему внешнего электрона. Так, при переходе от бериллия 4Be к бору 5B, несмотря на увеличение заряда ядра, энергия ионизации атомов уменьшается:

Рис. 5 Схема строения последних уровней бериллия, 9.32 эВ (слева) и бора, 8,29 эВ (справа)

Это объясняется тем, что притяжение к ядру -электрона атома бора ослаблено за счет экранирующего действия 2s-электронов.

Понятно, что экранирование ядра возрастает с увеличением числа внутренних электронных слоев. Поэтому в подгруппах s— и р-элементов наблюдается тенденция к уменьшению энергии ионизации атомов [18](см. рис. 1).

Уменьшение энергии ионизации от азота 7N к кислороду 8О (см. рис. 1) объясняется взаимным отталкиванием двух электронов одной и той же орбитали:

Рис. 6 Схема строения последних уровней азота, 14,53 эВ (слева) и кислорода, 13,62 эВ (справа)

Эффектом экранирования и взаимного отталкивания электронов одной орбитали объясняется также внутреннепериодический характер изменения по периоду атомных радиусов (см. рис. 4).

Рис. 7 Вторичнопериодическая зависимость радиусов атомов внешних p-орбиталей от атомного номера

Рис. 8 Вторичнопериодическая зависимость первой энергии ионизации атомов от атомного номера

Рис. 9 Радиальное распределение электронной плотности в атоме натрия

В характере изменения свойств s— и р-элементов в подгруппах отчетливо наблюдается вторичная периодичность (рис. 7). Для её объяснения привлекается представление о проникновении электронов к ядру. Как показано на рисунке 9, электрон любой орбитали определенное время находится в области, близкой к ядру. Иными словами, внешние электроны проникают к ядру через слои внутренних электронов. Как видно из рисунка 9, внешний 3s-электрон атома натрия обладает весьма значительной вероятностью находиться вблизи ядра в области внутренних К— и L-электронных слоев.

Концентрация электронной плотности (степень проникновения электронов) при одном и том же главном квантовом числе наибольшая для s-электрона, меньше — для р-электрона, ещё меньше — для d-электрона и т. д. Например, при n = 3 степень проникновения убывает в последовательности 3s>3p>3d (см. рис. 10).

Рис. 10 Радиальное распределение вероятности нахождения электрона (электронной плотности) на расстоянии r от ядра

Понятно, что эффект проникновения увеличивает прочность связи внешних электронов с ядром. Вследствие более глубокого проникновения s-электроны в большей степени экранируют ядро, чем р-электроны, а последние — сильнее, чем d-электроны, и т. д.

Пользуясь представлением о проникновении электронов к ядру, рассмотрим характер изменения радиуса атомов элементов в подгруппе углерода. В ряду C—Si—Ge—Sn—Pb проявляется общая тенденция увеличения радиуса атома (см. рис. 4, 7). Однако это увеличение имеет немонотонный характер. При переходе от Si к Ge внешние р-электроны проникают через экран из десяти 3d-электро-нов и тем самым упрочняют связь с ядром и сжимают электронную оболочку атома. Уменьшение размера 6p-орбитали Pb по сравнению с 5р-орбиталью Sn обусловлено проникновением 6p-электронов под двойной экран десяти 5d-электронов и четырнадцати 4f-электронов. Этим же объясняется немонотонность в изменении энергии ионизации атомов в ряду C—Pb и большее значение её для Pb по сравнению с атомом Sn (см. рис. 1).

d-Элементы

Во внешнем слое у атомов d-элементов (за исключением Pd) находятся 1—2 электрона (ns-состояние). Остальные валентные электроны расположены в (n—1)d-состоянии, т. е. в предвнешнем слое.

Подобное строение электронных оболочек атомов определяет некоторые общие свойства d-элементов[19]. Так, их атомы характеризуются сравнительно невысокими значениями первой энергии ионизации. Как видно на рисунке 1, при этом характер изменения энергии ионизации атомов по периоду в ряду d-элементов более плавный, чем в ряду s— и p-элементов. При переходе от d-элемента III группы к d-элементу II группы значения энергии ионизации изменяются немонотонно. Так, на участке кривой (рис. 1) видны две площадки, соответствующие энергии ионизации атомов, в которых заполняются Зd-орбитали по одному и по два электрона. Заполнение 3d-орбиталей по одному электрону заканчивается у Mn (3d54s2), что отмечается некоторым повышением относительной устойчивости 4s2-конфигурации за счет проникновения 4s2-электронов под экран 3d5-конфигурации. Наибольшее значение энергии ионизации имеет Zn (3d104s2), что находится в соответствии с полным завершением Зd-подслоя и стабилизацией электронной пары за счет проникновения под экран 3d10-конфигурации.

В подгруппах d-элементов значения энергии ионизации атомов в общем увеличиваются. Это можно объяснить эффектом проникновения электронов к ядру. Так, если у d-элементов 4-го периода внешние 4s-электроны проникают под экран 3d-электронов, то у элементов 6-го периода внешние 6s-электроны проникают уже под двойной экран 5d— и 4f-электронов. Например:

22Ti …3d24s2 I = 6,82 эВ
40Zr …3d104s24p64d25s2 I = 6,84 эВ
72Hf… 4d104f145s25p65d26s2 I = 7,5 эВ

Поэтому у d-элементов 6-го периода внешние бs-электроны связаны с ядром более прочно и, следовательно, энергия ионизации атомов больше, чем у d-элементов 4-го периода.

Размеры атомов d-элементов являются промежуточными между размерами атомов s— и p-элементов данного периода. Изменение радиусов их атомов по периоду более плавное, чем для s— и p-элементов.

В подгруппах d-элементов радиусы атомов в общем увеличиваются. Важно отметить следующую особенность: увеличение атомных и ионных радиусов в подгруппах d-элементов в основном отвечает переходу от элемента 4-го к элементу 5-го периода. Соответствующие же радиусы атомов d-элементов 5-го и 6-го периодов данной подгруппы примерно одинаковы. Это объясняется тем, что увеличение радиусов за счет возрастания числа электронных слоев при переходе от 5-го к 6-му периоду компенсируется f-сжатием, вызванным заполнением электронами 4f-подслоя у f-элементов 6-го периода. В этом случае f-сжатие называется лантаноидным. При аналогичных электронных конфигурациях внешних слоев и примерно одинаковых размерах атомов и ионов для d-элементов 5-го и 6-го периодов данной подгруппы характерна особая близость свойств.

Отмеченным закономерностям не подчиняются элементы подгруппы скандия. Для этой подгруппы типичны закономерности, характерные для соседних подгрупп s-элементов.

Периодический закон — основа химической систематики

См. также

Примечания

Литература

  1. Ахметов Н. С. Актуальные вопросы курса неорганической химии. — М.: Просвещение, 1991. — 224 с — ISBN 5-09-002630-0
  2. Корольков Д. В. Основы неорганической химии. — М.: Просвещение, 1982. — 271 с.
  3. Менделеев Д. И. Основы химии, т. 2. М.: Госхимиздат, 1947. 389 c.
  4. Менделеев Д.И. Периодическая законность химических элементов // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.

Ссылки

Закон нулевого уровня – Наука – Коммерсантъ

Русский ученый, химик Дмитрий Менделеев

Фото: Stock Montage / Getty Images

Ничего сравнимого с Периодическим законом российская наука мировой не дала. Это открытие высшего, нулевого уровня, так сказал о Периодической таблице химических элементов Дмитрия Менделеева вице-президент РАН Алексей Хохлов. Что позволяет отнести открытие Менделеева, которому исполнилось 150 лет, к числу важнейших в истории науки?

Таблицы с двумя недостатками

За 40 лет до Менделеева сходные по свойствам элементы объединил в триады немецкий химик Иоганн Вольфганг Дёберейнер. Известны таблицы польского химика Леопольда Гмелина, немецкого врача, химика и гигиениста Макса Йозефа фон Петтенкофера, французского химика Жана Батиста Дюма… И конечно, работы середины XIX века — «земная спираль» Александра де Шанкуртуа, «Октавы» Джона Ньюлендса, таблицы Уильяма Одлинга и Лотара Мейера 1864 года. Варианты таблиц приведены в порядке возрастания качества. Но у всех были два недостатка. Во-первых, не все известные элементы вписывались в систему; во-вторых, все таблицы включали только известные элементы. А это все равно что сложить N-лучевую звезду, обладая N-x лучами, где x>0.

Таблица с предсказаниями

6 марта 1869 года на заседании Русского химического общества Менделеев зачитал доклад «Опыт системы элементов, основанной на их атомном весе и химическом сродстве». В следующие полтора года Менделеев уточнил характер этой зависимости и 3 декабря 1870 года вывел окончательную формулировку закона: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».

Главное в Периодической системе Менделеева — ее предсказательная способность. Он не побоялся сказать, что набор элементов неполон; что существуют неоткрытые элементы с весами более легкими, чем уже известные,— иначе не складывается единая система. В таблице Менделеева появились ячейки для «экаалюминия», «экабора» и «экасилиция». Для каждого из этих элементов Менделеев предложил примерную атомную массу, набор ключевых химических и физических свойств. Кроме того, он указал на неправильно определенную массу 9 химических элементов и впоследствии описал еще 8 неизвестных науке элементов.

Глубокий патриот

Говорят, что на здоровье [Менделеева] сильно подействовал исход Японской войны. Будучи глубоким патриотом, он очень тяжело переживал наши неудачи на Дальнем Востоке, нередко даже плакал… К 1906 г. он как-то быстро стал дряхлеть, стал часто прихварывать. В этом году он два раза ездил за границу и как будто поправился. Но дни его были сочтены, и он сам уже как бы предчувствовал близкий конец.

Лев Чугаев, «Дмитрий Менделеев, жизнь и деятельность»

Таблица верна

Лотар Мейер, который выпустил в 1870 году работу «Природа элементов как функция их атомного веса», уже сослался на таблицу Менделеева. Мейер писал, что ему не хватило научной дерзости Менделеева, чтобы понять всю систему.

Но в работе русского ученого было столько нового, что часть научного сообщества встретила его исследование с недоверием. Тем более что он указывал на неправильно определенные характеристики уже открытых элементов. Прямой и жесткий, Менделеев не стеснялся открыто указывать людям на их ошибки — можно себе представить, как встретили академики его открытие.

Но в 1875 году во Франции открывают предсказанный «экаалюминий» (галлий), в 1879 году — «экабор» (скандий), а в 1885-м — «экасилиций» (германий). Характеристики каждого полностью укладываются в значения, предсказанные Менделеевым. И научный мир признает, что эта система — верная. Даже открытые сегодня, спустя 150 лет, химические элементы по-прежнему укладываются в эту систему. «Можно смело утверждать, что во Вселенной не существует химических элементов вне описанной Менделеевым системы»,— сказал декан химического факультета МГУ имени Ломоносова, член-корреспондент РАН и один из ведущих радиохимиков мира Степан Калмыков.

«Опыт системы элементов, основанной на их атомном весе и химическом сходстве», рукопись Д.И. Менделеева. Это прообраз современной таблицы химических элементов

Фото: Science & Society Picture Library / SSPL / Getty Images

Слишком вкусил от физиологии

Менделеев дал мне тему, рассказал, как приготовлять вещество, азотистометиловый эфир, что делать с ним, дал мне комнату, посуду, материалы, и я с великим удовольствием принялся за работу, тем более что не имел до того в руках веществ, кипящих при низких температурах, а это кипело при 12°C. Результаты той ученической работы описал сам Дмитрий Иванович. Быть учеником такого учителя, как Менделеев, было, конечно, и приятно, и полезно, но я уже слишком много вкусил от физиологии, чтобы изменить ей, и химиком не сделался.

«Автобиографические записки Ивана Михайловича Сеченова»

Таблица сокровищ

Как говорили великие люди (например, Генри Форд): «Не обязательно знать все. Главное — знать, где посмотреть». Периодический закон стал картой сокровищ для химиков, прямо указывая, какие элементы и с какими характеристиками стоит искать. Начался взрывной рост неорганической химии: понимание свойств и их изменений по группам и периодам позволило ученым либо впервые, либо более простым способом синтезировать множество новых неорганических соединений.

Но исследователи задались следующим вопросом: «Почему так, а не иначе?» В начале XX века с открытием радиоактивности, электрона, протона, а затем и нейтрона Периодический закон получил новые подтверждения, обрел дополнительный физический смысл. Оказалось, что порядковый номер элемента тождествен заряду ядра, что элементы разной массы, но с одинаковым зарядом ядра химически эквивалентны. Что электроны бегают вокруг ядра не кучкой, а по орбитам, что и приводит именно к таким химическим свойствам.

Ученые осознали и природу химической связи, из-за чего получили мощный толчок целые направления: каталитическая химия, квантовая химия, элементоорганическая химия, вычислительная химия и многие другие.

Не менее важно, пожалуй, и то, чего ученые не делали благодаря Периодическому закону. Понимая, как устроены химические элементы, исследователи не провели множества экспериментов.

Ругайся — и будешь здоров

Нельзя отрицать, что нрав у него был крутой, но он был вспыльчив, да отходчив. Слушать его крик, воркотню было иногда нелегко, но мы знали, что он кричит и ворчит не со зла, а такова уж его натура. Вероятно, в шутку он говорил, что держать в себе раздражение вредно для здоровья; надо, чтобы оно выходило наружу. «Ругайся себе направо-налево и будешь здоров».

Вячеслав Тищенко, «Воспоминания о Д. И. Менделееве»

Таблица с отклонениями

Первооткрыватель 10 трансурановых элементов, ректор Калифорнийского университета в Беркли, человек-элемент Гленн Теодор Сиборг и его коллеги в 1955 году решили назвать элемент №101 менделевием. Как писал Сиборг: «Согласно обычаю, ученые, получившие новый элемент, имеют право дать ему имя. Американские ученые предложили назвать элемент 101 менделевием — в честь великого русского химика, который первым использовал Периодическую систему для предсказания химических свойств неоткрытых элементов. Этот принцип явился ключевым при открытии почти всех трансурановых элементов и бесспорно сохранит свое значение в последующих попытках продвинуться в этой области науки».

Даже отклонения от Периодического закона, которые обнаружила при открытии последней пятерки элементов группа физиков под руководством еще одного человека-элемента, академика Юрия Оганесяна, также вытекают из этого закона. И каждое новое открытие так или иначе подтверждает величие закона Менделеева.

Он не гнался за патентованием изобретений, хотя за приоритет в открытиях бился жестко. Поэтому в признание его заслуг было бы правильно присвоить Периодической таблице его имя. И к такому решению постепенно склоняется все мировое сообщество. Неслучайно год 150-летия со дня открытия Менделеевым Периодического закона объявлен Международным годом Периодической таблицы химических элементов. Вероятно, вопрос о всемирном присвоении Периодической таблице химических элементов имени Менделеева в конце года будет поставлен на голосование перед IUPAC (Международным союзом теоретической и прикладной химии).

Валерий Сергеев

Дмитрием Ивановичем Менделеевым сдана в набор рукопись «Опыт системы элементов, основанной на их атомном весе и химическом сходстве»

17 февраля (1 марта) 1869 г. Дмитрием Ивановичем Менделеевым была сдана в набор рукопись «Опыт системы элементов, основанной на их атомном весе и химическом сходстве» — первый вариант Периодической таблицы элементов. Окончательная формулировка закона была дана учёным в июле 1871 г.

Периодический закон был открыт Д. И. Менделеевым в ходе работы над текстом учебника «Основы химии», когда он столкнулся с трудностями систематизации фактического материала. К середине февраля 1869 г., обдумывая структуру учебника, учёный постепенно пришёл к выводу, что свойства простых веществ и атомные массы элементов связывает некая закономерность.

Открытие периодической таблицы элементов было совершено не случайно, это был результат огромного труда, длительной и кропотливой работы, которая была затрачена и самим Дмитрием Ивановичем, и множеством химиков из числа его предшественников и современников. «Когда я стал окончательно оформлять мою классификацию элементов, я написал на отдельных карточках каждый элемент и его соединения, и затем, расположив их в порядке групп и рядов, получил первую наглядную таблицу периодического закона. Но это был лишь заключительный аккорд, итог всего предыдущего труда…» — говорил учёный. Менделеев подчёркивал, что его открытие было итогом, завершившим собой двадцатилетнее размышление о связях между элементами, обдумывание со всех сторон взаимоотношений элементов.

17 февраля (1 марта) рукопись статьи, содержащая таблицу под названием «Опыт системы элементов, основанной на их атомном весе и химическом сходстве», была закончена и сдана в печать с пометками для наборщиков и с датой «17 февраля 1869 г.». Сообщение об открытии Менделеева было сделано редактором «Русского химического общества» профессором Н. А. Меншуткиным на заседании общества 22 февраля (6 марта) 1869 г. Сам Менделеев на заседании не присутствовал, так как в это время по заданию Вольного экономического общества обследовал сыроварни Тверской и Новгородской губерний.

В первом варианте системы элементы были расставлены учёным по девятнадцати горизонтальным рядам и по шести вертикальным столбцам. 17 февраля (1 марта) открытие периодического закона отнюдь не завершилось, а только началось. Его разработку и углубление Дмитрий Иванович продолжал еще в течение почти трёх лет. В 1870 г. Менделеев в «Основах химии» опубликовал второй вариант системы («Естественную систему элементов»): горизонтальные столбцы элементов-аналогов превратились в восемь вертикально расположенных групп; шесть вертикальных столбцов первого варианта превратились в периоды, начинавшиеся щелочным металлом и заканчивающиеся галогеном. Каждый период был разбит на два ряда; элементы разных вошедших в группу рядов образовали подгруппы.

Сущность открытия Менделеева заключалась в том, что с ростом атомной массы химических элементов их свойства меняются не монотонно, а периодически. После определённого количества разных по свойствам элементов, расположенных по возрастанию атомного веса, свойства начинают повторяться. Отличием работы Менделеева от работ его предшественников было то, что основ для классификации элементов у Менделеева была не одна, а две — атомная масса и химическое сходство. Для того, чтобы периодичность полностью соблюдалась, Менделеев исправил атомные массы некоторых элементов, несколько элементов разместил в своей системе вопреки принятым в то время представлениям об их сходстве с другими, оставил в таблице пустые клетки, где должны были разместиться пока не открытые элементы.

В 1871 г. на основе этих работ Менделеев сформулировал Периодический закон, форма которого со временем была несколько усовершенствована.

Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований. В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестны. Менделеев был не только убеждён, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и заранее предсказал свойства таких элементов, основываясь на их положении среди других элементов периодической системы. В течение следующих 15 лет предсказания Менделеева блестяще подтвердились; все три ожидаемых элемента были открыты (Ga, Sc, Ge), что было величайшим триумфом периодического закона.

Большое значение имела периодическая система также при установлении валентности и атомных масс некоторых элементов. Точно так же периодическая система дала толчок к исправлению атомных масс некоторых элементов. Именно на её основе были искусственно созданы трансурановые элементы. Последующее развитие науки позволило, опираясь на периодический закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева. Сам учёный о своём законе сказал так: «Будущее не грозит периодическому закону разрушением, а обещаются только надстройка и развитие».

Лит.: Агафошин Н. П. Периодический закон и периодическая система элементов Д. И. Менделеева. М., 1973; Евдокимов Ю. К истории периодического закона // Наука и жизнь. № 5 (2009). С.  12—15; Кедров Б. M. День одного великого открытия. M., 1958; Кедров Б. M., Трифонов Д. H. Закон периодичности и химические элементы. Открытия и хронология. M., 1969; Макареня А. А., Рысев Ю. В. Д. И. Менделеев. М., 1983; Макареня А. А., Трифонов Д. Н. Периодический закон Д. И. Менделеева. М., 1969; Макареня А. А., Трифонов Д. Н. Периодический закон Д. И. Менделеева. М., 1969; Менделеев Д. И. Периодический закон. Основные статьи. M., 1958.

См. также в Президентской библиотеке:

Кузнецов Б. Г.  Ломоносов. Лобачевский. Менделеев : очерки жизни и мировоззрения. М.; Л., 1945;

Менделеев Д. И. Заветные мысли Д. Менделеева. СПб., 1903-1905;

Семенченко В. К. Менделеев и физика атома. Пенза, 1945;

Тобольск. Памятник Д. И. Менделееву [Изоматериал] / фото А. Мусина. М., 1969;

Учреждена Главная палата мер и весов // День в истории. 20 июня 1893 г.

Селфи на фоне Таблицы Менделеева

«Периодическая таблица – это одно из величайших достижений в науке во все времена», — заявил президент Академии наук Франции Пьер Корволь на открытии Международного года Периодической таблицы химических элементов. В Москве и в Париже дали старт длинной череде мероприятий, смысл которых очень прост – напомнить человечеству, чем оно обязано Дмитрию Менделееву, открывшему 150 лет назад Периодический закон.

«ООН намеревается таким образом донести мысль о том, как химия способна в современном мире способствовать устойчивому развитию и выдвинуть решения для вызовов планетарного масштаба в таких разных областях, как энергия, образование, сельское хозяйство или здравоохранение», — пишет портал physicsworld.com.

Любопытно, что нынешний год также провозглашен Годом Леонардо в честь 500-летия со дня смерти великого флорентийца. Если иметь в виду широту научных интересов и вклад в различные области знаний, Менделеев – это и есть русский Леонардо.

Эсперанто для ученых

«Мы, ученые, высоко ценим Периодическую таблицу, потому что она представляет собой общий язык, на котором мы все говорим», — подчеркнул Нобелевский лауреат по химии 2016 г. голландец Бен Феринга. Как известно, самого Менделеева трижды выдвигали на Нобелевскую премию, но он так и не получил ее.

Первый квартал иннограда Сколково носит имя Дмитрия Менделеева. Фото: Sk.ru

В Москве на заседании комитета по проведению Международного года Периодической таблицы химических элементов глава Российской академии наук Александр Сергеев сказал: «Мы в РАН считаем, что есть три основные цели, которые страна наша должна решить в этот год. Первое, чтобы Периодическую таблицу химических элементов все стали называть таблицей Менделеева, чтобы мы получили, наконец, Нобелевскую премию в этом году, и третье — чтобы мы выиграли олимпиаду по химии в Париже», — заявил он.

«Периодическая таблица есть попытка познать природу всех вещей», — сформулировала свое отношение к открытию Менделеева генеральный секретарь ЮНЕСКО, выступая в Париже в штаб-квартире этой организации Одри Азуле. Министр науки и высшего образования РФ Михаил Котюков там же выразил мнение, что наследие Менделеева принадлежит всему человечеству. С чем участники торжественного собрания вполне согласились.

Помимо того, что Менделеев открыл Периодический закон, выходец из Тобольской губернии, 17-й сын в семье, конструировал летательные аппараты (его называют изобретателем аэростата) и занимался кораблестроением, в том числе, принимал участие в строительстве первого в мире арктического ледокола «Ермак». К числу его изобретений относят бездымный порох и нефтепровод, а на досуге ученый занимался тем, что делал чемоданы, которые сегодня назвали бы «дизайнерскими».

«Мы, ученые, высоко ценим Периодическую таблицу, потому что она представляет собой общий язык, на котором мы все говорим»

При этом сам Дмитрий Менделеев считал своей главной заслугой не Периодический закон, а введенный в России таможенный тариф, необходимость которого он сформулировал в книге «Разумный тариф». «Какой я химик, я — политэконом; что там «Основы» [химии], вот «Толковый тариф» — это другое дело», — писал он. 

И был великий эконом

«Если говорить о широте его научных интересов, то Менделеев по большому счету был не только великим химиком, но и выдающимся экономистом, выстраивавшим тесную связь между наукой и индустрией», — считает вице-президент Фонда «Сколков» по науке и образованию Николай Суетин. – И это один из важных уроков, которые представляет для «Сколково» наследие Менделеева.

Я бы назвал его научно-экономическим гением страны. Прежде всего, он был практикующим ученым, который не сидел в башне из слоновой кости и использовал научные достижения в реальной жизни». Да и вообще был очень «приземленным» ( в лучшем смысле этого слова) человеком.

Как раз в этом и заключается смысл деятельности «Сколково». Неслучайно, первый квартал иннограда назван именем Менделеева, а фасады его зданий стилизованы под Периодическую таблицу.

Самый известный пример – когда он буквально в течение нескольких месяцев оптимизировал технологию производства керосина в Баку. «Злые языки» говорят, что это в итоге и поссорило его с семейством Нобилей, которые активно там работали, и как следствие – закрыло ему путь к Нобелевской премии.

Вице-президент Фонда «Сколково» по науке и образованию Николай Суетин: «Я бы назвал Менделеева научно-экономическим гением страны». Фото: Sk.ru

Или взять введение по инициативе Менделеева таможенного тарифа. «В России все очень гордились строительством железных дорог, но при этом все железо закупали за рубежом за золото; благодаря строительству российских железных дорог в Германии металлургия получила дополнительное развитие, — напоминает вице-президент «Сколково». Благодаря введению таможенных тарифов начали развивать собственную металлургию. То же самое – с угольной промышленностью. За что ни возьмись, Менделеев всегда делал упор на связь между наукой и экономикой».

Сама история создания Периодического закона преподносит нам еще один урок, продолжает Николай Суетин: «Почему вообще появилась таблица Менделеева? В 1869 году, к тому моменту, когда Менделеев создал Периодическую таблицу, было известно только 60 элементов, причем массы ряда элементов были определены неправильно, а о существовании атома не догадывались. Не было никакой квантовой механики. Были некие вещества, которые считались фундаментальными, и из них, как полагали, состояла вся природа. 

«Если говорить о широте его научных интересов, то Менделеев по большому счету был не только великим химиком, но и выдающимся экономистом, выстраивавшим тесную связь между наукой и индустрией»

Менделеев сформулировал свой закон, когда писал учебник «Основы химии». Он обнаружил, что если элементы выстроить по увеличению их веса, то возникает некая периодичность, которую можно представить в виде таблицы с заполненными и пустующими клетками. В ней по горизонтали выстроены элементы по возрастанию их массы, а по вертикали – с одинаковыми химическими свойствами. Были какие-то элементы, масса которых не соответствовала закономерности, в следствие чего ее впоследствии скорректировали. И были дырки, где элементов не было, но было ясно, что они должны там быть, и эти элементы потом нашли. В том числе, три – еще при жизни самого Менделеева. Т.е. многие элементы были открыты потому, что они были предсказаны Таблицей Менделеева, и их искали целенаправленно, хотя в природе они встречаются редко.

Вот так написание учебника, т.е. образовательная деятельность, дала выдающийся научный результат. Соединение науки и образования всегда важно, и это один из главных уроков, которые дает нам Менделеев», — считает Н.Суетин. 

Сегодня в Таблице Менделеева почти в два раза больше элементов, чем 150 лет назад. Фото: Sk.ru

Судьба некоторых изобретений Менделеева тоже представляет собой определенный урок для дня сегодняшнего. Состав и метод производства бездымного пороха, разработанный Менделеевым, был запатентован не в России, а в Америке, вследствие чего Россия закупала «менделеевский порох» из-за океана. Что еще раз подчеркивает важность международной защиты, создаваемой интеллектуальной собственности.

В юбилейный год не принято вспоминать о проблемах, но Дмитрий Менделеев не был принят в Императорскую академию наук, хотя был членом множества зарубежных. Более того, когда из-за нарушения властями академических свобод ученый покинул петербургский университет, коллеги не стали его удерживать, хотя студенты и выходили на акции протеста.

«Есть такая беда: во все времена в стране было что-то неладное с признанием собственных гениев, — говорит Николай Суетин. – «Нет пророка в своем отечестве»: на Нобелевскую премию Менделеева выдвигали иностранцы, а члены Императорской академии наук при тайном голосовании неоднократно отвергали его кандидатуру. Хотя к Менделееву с очень большим уважением относились промышленники, и предприниматели, да и многие члены правительства, министры».

Тусовка длиною в год

По прошествии 150 лет Менделееву с лихвой воздают должное и на Родине, и далеко за ее пределами.

«Периодическая таблица есть попытка познать природу всех вещей»

Портал physicsworld.com в репортаже из штаб-квартиры ЮНЕСКО обращает внимание на то, что старт международного года в ЮНЕСКО был обставлен как веселая тусовка. В зале звучали музыкальные интерлюдии в исполнении знаменитой пианистки Миры Евтич. В кулуарах посетители толпились в молекулярном баре, выстраиваясь в очередь за мороженым, приготовленным с помощью жидкого азота. Можно было даже сделать селфи в интерьерах воссозданного для этой цели в Париже кабинета Менделеева.

Месседж вполне прозрачен: перефразируя Пушкина, быть можно важным в науке человеком и при этом делать селфи с Менделеевым. И, конечно, это нетривиальный способ популяризации науки. 

Фото: Sk.ru.

В России наука также нуждается в творческой популяризации, и «Сколтех, как никто другой, сейчас выполняет эту роль», — считает вице-президент Фонда «Сколково» по науке и образованию. Именно здесь выпустили первый сборник комиксов, основанных на реальных научных исследованиях российских ученых. Научно-просветительский проект Сколтеха «Это точно. Чертова дюжина комиксов о науке и ученых» отмечен дипломом в специальной номинации «Прорыв года» V Всероссийской премии «За верность науке». 

«Сколтех проникся идеей, что науку надо популяризировать, — утверждает Николай Суетин. — Благодаря академику Александру Кулешову профессора активно участвуют в «Сириусах», других научно-популярных мероприятиях для детей. На мой взгляд, лучший популяризатор науки в России сейчас – профессор Сколтеха Константин Северинов: никто лучше него не рассказывает о том, что такое генетика, редактирование генома».

В этом смысле стартовавший в феврале Международный год Периодической таблицы химических элементов дает хороший шанс для популяризации наследия Менделеева, о котором миллениалы знают по преимуществу то единственное, чего он никогда не делал: да, Менделеев не изобретал водку.

ПЕРИОДИЧЕСКИЙ ЗАКОН • Большая российская энциклопедия

  • В книжной версии

    Том 25. Москва, 2014, стр. 692-693

  • Скопировать библиографическую ссылку:


Авторы: Ю. Д. Третьяков, Ю. М. Киселёв

Изменение молярных объёмов от порядкового номера элемента.

ПЕРИОДИ́ЧЕСКИЙ ЗАКО́Н, ус­та­нав­ли­ва­ет пе­рио­ди­че­ское из­ме­не­ние свойств хи­мич. эле­мен­тов в за­ви­си­мо­сти от уве­ли­че­ния за­ря­дов ядер их ато­мов. От­крыт Д. И. Мен­де­лее­вым в 1869 при со­пос­тав­ле­нии свойств из­вест­ных в то вре­мя эле­мен­тов и ве­ли­чин их атом­ных ве­сов. Ра­бо­та Мен­де­лее­ва «Со­от­но­ше­ние свойств с атом­ным ве­сом эле­мен­тов», опуб­ли­ко­ван­ная в «Жур­на­ле Рус­ско­го хи­ми­че­ско­го об­ще­ст­ва» (1869, т. 1), со­дер­жа­ла сле­дую­щий важ­ный вы­вод: «Эле­мен­ты, рас­по­ло­жен­ные по ве­ли­чи­не их атом­но­го ве­са, пред­став­ля­ют яв­ст­вен­ную пе­рио­дич­ность свойств». В 1871 в 1-м изд. «Ос­нов хи­мии» (ч. 2, с. 941) Мен­де­ле­ев дал бо­лее точ­ную фор­му­ли­ров­ку П. з.: «фи­зи­че­ские и хи­ми­че­ские свой­ст­ва эле­мен­тов, про­яв­ляю­щие­ся в свой­ст­вах про­стых и слож­ных тел, ими об­ра­зуе­мых, сто­ят в пе­рио­ди­че­ской за­ви­си­мо­сти … от их атом­но­го ве­са». Фи­зич. обос­но­ва­ние П. з. по­лу­чил при раз­ра­бот­ке ядер­ной мо­де­ли ато­ма и экс­пе­рим. ус­та­нов­ле­нии ра­вен­ст­ва по­ряд­ко­во­го но­ме­ра эле­мен­та в пе­рио­дич. сис­те­ме за­ря­ду яд­ра (Z) его ато­ма (1913). Совр. фор­му­ли­ров­ка П. з. та­ко­ва: свой­ст­ва хи­мич. эле­мен­тов, а так­же об­ра­зуе­мых ими про­стых и слож­ных ве­ществ на­хо­дят­ся в пе­рио­дич. за­ви­си­мо­сти от за­ря­да яд­ра ато­ма Z. В рам­ках кван­то­вой тео­рии ато­ма по­ка­за­но, что по ме­ре воз­рас­та­ния Z пе­рио­ди­че­ски по­вто­ря­ет­ся строе­ние внеш­них элек­трон­ных обо­ло­чек ато­мов, что оп­ре­де­ля­ет свой­ст­ва и спе­ци­фи­ку хи­мич. эле­мен­тов.

Осо­бен­ность П. з.: в ана­ли­тич. ви­де (в фор­ме урав­не­ния или сис­те­мы урав­не­ний) он не опи­сы­ва­ет­ся. При клас­сифи­ка­ции хи­мич. эле­мен­тов П. з. про­яв­ля­ет­ся в свое­об­раз­ной «мат­рич­ной» фор­ме – в ви­де пе­рио­ди­че­ской сис­те­мы хи­ми­че­ских эле­мен­тов. Пе­рио­дич­ность ил­лю­ст­ри­ру­ет­ся, напр., за­ви­си­мо­стью мо­ляр­ных объ­ё­мов от ве­ли­чи­ны Z (рис.). Пе­рио­дич­но ве­ли­чи­не Z из­ме­ня­ют­ся так­же мн. дру­гие ха­рак­те­ри­сти­ки хи­мич. эле­мен­тов (напр., атом­ные или ион­ные ра­диу­сы, атом­ные объ­ё­мы). П. з. – фун­дам. за­кон при­ро­ды, дей­ст­вую­щий во всей Все­лен­ной.

Периодический закон | Химия для неосновных

Цели обучения

  • Государственный периодический закон.
  • Опишите организацию таблицы Менделеева.

Как эти предметы связаны друг с другом?

Нам всем понравилась игра «Подсказка». Цель игры — получить информацию об убийстве: кто это сделал, где и что было использовано в качестве орудия убийства. По мере прохождения игры каждый игрок получает улики, и затем они должны объединить эти улики в догадку относительно преступника.Отдельные фрагменты информации приобретают более широкое значение, когда их объединяют с другими частями головоломки.

Периодический закон

Когда Менделеев составлял свою периодическую таблицу, никто не знал о существовании ядра. Только в 1911 году Резерфорд провел свой эксперимент с золотой фольгой, который продемонстрировал присутствие ядра в атоме. Всего два года спустя, в 1913 году, английский физик Генри Мозли (1887-1915) исследовал рентгеновские спектры ряда химических элементов.Он будет снимать рентгеновские лучи через кристаллы элемента и изучать длины волн обнаруженного им излучения. Мозли обнаружил связь между длиной волны и атомным номером. Его результаты привели к определению атомного номера как количества протонов, содержащихся в ядре каждого атома. Затем он понял, что элементы периодической таблицы должны быть расположены в порядке увеличения атомного номера, а не увеличения атомной массы.

При сортировке по атомному номеру расхождения в таблице Менделеева исчезли.Теллур имеет атомный номер 52, а йод имеет атомный номер 53. Таким образом, хотя теллур действительно имеет большую атомную массу, чем йод, он должным образом помещается перед йодом в периодической таблице. Менделееву и Мозли приписывают наибольшую ответственность за современный периодический закон : когда элементы расположены в порядке возрастания атомного номера, происходит периодическое повторение их химических и физических свойств. В результате появилась таблица Менделеева, которую мы знаем сегодня.Каждая новая горизонтальная строка периодической таблицы соответствует началу нового периода , потому что новый основной энергетический уровень заполняется электронами. Элементы со схожими химическими свойствами появляются через определенные промежутки времени в вертикальных столбцах, называемых группами и .

Сводка

  • Элементы таблицы Менделеева расположены в порядке возрастания атомного номера.
  • Периодический закон гласит: «Когда элементы расположены в порядке возрастания атомного номера, происходит периодическое повторение их химических и физических свойств.”

Практика

Воспользуйтесь ссылкой ниже, чтобы ответить на следующие вопросы:

Henry Moseley

  1. Где Мозли учился в колледже?
  2. С кем он проводил исследования после окончания колледжа?
  3. Что такое закон Мозли?

Обзор

  1. Знал ли Менделеев о ядре атома?
  2. Кто открыл связь между длиной волны рентгеновского излучения и атомным номером?
  3. Какой вывод сделал Мозли из своего исследования?
  4. Что такое «периодический закон»?
  5. Что представляют собой вертикальные столбцы (группы) в периодической таблице?

Глоссарий

  • группа: Элементы с аналогичными химическими свойствами появляются через определенные промежутки времени в вертикальных столбцах.
  • период: Период — это горизонтальная строка периодической таблицы.
  • периодический закон: Когда элементы расположены в порядке возрастания атомного номера, их химические и физические свойства периодически повторяются.

Сборка современной периодической таблицы

Собираем все вместе

В феврале 1869 года, во время написания второго тома своего учебника химии «Основы химии», Менделеев разработал свою собственную форму периодической таблицы.Популярные источники рассказывают о том, как Менделеев тасовал и переставлял карты, помеченные элементами и их свойствами, как в пасьянсе. Хотя историки не нашли карт в архиве Менделеева, они обнаружили бесчисленное множество групп элементов, покрытых вычеркнутыми идеями и перестановками. Кульминацией этой работы стала таблица Менделеева, в которой он организовал элементы путем увеличения атомной массы и выровнял элементы с аналогичными свойствами в ряды. В 1869 году Менделеев напечатал 200 экземпляров своей таблицы и разослал их коллегам по России и Европе.

Менделеев, однако, пошел дальше простого создания таблицы; он утверждал, что организация элементов отражает основной периодический закон. Например, в то время как Мейер поменял местами теллур и йод, Менделеев поменял местами их и утверждал, что атомная масса одного из них должна быть неправильной. (Атомные массы на самом деле не были неправильными, потому что периодичность оказывается основана на атомном номере, а не на атомной массе.) Менделеев скорректировал массы нескольких элементов на основе своей таблицы, и эти поправки позже были экспериментально подтверждены.

В то время как Мейер оставил пробелы в своей таблице, Менделеев предсказал, что будут обнаружены элементы, которые восполнят эти пробелы. Он зашел так далеко, что предсказал их атомные массы и свойства, и назвал их: эка-бор, эка-алюминий, эка-марганец и эка-кремний («эка» на санскрите означает «единичный» или «один»). Это был смелый шаг; В то время ожидалось, что химики будут репортерами существующих фактов, а не спекулянтами о том, что еще может быть обнаружено. Хотя он не был прав относительно всех их свойств, когда были открыты германий, галлий и скандий, химики смогли увидеть, как они вписываются в пробелы в таблице Менделеева, обеспечивая дальнейшее подтверждение периодического закона Менделеева.

Положение Менделеева как отца таблицы Менделеева укрепилось в 1890-х годах с открытием благородных газов. В то время не только было немыслимо, чтобы элемент мог быть инертным, но для них не было места в периодической таблице. В 1894 году аргон был открыт британским ученым лордом Рэли и шотландским ученым Уильямом Рамзи. Когда единственным предлагаемым благородным газом был аргон, Менделеев и другие химики утверждали, что это не новый элемент, а трехатомный азот (N 3 ).Однако после открытия гелия, криптона, неона и ксенона эти инертные газы не могли быть объяснены. Лишь в 1900 году Рамзи предложил новым элементам выделить отдельную группу между галогенами и щелочными металлами. Менделеев ответил так: «Это было чрезвычайно важно для [Рамзи] как подтверждение позиции вновь открытых элементов и для меня как великолепное подтверждение общей применимости периодического закона».

Дорога к нашей современной таблице Менделеева была извилистой, полной тупиков и неправильных поворотов.Для этого потребовались многочисленные открытия, ученые и эксперименты, а также многочисленные неудачи и победы. По сути, это было типично для науки. Хотя нам нравится думать о науке, развивающейся через гениев-одиночек, таких как Менделеев, которые устремляют нас к прогрессу, реальность науки такова, что она беспорядочная, требует обширного сотрудничества, основывается на работе других и пересматривает гипотезы, когда появляется новая информация. Менделеев, Мейер и другие были действительно выдающимися учеными не потому, что они сами все выяснили, а потому, что они были полностью вовлечены в выдающееся предприятие, которое мы называем наукой.

Определение периодического закона в химии

Периодический закон гласит, что физические и химические свойства элементов повторяются систематическим и предсказуемым образом, когда элементы расположены в порядке увеличения атомного номера. Многие свойства периодически повторяются. Когда элементы расположены правильно, тенденции в свойствах элементов становятся очевидными и могут использоваться для прогнозирования неизвестных или незнакомых элементов, просто основываясь на их размещении в таблице.

Важность периодического закона

Периодический закон считается одним из важнейших понятий в химии. Каждый химик использует Периодический закон, сознательно или нет, когда имеет дело с химическими элементами, их свойствами и их химическими реакциями. Периодический закон привел к развитию современной таблицы Менделеева.

Открытие Периодического Закона

Периодический закон был сформулирован на основе наблюдений ученых XIX века.В частности, вклад Лотара Мейера и Дмитрия Менделеева выявил тенденции в свойствах элементов. Они независимо предложили Периодический закон в 1869 году. В периодической таблице элементы расположены так, чтобы отражать Периодический закон, хотя у ученых в то время не было объяснения, почему свойства следуют тенденции.

Как только электронная структура атомов была открыта и понята, стало очевидно, что причина, по которой характеристики возникают в интервалах, заключалась в поведении электронных оболочек.

Недвижимость, подпадающая под действие Периодического закона

Ключевые свойства, которые следуют тенденциям согласно Периодическому закону, — это атомный радиус, ионный радиус, энергия ионизации, электроотрицательность и сродство к электрону.

Атомный и ионный радиус являются мерой размера отдельного атома или иона. Хотя атомный и ионный радиусы отличаются друг от друга, они следуют одной и той же общей тенденции. Радиус увеличивается при перемещении вниз по группе элементов и обычно уменьшается при перемещении слева направо по периоду или строке.

Энергия ионизации — это мера того, насколько легко удалить электрон из атома или иона. Это значение уменьшается при движении вниз по группе и увеличивается при перемещении слева направо через период.

Сродство к электрону — это то, насколько легко атом принимает электрон. Используя периодический закон, становится очевидным, что щелочноземельные элементы имеют низкое сродство к электрону. Напротив, галогены легко принимают электроны, чтобы заполнить свои электронные подоболочки, и имеют высокое сродство к электрону. Элементы благородного газа имеют практически нулевое сродство к электрону, потому что они имеют подоболочки электронов с полной валентностью.

Электроотрицательность связана со сродством к электрону. Он отражает, насколько легко атом элемента притягивает электроны для образования химической связи. И сродство к электрону, и электроотрицательность имеют тенденцию уменьшаться при движении вниз по группе и увеличиваться при перемещении через период. Электропозитивность — еще одна тенденция, управляемая Периодическим законом. Электроположительные элементы имеют низкую электроотрицательность (например, цезий, франций).

В дополнение к этим свойствам, с Периодическим законом связаны другие характеристики, которые можно рассматривать как свойства групп элементов.Например, все элементы в группе I (щелочные металлы) блестящие, имеют степень окисления +1, реагируют с водой и встречаются в составе соединений, а не в виде свободных элементов.

Отец периодической таблицы Менделеева | Feature

Стремление обнаруживать закономерности в нашем окружении, по-видимому, является фундаментальной человеческой чертой. Тысячи лет назад наши далекие предки построили массивные каменные памятники, которые точно соответствовали значимым точкам годового солнечного цикла. А в 19 веке вдумчивые химики заметили семейное сходство между элементами и попытались включить их в объяснительную парадигму.

Полтора века назад Дмитрий Менделеев сделал решающий шаг в этом поиске порядка среди элементов, опубликовав первый проект своей таблицы Менделеева. В 2019 году мировое химическое сообщество отмечает юбилей, и это правильно. Как и Стоунхендж, таблица отражает закономерности в природе, которые были вызваны причинами, которые оставались загадочными, когда она изначально была построена. Но как Менделеев пришел построить свой памятник?

Ранние годы

Дмитрий вырос в Сибири, на окраине западной цивилизации.Его дом, Тобольск, находится на 1000 км ближе к Пекину, чем к Парижу, и его путь к научному успеху оттуда был трудным. Он был самым младшим из более чем дюжины братьев и сестер Менделеева, и вскоре после его рождения в 1834 году плохое здоровье вынудило его отца Ивана, учителя средней школы, уйти на пенсию. Несоответствие пенсии Ивану заставило его жену Марию взять на себя управление полузаброшенным стекольным заводом, которым раньше руководил ее брат.

Это предприятие содержало семью до 1848 года, когда оно сгорело.Потом Иван умер, и в 1849 году Мария увезла двоих младших детей в Москву, надеясь, что ее брат поможет Дмитрию поступить там в университет. Когда этот план провалился, они переехали в Санкт-Петербург, и в 1850 году Дмитрий был принят (несколько неохотно) в училище, где его отец учился на учителя. Там преподаватель — Александр Воскресенский, учившийся в Германии у Юстуса Либиха, — поощрял интерес Дмитрия к химии.

Он получил высшее образование в 1855 году, и его диссертация — об изоморфизме и других взаимосвязях между физической формой и химическим составом — была опубликована в горном журнале.Затем последовали статьи для научных и технических периодических изданий, но у него не было надежного дохода. К тому времени его мать и сестра умерли, а сам он страдал от туберкулеза. Однако год обучения в более благоприятном климате Крыма значительно улучшил его здоровье, и новый врач уверенно опроверг предыдущий диагноз.

Осенью 1856 г. Менделеев успешно защитил кандидатскую диссертацию о связи удельных объемов веществ с их кристаллографическими и химическими свойствами.Вскоре после этого Санкт-Петербургский университет предоставил ему лицензию преподавателя химии, что дало ему доступ в свою лабораторию. В 1859 г. он получил государственное финансирование на двухгодичное обучение за границей.

Построение карьеры

В Гейдельбергском университете в Германии Менделеев проводил исследования по нескольким темам, включая поверхностное натяжение, капиллярность и испарение, и на протяжении всей своей карьеры он сохранял интерес к межмолекулярным силам. В 1860 году он посетил конференцию в Карлсруэ, где итальянский химик Станислау Канниццаро ​​выступил с новаторской статьей об атомных весах (теперь называемых относительными атомными массами).Это был решающий шаг на пути к периодической системе, поскольку ранее велись серьезные споры по поводу присвоения атомных весов элементам.

Некоторые химики утверждали, что эти веса не имеют значения, или вообще отрицали физическое существование атомов. Другие предпочитали систему, основанную на атомной массе кислорода восемь для кислорода, предполагая, что формула воды была HO, а не H 2 O. Но в Карлсруэ Канниццарро возродил идеи своего земляка Амадео Авогадро, чтобы поддержать H 2 O формула воды и атомный вес 16 для кислорода.В течение 1860-х годов мнение изменилось в его пользу — к счастью для Менделеева, поскольку закономерности, которые указывали ему на периодическую таблицу, были бы менее заметны в старой системе.

Вернувшись в Санкт-Петербург в 1861 году, Менделеев возобновил преподавание в университете, одновременно читая лекции в Технологическом институте города. Кроме того, он опубликовал учебник по органической химии и несколько статей для технической энциклопедии, а также много путешествовал в поисках возможностей применить научные открытия для экономического развития России.Посещение бакинских нефтяных месторождений в 1863 году положило начало его долгой приверженности развивающейся нефтехимической промышленности, например.

Докторская диссертация Менделеева (по теории растворов) была принята в 1865 году, а в 1867 году университет назначил его профессором общей химии. От него требовалось читать лекции по неорганической химии, и, поскольку не существовало удовлетворительного учебника русского языка, он начал его писать. Это сосредоточило его внимание на задаче упорядочения химических элементов.Несколько других, в том числе Леопольд Гмелин в Германии, Жан Батист Дюма во Франции и Джон Ньюлендс в Англии, пытались это сделать, но с ограниченным успехом. Менделеев знал о некоторых из этих усилий, но его собственный подход отличался в важных отношениях.

Кладет карты на стол

Прорыв произошел в начале 1869 года, когда Менделеев готовился к очередной промышленной поездке — на этот раз для исследования и совершенствования технологий производства сыра. Между тем, завершив первый том своего учебника, он изо всех сил пытался создать основу для второго.Позже он вспомнил процесс следующим образом:

‘Итак, я начал искать и записывать элементы с их атомным весом и типичными свойствами, аналогичные элементы и подобные атомные веса на отдельных карточках, и это вскоре убедило меня, что свойства элементов находятся в периодической зависимости от их атомные веса … ‘
Д. Менделеев, Основы химии , 1905 (курсив добавлен)

Менделеев раскладывал свои карты столбцами и рядами, как в пасьянсе или в пасьянсе — его любимом занятии во время железнодорожных путешествий.Вертикальные столбцы перечисляли известные элементы в порядке возрастания атомного веса, при этом новый столбец начинался всякий раз, когда это позволяло ему уместить элементы с аналогичными характеристиками в один и тот же горизонтальный ряд.

Как отмечали другие химики, несколько групп элементов, в частности щелочные металлы и галогены, явно принадлежали друг другу. Но многие другие, особенно редкоземельные элементы (лантаноиды), представляли проблемы, как бы они ни были организованы. На этом этапе Менделеев, в отличие от большинства своих предшественников, отказался прекращать борьбу.

Если положение элемента в его таблице казалось аномальным, он был готов скорректировать его атомный вес, чтобы дать ему более совместимых компаньонов. Например, он предложил формулу оксида бериллия BeO, а не принятую формулу Be 2 O 3 . Это снизило атомный вес бериллия, что позволило ему определить местонахождение его с магнием, а не с алюминием.

6 марта 1869 года первый черновой набросок его стола был представлен Русскому химическому обществу (организации, которую он помог основать несколькими месяцами ранее).Позже в том же году журнал общества опубликовал более продуманную версию, краткое изложение которой появилось в немецком переводе. За пределами России он привлек мало внимания, но Менделеев упорно продолжал раскладывать карты на свой стол.

Обратите внимание на пробелы

Пересмотренная диаграмма Менделеева, опубликованная в 1871 году, выглядит более привычной для современного глаза. Для его компиляции он сделал дополнительные предположения. Например, он снизил атомный вес теллура, сделав его соседний йод более тяжелым из двух.Это позволило ему связать йод с галогенами, а теллур с серой и селеном. В то время такие корректировки находились в пределах экспериментальной ошибки. Но Менделеев не мог предвидеть, что атомный номер, а не атомный вес позже станет принципом упорядочения таблицы, или что идентификация изотопов с помощью масс-спектрометрии в конечном итоге объяснит эти и другие аномалии.

С такой же смелостью Менделеев усилил последовательность своей таблицы, оставив зазоры для еще не обнаруженных элементов, чтобы завершить задуманную им схему.Помимо предсказания их химического характера, он также присвоил им условные значения физических свойств, таких как удельный вес и температура плавления.

Первый — галлий — был идентифицирован спектроскопически французским химиком Полем Лекоком де Буабодраном в 1875 году. Когда его стало достаточно для испытаний, все свойства галлия совпали с предсказаниями Менделеева, за исключением его удельного веса, который оказался равным 4,7. Однако после того, как Менделеев рекомендовал новые измерения, оказалось, что оно равно 5.9 — практически совпадает с его предсказанной фигурой.

Открытие скандия в 1879 году и германия в 1885 году — оба проявляли свойства, предсказанные для них Менделеевым, — убедило большее количество химиков в том, что его таблица, несмотря на оставшиеся аномалии, слишком полезна, чтобы ее игнорировать. Между тем, другие исследователи (особенно Лотар Мейер из Германии) также выявили периодические изменения физических свойств элементов. Менделеев позже заметил: «Хотя у меня были сомнения по поводу некоторых неясных моментов, я ни разу не усомнился в универсальности этого закона, потому что он не может быть результатом случайности.’[Менделеев, op cit ]

Менделеев, хотя и был прав в отношении всеобъемлющего принципа периодичности, не был непогрешимым пророком. Он предсказал несколько других элементов, которые так и не были обнаружены. И до конца своей жизни он утверждал, что эфир — существенный, но необнаруживаемый компонент в тогда принятых теориях света и электромагнетизма — на самом деле был химическим элементом, хотя ему не удалось выделить его в лаборатории. Он предположил, что это может быть самый легкий из благородных газов с атомным весом 0.17.

Поздние годы

В личной жизни Менделеев был вызывающе нестандартен. Он стригся и стриг бороду только раз в год, отказавшись изменить этот обычай даже для аудиенции у царя. Кроме того, его домашние распорядки были несколько необычными. В 1862 году он женился на Феосве Лещевой, которую вела в ее сторону старшая сестра из лучших побуждений, которая подумала, что ему пора остепениться. У пары было двое детей, но после периода нарастающего взаимного недовольства они согласились расстаться, попеременно занимая городской дом Дмитрия и его загородный дом.

Спустя несколько лет Дмитрий влюбился в 17-летнюю студентку художественного факультета Анну Попову. Когда родители Анны отправили ее продолжать учебу в Рим, Дмитрий последовал за ней, и в 1881 году 47-летний мужчина сделал предложение о замужестве. Анна согласилась, но даже после развода Дмитрия и Феосвы оставалось еще одно препятствие. Русская православная церковь признала гражданский развод, но потребовала семилетнего перерыва перед последующим браком. Тем не менее, в 1882 году Дмитрий нашел священника, готового (за существенную плату) провести обряд преждевременно, и, несмотря на их неоднозначное и технически двоеженское положение, пара счастливо жила вместе и вырастила четверых детей.

В политике Менделеев также был индивидуалистом — откровенным либералом, который оставил свою профессуру в 1890 году, чтобы отмежеваться от жесткого подавления правительством студенческих протестов. Этот жест приветствовали его ученики, но вызвал неприязнь в официальных кругах. Тем не менее Сергий Витте, министр финансов России с 1892 года, оценил вклад Менделеева и в 1893 году назначил его главой правительственного бюро мер и весов. Исходя из этого, он продолжал применять научные знания для содействия экономическому развитию России.

В 1905 году Лондонское Королевское общество удостоило Менделеева медали Копли, уже получив медаль Дэви в 1882 году. В 1906 году он был номинирован на Нобелевскую премию, но, хотя комиссия по химии поддержала его кандидатуру, комитет по наградам постановил, что его открытие было не недавним. достаточно, чтобы квалифицировать его для рассмотрения. На это решение, вероятно, повлиял шведский физикохимик Сванте Аррениус, который в прошлом конфликтовал с Менделеевым.

Спустя почти полвека после своей смерти в 1907 году Менделеев вступил в еще более эксклюзивный клуб.В 1955 году физики в кампусе Калифорнийского университета в Беркли засыпали элемент 99 (эйнштейний) альфа-частицами, чтобы получить следы элемента 101. Официально подтвержденный как «менделевий», этот новый элемент включил его имя в созданную им иконку. К тому времени расположение стола стало объяснимым с точки зрения субатомных структур и квантового обмена энергией на уровне деталей, который Менделеев никогда не мог предвидеть. Однако это никоим образом не умаляет значимости его достижения.

Другие до него предположили, что список известных элементов может быть упорядочен по осмысленному образцу. Они отметили важные соответствия, но не нашли окончательной картины. Менделеев, однако, был убежден, что химические элементы следует рассматривать как коллективное целое. Вооруженный этой убежденностью, он придал своей таблице согласованность, смело пересматривая позиции некоторых известных элементов и оставляя пробелы для других, еще не обнаруженных. Хотя некоторые из его предсказаний были неверными, он набрал достаточно очков, чтобы сделать свою таблицу основой для нашего понимания элементов и подтвердить свой статус одного из основоположников современной химии.

Майк Саттон, историк науки из Ньюкасла, Великобритания

Дополнительная литература

WH Brock, The Fontana History of Chemistry , Fontana Press, 1993
M Fontani, M Costa and MV Orna, The Lost Elements: The Periodic Table’s Shadow Side, Oxford University Press, 2015
ER Scerri, The Periodic Таблица: история и значение , Oxford University Press, 2006

Дмитрий Менделеев | Биография, Периодическая таблица и факты

Дмитрий Менделеев , русский полностью Дмитрий Иванович Менделеев , (родился 27 января (8 февраля по новому стилю) 1834 года, Тобольск, Сибирь, Российская Империя — умер 20 января (2 февраля) 1907 года, г.Санкт-Петербург, Россия), русский химик, разработавший периодическую классификацию элементов. Менделеев обнаружил, что, когда все известные химические элементы расположены в порядке возрастания атомного веса, полученная таблица показывает повторяющийся образец или периодичность свойств внутри групп элементов. В своей версии периодической таблицы 1871 года он оставил пробелы в местах, где, как он считал, найдут свое место неизвестные элементы. Он даже предсказал вероятные свойства трех потенциальных элементов.Последующее доказательство многих его предсказаний при его жизни прославило Менделеева как основателя периодического закона.

Популярные вопросы

Что сделал Дмитрий Менделеев?

Дмитрий Менделеев разработал периодическую классификацию химических элементов, в которой элементы расположены в порядке возрастания атомного веса.

Какими были ранние годы жизни Дмитрия Менделеева?

Родителями Дмитрия Менделеева были учитель Иван Менделеев и Мария Корнилева.Иван ослеп в 1834 году, в год рождения Дмитрия, и умер в 1847 году. Мария тогда руководила стекольным заводом. Однако в 1848 году фабрика сгорела, и Дмитрий переехал в Петербург, чтобы продолжить образование.

Чем занимался Дмитрий Менделеев?

В 1865 году Дмитрий Менделеев стал профессором химической технологии Петербургского университета. Он стал там профессором общей химии в 1867 году и преподавал до 1890 года.

Ранние годы и образование

Менделеев родился в небольшом сибирском городке Тобольске последним из 14 выживших детей (или 13, в зависимости от источника) Ивана. Учитель местной гимназии Павлович Менделеев и Мария Дмитриевна Корнилева.Отец Дмитрия ослеп в год рождения Дмитрия и умер в 1847 году. Чтобы поддержать семью, его мать обратилась в управление небольшой стекольной фабрикой, принадлежавшей ее семье в соседнем городе. В декабре 1848 года фабрика сгорела, и мать забрала его в Петербург, где он поступил в Главный педагогический институт. Его мать умерла вскоре после этого, и Менделеев окончил институт в 1855 году. Он получил свою первую должность преподавателя в Симферополе в Крыму. Он пробыл там всего два месяца и, недолго проучившись в одесском лицее, решил вернуться в Петербург.Петербург, чтобы продолжить образование. Он получил степень магистра в 1856 году и начал проводить исследования в области органической химии. Получив государственную стипендию, он уехал учиться за границу на два года в Гейдельбергский университет. Вместо того, чтобы тесно сотрудничать с выдающимися химиками университета, включая Роберта Бунзена, Эмиля Эрленмейера и Августа Кекуле, он организовал лабораторию в своей собственной квартире. В сентябре 1860 года он посетил Международный химический конгресс в Карлсруэ, созванный для обсуждения таких важных вопросов, как атомный вес, химические символы и химические формулы.Там он встретился и установил контакты со многими ведущими химиками Европы. В последующие годы Менделеев особенно запомнил работу итальянского химика Станислао Канниццаро, в которой разъяснялось понятие атомного веса.

В 1861 году Менделеев вернулся в Петербург, где в 1864 году получил звание профессора Технологического института. После защиты докторской диссертации в 1865 году он был назначен профессором химической технологии Санкт-Петербургского университета.-Петербург (ныне Санкт-Петербургский государственный университет). Он стал профессором общей химии в 1867 году и продолжал преподавать там до 1890 года.

Начав преподавать неорганическую химию, Менделеев не мог найти учебник, который отвечал бы его потребностям. Поскольку в 1861 году он уже издал учебник по органической химии, удостоенный престижной Демидовской премии, он задумал написать еще один. В результате получился классик Основы химии (1868–71; Основы химии ), выдержавший множество изданий и переводов.Когда Менделеев начал составлять главу о галогенных элементах (хлор и его аналоги) в конце первого тома, он сравнивал свойства этой группы элементов со свойствами группы щелочных металлов, таких как натрий. Внутри этих двух групп разнородных элементов он обнаружил сходство в изменении атомных весов и задался вопросом, проявляют ли другие группы элементов аналогичные свойства. Изучив щелочноземельные земли, Менделеев установил, что порядок атомных весов можно использовать не только для расположения элементов внутри каждой группы, но и для расположения самих групп.Таким образом, в своем стремлении осмыслить уже существующие обширные знания о химических и физических свойствах химических элементов и их соединений, Менделеев открыл периодический закон.

Периодическая таблица Менделеева

Периодическая таблица элементов из одной из первых созданных периодических таблиц Дмитрия Менделеева Основы химии (1869; Основы химии ).

© Photos.com/Thinkstock
Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишитесь сейчас

Его недавно сформулированный закон был объявлен Русскому химическому обществу в марте 1869 года с утверждением, что «элементы, упорядоченные в соответствии со значением их атомного веса, обладают четкой периодичностью свойств». Закон Менделеева позволил ему составить систематизированную таблицу всех 70 элементов, известных на тот момент. Он настолько верил в справедливость периодического закона, что предложил изменения общепринятых значений атомного веса нескольких элементов и предсказал расположение неизвестных элементов в таблице вместе с их свойствами.Сначала периодическая система не вызывала интереса у химиков. Однако с открытием предсказанных элементов, особенно галлия в 1875 году, скандия в 1879 году и германия в 1886 году, он начал завоевывать широкое признание. Постепенно периодический закон и таблица стали основой большей части химической теории. К моменту смерти Менделеева в 1907 году он пользовался международным признанием и был награжден знаками отличия и наградами многих стран.

Дмитрий Менделеев

Дмитрий Менделеев, холст, масло Ивана Крамского, 1878 г.

© Архив всемирной истории / возрастной фотосток

химический элемент | Определение, происхождение, распространение и факты

Химический элемент , также называемый элементом , любое вещество, которое не может быть разложено на более простые вещества с помощью обычных химических процессов. Элементы — это фундаментальные материалы, из которых состоит вся материя.

Британская викторина

Основы химии

Возможно, вы знаете, что элементы составляют воздух, которым мы дышим, и воду, которую мы пьем, но знаете ли вы о них больше? Какой элемент почти такой же легкий, как водород? Что вы называете смесью двух химических элементов? Узнайте ответы в этой викторине.

В этой статье рассматривается происхождение элементов и их распространенность во Вселенной. Подробно рассматривается геохимическое распределение этих элементарных веществ в земной коре и недрах, а также их присутствие в гидросфере и атмосфере. В статье также рассматривается периодический закон и табличное расположение элементов на его основе. Для получения подробной информации о соединениях элементов, см. химическое соединение.

The Editors of Encyclopaedia Britannica

Общие наблюдения

В настоящее время известно 118 химических элементов. Около 20 процентов из них не существуют в природе (или присутствуют только в следовых количествах) и известны только потому, что были синтетически получены в лаборатории. Из известных элементов 11 (водород, азот, кислород, фтор, хлор и шесть благородных газов) являются газами при обычных условиях, два (бром и ртуть) являются жидкостями (еще два, цезий и галлий, плавятся примерно при температуре выше комнатной температуры), а остальное — твердые частицы.Элементы могут объединяться друг с другом, образуя широкий спектр более сложных веществ, называемых соединениями. Число возможных соединений практически бесконечно; возможно, известен миллион, и каждый день открывается все больше. Когда два или более элемента объединяются в соединение, они теряют свою индивидуальность, и продукт имеет характеристики, совершенно отличные от характеристик составляющих его элементов. Газообразные элементы водород и кислород, например, с совершенно разными свойствами, могут объединяться с образованием сложной воды, которая имеет совершенно другие свойства, чем кислород или водород.Очевидно, что вода не является элементом, потому что она состоит из двух веществ, водорода и кислорода, и фактически может химически разлагаться на них; эти два вещества, однако, являются элементами, потому что они не могут быть разложены на более простые вещества никаким известным химическим процессом. Большинство образцов естественного вещества представляют собой физические смеси соединений. Например, морская вода представляет собой смесь воды и большого количества других соединений, наиболее распространенным из которых является хлорид натрия или поваренная соль. Смеси отличаются от соединений тем, что их можно разделить на составные части с помощью физических процессов; например, простой процесс испарения отделяет воду от других компонентов морской воды.

Историческое развитие концепции элемента

Современная концепция элемента недвусмысленна, поскольку она зависит от использования химических и физических процессов в качестве средства отделения элементов от соединений и смесей. Однако существование фундаментальных веществ, из которых состоит вся материя, было основой многих теоретических рассуждений с самого начала истории. Древнегреческие философы Фалес, Анаксимен и Гераклит предполагали, что вся материя состоит из одного существенного принципа — элемента.Фалес считал, что этот элемент — вода; Анаксимен предложил воздух; и Гераклит, огонь. Другой греческий философ, Эмпедокл, выразил иную веру — что все вещества состоят из четырех элементов: воздуха, земли, огня и воды. Аристотель согласился и подчеркнул, что эти четыре элемента являются носителями фундаментальных свойств: сухость и тепло связаны с огнем, тепло и влага — с воздухом, влажность и холод — с водой, а холод и сухость — с землей. В мышлении этих философов все другие вещества должны были быть комбинациями четырех элементов, и считалось, что свойства веществ отражают их элементный состав.Таким образом, греческая мысль заключала в себе идею о том, что вся материя может быть понята в терминах элементарных качеств; в этом смысле сами элементы считались нематериальными. Греческое понятие элемента, которое было принято почти 2000 лет, содержало только один аспект современного определения, а именно, что элементы обладают характерными свойствами.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Во второй половине средневековья, когда алхимики стали более изощренными в своих знаниях о химических процессах, греческие концепции состава материи стали менее удовлетворительными.Были введены дополнительные элементарные качества, чтобы приспособиться к недавно обнаруженным химическим превращениям. Таким образом, сера стала олицетворять горючесть, ртуть — летучесть или текучесть, а соль — стойкость в огне (или негорючесть). Эти три алхимических элемента или принципа также представляют собой абстракции свойств, отражающих природу материи, а не физических субстанций.

Важное различие между смесью и химическим соединением в конце концов было понято, и в 1661 году английский химик Роберт Бойль осознал фундаментальную природу химического элемента.Он утверждал, что четыре греческих элемента не могут быть настоящими химическими элементами, потому что они не могут объединяться с образованием других веществ и не могут быть извлечены из других веществ. Бойль подчеркивал физическую природу элементов и соотносил их с соединениями, которые они образуют, современными методами.

В 1789 году французский химик Антуан-Лоран Лавуазье опубликовал то, что можно считать первым списком элементарных веществ, основанным на определении Бойля. Список элементов Лавуазье был составлен на основе тщательного количественного исследования реакций разложения и рекомбинации.Поскольку он не мог проводить эксперименты по разложению определенных веществ или формированию их из известных элементов, Лавуазье включил в свой список элементов такие вещества, как известь, глинозем и кремнезем, которые, как теперь известно, являются очень стабильными соединениями. На то, что Лавуазье все еще сохранилось влияние древнегреческой концепции элементов, указывает его включение света и тепла (калорийности) в число элементов.

Семь веществ, признанных сегодня элементами, — золото, серебро, медь, железо, свинец, олово и ртуть — были известны древним, поскольку встречаются в природе в относительно чистой форме.Они упоминаются в Библии и в раннем индуистском медицинском трактате Чарака-самхита . Шестнадцать других элементов были открыты во второй половине 18 века, когда методы отделения элементов от их соединений стали более понятными. Еще восемьдесят два последовали после внедрения количественных аналитических методов.

таблица Менделеева | Определение, элементы, группы, сборы, тенденции и факты

Изучите периодический закон химии, чтобы понять свойства элементов и их взаимосвязь.

Объяснение таблицы Менделеева.

Encyclopædia Britannica, Inc. Посмотреть все видео для этой статьи

Периодическая таблица , полностью Периодическая таблица элементов , в химии организованный массив всех химических элементов в порядке возрастания атомного номера, т. Е. общее количество протонов в атомном ядре. Когда химические элементы расположены таким образом, в их свойствах существует повторяющийся образец, называемый «периодическим законом», в котором элементы в одном столбце (группе) имеют схожие свойства.Первоначальное открытие, сделанное Дмитрием И. Менделеевым в середине XIX века, имело неоценимое значение для развития химии.

таблица Менделеева

Современная версия периодической таблицы элементов (для печати).

Британская энциклопедия, Inc.

Популярные вопросы

Что такое периодическая таблица Менделеева?

Что общего у групп периодической таблицы?

Группы периодической таблицы отображаются в виде вертикальных столбцов, пронумерованных от 1 до 18.Элементы в группе имеют очень похожие химические свойства, которые возникают из количества присутствующих валентных электронов, то есть количества электронов во внешней оболочке атома.

Откуда взялась периодическая таблица Менделеева?

Расположение элементов в периодической таблице определяется их электронной конфигурацией. Из-за принципа исключения Паули не более двух электронов могут заполнить одну и ту же орбиталь. Первый ряд периодической таблицы состоит всего из двух элементов: водорода и гелия.Поскольку у атомов больше электронов, у них появляется больше орбит, доступных для заполнения, и поэтому строки содержат больше элементов, расположенных ниже в таблице.

Почему периодическая таблица Менделеева разделяется?

У периодической таблицы есть две строки внизу, которые обычно отделяются от основной части таблицы. Эти ряды содержат элементы ряда лантаноидов и актиноидов, обычно от 57 до 71 (от лантана до лютеция) и от 89 до 103 (от актиний до лоуренсия) соответственно. Для этого нет никаких научных причин.Это сделано только для того, чтобы стол стал более компактным.

Фактически не было признано до второго десятилетия 20-го века, что порядок элементов в периодической системе — это порядок их атомных номеров, целые числа которых равны положительным электрическим зарядам атомных ядер, выраженным в электронных единицах. . В последующие годы был достигнут большой прогресс в объяснении периодического закона с точки зрения электронного строения атомов и молекул. Это разъяснение повысило ценность закона, который используется сегодня так же активно, как и в начале 20 века, когда он выражал единственную известную взаимосвязь между элементами.

История периодического закона

В первые годы XIX века произошло быстрое развитие аналитической химии — искусства различения различных химических веществ — и, как следствие, накопление обширных знаний о химических и физических свойствах как элементы, так и соединения. Столь быстрое расширение химических знаний вскоре потребовало классификации, поскольку на классификации химических знаний основана не только систематизированная химическая литература, но и лабораторные науки, благодаря которым химия передается как живая наука от одного поколения химиков к другому.Связи между соединениями обнаруживались легче, чем между элементами; так получилось, что классификация элементов на много лет отстала от классификации соединений. Фактически, между химиками не было достигнуто общего согласия относительно классификации элементов в течение почти полувека после того, как системы классификации соединений стали общепринятыми.

интерактивная таблица Менделеева

Современная версия периодической таблицы элементов. Чтобы узнать название элемента, атомный номер, электронную конфигурацию, атомный вес и многое другое, выберите элемент из таблицы.

Encyclopædia Britannica, Inc.

J.W. Доберейнер в 1817 году показал, что объединяющий вес, означающий атомный вес, стронция находится посередине между весом кальция и бария, а несколько лет спустя он показал, что существуют другие такие «триады» (хлор, бром и йод [галогены] и литий, натрий и калий [щелочные металлы]). Ж.-Б.-А. Дюма, Л. Гмелин, Э. Ленссен, Макс фон Петтенкофер и Дж. П. Кук расширили предложения Доберейнера между 1827 и 1858 годами, показав, что аналогичные отношения простираются дальше, чем триады элементов: фтор добавляется к галогенам, а магний — к щелочноземельным элементам. металлы, тогда как кислород, сера, селен и теллур были отнесены к одному семейству, а азот, фосфор, мышьяк, сурьма и висмут — к другому семейству элементов.

Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
Подпишитесь сейчас

Позднее были предприняты попытки показать, что атомные веса элементов могут быть выражены арифметической функцией, а в 1862 году А.-Э.-Б. де Шанкуртуа предложил классификацию элементов, основанную на новых значениях атомных весов, данных системой Станислао Канниццаро ​​1858 года. Де Шанкуртуа нанес атомные веса на поверхность цилиндра с окружностью 16 единиц, что соответствует приблизительному атомному весу кислород.Получившаяся спиральная кривая привела к тому, что тесно связанные элементы оказались в соответствующих точках выше или ниже друг друга на цилиндре, и, как следствие, он предположил, что «свойства элементов являются свойствами чисел», что является замечательным предсказанием в свете современных знаний.

Классификация элементов

В 1864 г.

Добавить комментарий

Ваш адрес email не будет опубликован.