3X 2 график функции: Mathway | Популярные задачи

Содержание

Построить график y 3x 2. Квадратичная и кубическая функции

Разберем как строить график с модулем.

Найдем точки при переходе которых знак модулей меняется.
Каждое выражения, которое под модулем приравниваем к 0. У нас их два x-3 и x+3.
x-3=0 и x+3=0
x=3 и x=-3

У нас числовая прямая разделится на три интервала (-∞;-3)U(-3;3)U(3;+∞). На каждом интервале нужно определить знак под модульных выражений.

1. Это сделать очень просто, рассмотрим первый интервал (-∞;-3). Возьмем с этого отрезка любое значение, например, -4 и подставим в каждое под модульное уравнение вместо значения х.
х=-4
x-3=-4-3=-7 и x+3=-4+3=-1

У обоих выражений знаки отрицательный, значит перед знаком модуля в уравнении ставим минус, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (-∞;-3).

y=

(x-3)-(

(x+3))=-х+3+х+3=6

На интервале (-∞;-3) получился график линейной функции (прямой) у=6

2. Рассмотрим второй интервал (-3;3). Найдем как будет выглядеть уравнение графика на этом отрезке. Возьмем любое число от -3 до 3, например, 0. Подставим вместо значения х значение 0.
х=0
x-3=0-3=-3 и x+3=0+3=3

У первого выражения x-3 знак отрицательный получился, а у второго выражения x+3 положительный. Следовательно, перед выражением x-3 запишем знак минус, а перед вторым выражением знак плюс.

y=

(x-3)-(+

(x+3))=-х+3-х-3=-2x

На интервале (-3;3) получился график линейной функции (прямой) у=-2х

3.Рассмотрим третий интервал (3;+∞). Возьмем с этого отрезка любое значение, например 5, и подставим в каждое под модульное уравнение вместо значения х.

х=5
x-3=5-3=2 и x+3=5+3=8

У обоих выражений знаки получились положительными, значит перед знаком модуля в уравнении ставим плюс, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (3;+∞).

y=+

(x-3)-(+

(x+3))=х-3-х-3=-6

На интервале (3;+∞) получился график линейной функции (прямой) у=-6

4. Теперь подведем итог.Постоим график y=|x-3|-|x+3|.
На интервале (-∞;-3) строим график линейной функции (прямой) у=6.

На интервале (-3;3) строим график линейной функции (прямой) у=-2х.

Чтобы построить график у=-2х подберем несколько точек.
x=-3 y=-2*(-3)=6 получилась точка (-3;6)
x=0 y=-2*0=0 получилась точка (0;0)
x=3 y=-2*(3)=-6 получилась точка (3;-6)
На интервале (3;+∞) строим график линейной функции (прямой) у=-6.

5. Теперь проанализируем результат и ответим на вопрос задания найдем значение k, при которых прямая y=kx имеет с графиком y=|x-3|-|x+3| данной функции ровно одну общую точку.

Прямая y=kx при любом значении k всегда будет проходить через точку (0;0). Поэтому мы можем изменить только наклон данной прямой y=kx, а за наклон у нас отвечает коэффициент k.

Если k будет любое положительное число, то будет одно пересечение прямой y=kx с графиком y=|x-3|-|x+3|. Этот вариант нам подходит.

Если k будет принимать значение (-2;0), то пересечений прямой y=kx с графиком y=|x-3|-|x+3| будет три. Этот вариант нам не подходит.

Если k=-2, решений будет множество [-2;2], потому что прямая y=kx будет совпадать с графиком y=|x-3|-|x+3| на данном участке. Этот вариант нам не подходит.

Если k будет меньше -2, то прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.Этот вариант нам подходит.

Если k=0, то пересечений прямой y=kx с графиком y=|x-3|-|x+3| также будет одно.Этот вариант нам подходит.

Ответ: при k принадлежащей интервалу (-∞;-2)U и возрастает на промежутке }

Постройте график функции y 3x 2 6x. Постройте график функции y=

Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

1. Построение графика функции y = |f(x)|

Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

1) Построить аккуратно и внимательно график функции y = f(x).

2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

Пример 1. Изобразить график функции y = |x 2 – 4x + 3|

1) Строим график функции y = x 2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

y = 0 2 – 4 · 0 + 3 = 3.

Следовательно, парабола пересекает ось 0y в точке (0, 3).

Координаты вершины параболы:

x в = -(-4/2) = 2, y в = 2 2 – 4 · 2 + 3 = -1.

Следовательно, точка (2, -1) является вершиной данной параболы.

Рисуем параболу, используя полученные данные (рис. 1)

2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

3) Получаем график исходной функции (рис. 2
, изображен пунктиром).

2.
Построение графика функции y = f(|x|)

Заметим, что функции вида y = f(|x|) являются четными:

y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

1) Построить график функции y = f(x).

2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 2. Изобразить график функции y = x 2 – 4 · |x| + 3

Так как x 2 = |x| 2 , то исходную функцию можно переписать в следующем виде: y = |x| 2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

1) Строим аккуратно и внимательно график функции y = x 2 – 4 · x + 3 (см. также рис. 1
).

2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отображаем правую часть графика симметрично оси 0y.

(рис. 3)
.

Пример 3. Изобразить график функции y = log 2 |x|

Применяем схему, данную выше.

1) Строим график функции y = log 2 x (рис. 4)
.

3. Построение графика функции y = |f(|x|)|

Заметим, что функции вида y = |f(|x|)| тоже являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому, их графики симметричны относительно оси 0y. Множество значений таких функций: y
0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

Чтобы построить график функции y = |f(|x|)|, необходимо:

1) Построить аккуратно график функции y = f(|x|).

2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 4. Изобразить график функции y = |-x 2 + 2|x| – 1|.

1) Заметим, что x 2 = |x| 2 . Значит, вместо исходной функции y = -x 2 + 2|x| – 1

можно использовать функцию y = -|x| 2 + 2|x| – 1, так как их графики совпадают.

Строим график y = -|x| 2 + 2|x| – 1. Для этого применяем алгоритм 2.

a) Строим график функции y = -x 2 + 2x – 1 (рис. 6)
.

b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

c) Отображаем полученную часть графика симметрично оси 0y.

d) Полученный график изображен на рисунке пунктиром (рис. 7)
.

2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

4) Полученный график изображен на рисунке пунктиром (рис. 8)
.

Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

a) Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9)
.

Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x.

4) Окончательный график изображен на рисунке (рис. 11)
.

сайт,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Разберем как строить график с модулем.

Найдем точки при переходе которых знак модулей меняется.
Каждое выражения, которое под модулем приравниваем к 0. У нас их два x-3 и x+3.
x-3=0 и x+3=0
x=3 и x=-3

У нас числовая прямая разделится на три интервала (-∞;-3)U(-3;3)U(3;+∞). На каждом интервале нужно определить знак под модульных выражений.

1. Это сделать очень просто, рассмотрим первый интервал (-∞;-3). Возьмем с этого отрезка любое значение, например, -4 и подставим в каждое под модульное уравнение вместо значения х.
х=-4
x-3=-4-3=-7 и x+3=-4+3=-1

У обоих выражений знаки отрицательный, значит перед знаком модуля в уравнении ставим минус, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (-∞;-3).

y=

(x-3)-(

(x+3))=-х+3+х+3=6

На интервале (-∞;-3) получился график линейной функции (прямой) у=6

2. Рассмотрим второй интервал (-3;3). Найдем как будет выглядеть уравнение графика на этом отрезке. Возьмем любое число от -3 до 3, например, 0. Подставим вместо значения х значение 0.
х=0
x-3=0-3=-3 и x+3=0+3=3

У первого выражения x-3 знак отрицательный получился, а у второго выражения x+3 положительный. Следовательно, перед выражением x-3 запишем знак минус, а перед вторым выражением знак плюс.

y=

(x-3)-(+

(x+3))=-х+3-х-3=-2x

На интервале (-3;3) получился график линейной функции (прямой) у=-2х

3.Рассмотрим третий интервал (3;+∞). Возьмем с этого отрезка любое значение, например 5, и подставим в каждое под модульное уравнение вместо значения х.

х=5
x-3=5-3=2 и x+3=5+3=8

У обоих выражений знаки получились положительными, значит перед знаком модуля в уравнении ставим плюс, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (3;+∞).

y=+

(x-3)-(+

(x+3))=х-3-х-3=-6

На интервале (3;+∞) получился график линейной функции (прямой) у=-6

4. Теперь подведем итог.Постоим график y=|x-3|-|x+3|.
На интервале (-∞;-3) строим график линейной функции (прямой) у=6.

На интервале (-3;3) строим график линейной функции (прямой) у=-2х.

Чтобы построить график у=-2х подберем несколько точек.
x=-3 y=-2*(-3)=6 получилась точка (-3;6)
x=0 y=-2*0=0 получилась точка (0;0)
x=3 y=-2*(3)=-6 получилась точка (3;-6)
На интервале (3;+∞) строим график линейной функции (прямой) у=-6.

5. Теперь проанализируем результат и ответим на вопрос задания найдем значение k, при которых прямая y=kx имеет с графиком y=|x-3|-|x+3| данной функции ровно одну общую точку.

Прямая y=kx при любом значении k всегда будет проходить через точку (0;0). Поэтому мы можем изменить только наклон данной прямой y=kx, а за наклон у нас отвечает коэффициент k.

Если k будет любое положительное число, то будет одно пересечение прямой y=kx с графиком y=|x-3|-|x+3|. Этот вариант нам подходит.

Если k будет принимать значение (-2;0), то пересечений прямой y=kx с графиком y=|x-3|-|x+3| будет три. 2-2x-3) и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.

Функция состоит из трех квадратных трехчленов. разложим их на множители по формуле

ax2 + bx + c = a(x — x1)(x — x2), где х1 и х2 — корни квадратных уравнений.

Все три квадратных уравнения приведенные. Это значит, что можно найти их корни по теореме Виета. Именно поэтому я сразу напишу разложения этих трехчленов на множители. Конечно, решать через дискриминант никто не запрещал и ошибкой это не будет.

Итак, после разложения на множители функция примет такой вид:

Видно невооруженным глазом, что скобки из знаменателя сокращаются со скобками из числителя. Это просто супер-пупер! Но надо обязательно оговориться, что знаменатель не может быть равен нулю, а значит, что x ≠ -1 и x ≠ 3. Эти исключения подразумевают выколотые точки на нашем будущем графике.

После сокращения раскрываем оставшиеся скобки.

О, чудо! Это квадратичная функция! График — парабола!

Ищем ее вершину О (m; n).

Первая координата m, которую мы будем отмечать на оси Ох, находится по формуле.

А чтобы найти вторую координату надо m подставить в упрощенную ранее функцию и посчитать.

В общем, вершина параболы имеет координаты (-0,5; -2,25).

Чертим координатную плоскость и отмечаем вершину.

Мастера по рисованию парабол могут ее начертить, не прибегая к таблице по нахождению координат других точек. А вот тем, кто не в очень теплых отношениях с параболами, придется ее рисовать.

Поскольку я мастер — обойдусь без таблицы 🙂

Не забываем про выколотые точки!

В условии задачи сказано, что некоторая прямая y = m должна иметь одну общую точку с параболой. Эта прямая будет параллельна оси Ох и одну общую точку она будет иметь в выколотых точках и вершине параболы.

Ответ: 10; -2; -2,25.

 

P.S. Бывает так, что график нарисован очень криво. Как не ошибиться в координатах выколотых точек? Очень просто. В нашей задаче x ≠ -1 и x ≠ 3. Подставь эти числа в функцию (упрощенную, разумеется), посчитай и найдешь, чему должны быть не равны координаты по игреку (у ≠ -2 и у ≠ 10).

Квадратичная функция: ее график и свойства 9 класс онлайн-подготовка на Ростелеком Лицей


Тема 4.


Всем привет! Сегодня мы поговорим об одной из самых важных функций, о квадратичной функции.


Квадратичной функцией называется функция, которую можно задать y = ax2 + bx + c, где x – переменная, a, b и c – некоторые числа, причем a ≠ 0.


Изучение квадратичной функции мы начнем с частного случая, а именно с функции y = ax2. Мы уже встречались с функцией y = x2, когда a = 1. Ее графиком является парабола.


Построим в одной системе координат


y = x2; y = 2x2; y = 3x2.


y = x2




x


-3


-2


-1


0


1


2


3


y


9


4


1


0


1


4


9


y = 2x2




x


-3


-2


-1


0


1


2


3


y


18


8


2


0


2


8


18


При любом x ≠ 0 значение функции y = x2 в 2 раза больше соответствующих значений функции y = x2. То есть график функции y = x2 можно получить из параболы y = x2 растяжением от оси x в 2 раза.


Аналогично, график функции y = 3x2 можно получить из графика функции y = x2 растяжением от оси x в 3 раза.


Построим теперь в одной системе координат графики функции y = x2, y=12×2, y=13×2.


y=12×2




x


-3


-2


-1


0


1


2


3


y


4,5


2


0,5


0


0,5


2


4,5


Заметим, что при любом x ≠ 0 значения функции y=12×2меньше соответствующих значений функции y = x2 в 2 раза.


Таким образом, график функции y=12×2 можно получить из параболы y = x2 сжатием к оси x в 2 раза.


y=13×2




x


-3


-2


-1


0


1


2


3


y


3


43


13


0


13


43


3


Аналогично график функции y=13×2 можно получить из графика функции = x2 сжатием к оси x в 3 раза.


Давай сделаем вывод:


График функции y = ax2 можно получить из параболы y = x2 растяжением от оси x в a раз, если a > 1, и сжатием к оси x в 1a раз, если 0 a


Рассмотрим теперь случай, когда a y=-13×2. Составим таблицу значений:




x


-3


-2


-1


0


1


2


3


y


-3


-43


-13


0


-13


-43


-3


Сравним графики функций y=13×2 и y=-13×2. При любом x ≠ 0 значения этих функций являются противоположными числами. Значит, соответствующие точки графиков симметричны относительно оси x.


То есть графики функций y = ax2 и y = —ax2 при a ≠ 0 симметричны относительно оси x. Графиком функции y = ax2, как и графиком функции y = x2 является парабола


Сформулируем свойства функции y = ax2 при a > 0.


  1. Область определения -∞;+∞;

  2. Область значений функций 0;+∞

  3. Если x = 0, то y = 0, т.е. график функции проходит через начало координат.

  4. Если x ≠ 0, то y > 0. График функции расположен в верхней полуплоскости.

  5. График функции симметричен относительно оси y.

  6. Функция убывает в промежутке -∞;0 и возрастает в промежутке 0;+∞.

  7. При x = 0 функция принимает наименьшее значение, равное 0. Наибольшего значения функции нет.


Сформулируем свойства функции y = ax2 при a


  1. Область определения -∞;+∞;

  2. Область значений функций -∞;0

  3. Если x = 0, то y = 0, т.е. график функции проходит через начало координат.

  4. Если x ≠ 0, то y

  5. График функции симметричен относительно оси y.

  6. Функция убывает в промежутке 0;+∞ и возрастает в промежутке -∞;0.

  7. При x = 0 функция принимает наибольшее значение, равное 0. Наименьшего значения функции нет.


От коэффициента a зависит направление ветвей параболы. {2}} f{\left (x \right )} =  Вторая производная
6 \left(2 x + 1\right) = 0.
Решаем это уравнение.
Корни этого уравнения
x_{1} = — \frac{1}{2}
Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
Вогнутая на промежутках [-1/2, oo)Выпуклая на промежутках (-oo, -1/2]8. Искомый график функции дан в приложении.

Y 1 3x 2 график. Как построить график функции. Графический способ построения функции

Построение графиков функций, содержащих модули, обычно вызывает немалые затруднения у школьников. Однако, все не так плохо. Достаточно запомнить несколько алгоритмов решения таких задач, и вы сможете без труда построить график даже самой на вид сложной функции. Давайте разберемся, что же это за алгоритмы.

1. Построение графика функции y = |f(x)|

Заметим, что множество значений функций y = |f(x)| : y ≥ 0. Таким образом, графики таких функций всегда расположены полностью в верхней полуплоскости.

Построение графика функции y = |f(x)| состоит из следующих простых четырех этапов.

1) Построить аккуратно и внимательно график функции y = f(x).

2) Оставить без изменения все точки графика, которые находятся выше оси 0x или на ней.

3) Часть графика, которая лежит ниже оси 0x, отобразить симметрично относительно оси 0x.

Пример 1. Изобразить график функции y = |x 2 – 4x + 3|

1) Строим график функции y = x 2 – 4x + 3. Очевидно, что график данной функции – парабола. Найдем координаты всех точек пересечения параболы с осями координат и координаты вершины параболы.

x 2 – 4x + 3 = 0.

x 1 = 3, x 2 = 1.

Следовательно, парабола пересекает ось 0x в точках (3, 0) и (1, 0).

y = 0 2 – 4 · 0 + 3 = 3.

Следовательно, парабола пересекает ось 0y в точке (0, 3).

Координаты вершины параболы:

x в = -(-4/2) = 2, y в = 2 2 – 4 · 2 + 3 = -1.

Следовательно, точка (2, -1) является вершиной данной параболы.

Рисуем параболу, используя полученные данные (рис. 1)

2) Часть графика, лежащую ниже оси 0x, отображаем симметрично относительно оси 0x.

3) Получаем график исходной функции (рис. 2
, изображен пунктиром).

2.
Построение графика функции y = f(|x|)

Заметим, что функции вида y = f(|x|) являются четными:

y(-x) = f(|-x|) = f(|x|) = y(x). Значит, графики таких функций симметричны относительно оси 0y.

Построение графика функции y = f(|x|) состоит из следующей несложной цепочки действий.

1) Построить график функции y = f(x).

2) Оставить ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отобразить указанную в пункте (2) часть графика симметрично оси 0y.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 2. Изобразить график функции y = x 2 – 4 · |x| + 3

Так как x 2 = |x| 2 , то исходную функцию можно переписать в следующем виде: y = |x| 2 – 4 · |x| + 3. А теперь можем применять предложенный выше алгоритм.

1) Строим аккуратно и внимательно график функции y = x 2 – 4 · x + 3 (см. также рис. 1
).

2) Оставляем ту часть графика, для которой x ≥ 0, то есть часть графика, расположенную в правой полуплоскости.

3) Отображаем правую часть графика симметрично оси 0y.

(рис. 3)
.

Пример 3. Изобразить график функции y = log 2 |x|

Применяем схему, данную выше.

1) Строим график функции y = log 2 x (рис. 4)
.

3. Построение графика функции y = |f(|x|)|

Заметим, что функции вида y = |f(|x|)| тоже являются четными. Действительно, y(-x) = y = |f(|-x|)| = y = |f(|x|)| = y(x), и поэтому, их графики симметричны относительно оси 0y. Множество значений таких функций: y
0. Значит, графики таких функций расположены полностью в верхней полуплоскости.

Чтобы построить график функции y = |f(|x|)|, необходимо:

1) Построить аккуратно график функции y = f(|x|).

2) Оставить без изменений ту часть графика, которая находится выше оси 0x или на ней.

3) Часть графика, расположенную ниже оси 0x, отобразить симметрично относительно оси 0x.

4) В качестве окончательного графика выделить объединение кривых, полученных в пунктах (2) и (3).

Пример 4. Изобразить график функции y = |-x 2 + 2|x| – 1|.

1) Заметим, что x 2 = |x| 2 . Значит, вместо исходной функции y = -x 2 + 2|x| – 1

можно использовать функцию y = -|x| 2 + 2|x| – 1, так как их графики совпадают.

Строим график y = -|x| 2 + 2|x| – 1. Для этого применяем алгоритм 2.

a) Строим график функции y = -x 2 + 2x – 1 (рис. 6)
.

b) Оставляем ту часть графика, которая расположена в правой полуплоскости.

c) Отображаем полученную часть графика симметрично оси 0y.

d) Полученный график изображен на рисунке пунктиром (рис. 7)
.

2) Выше оси 0х точек нет, точки на оси 0х оставляем без изменения.

3) Часть графика, расположенную ниже оси 0x, отображаем симметрично относительно 0x.

4) Полученный график изображен на рисунке пунктиром (рис. 8)
.

Пример 5. Построить график функции y = |(2|x| – 4) / (|x| + 3)|

1) Сначала необходимо построить график функции y = (2|x| – 4) / (|x| + 3). Для этого возвращаемся к алгоритму 2.

a) Аккуратно строим график функции y = (2x – 4) / (x + 3) (рис. 9)
.

Заметим, что данная функция является дробно-линейной и ее график есть гипербола. Для построения кривой сначала необходимо найти асимптоты графика. Горизонтальная – y = 2/1 (отношение коэффициентов при x в числителе и знаменателе дроби), вертикальная – x = -3.

2) Ту часть графика, которая находится выше оси 0x или на ней, оставим без изменений.

3) Часть графика, расположенную ниже оси 0x, отобразим симметрично относительно 0x. 3$.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

В золотой век информационных технологий мало кто будет покупать миллиметровку и тратить часы для рисования функции или произвольного набора данных, да и зачем заниматься столь муторной работой, когда можно построить график функции онлайн. Кроме того, подсчитать миллионы значений выражения для правильного отображения практически нереально и сложно, да и несмотря на все усилия получится ломаная линия, а не кривая. Потому компьютер в данном случае – незаменимый помощник.

Что такое график функций

Функция – это правило, по которому каждому элементу одного множества ставится в соответствие некоторый элемент другого множества, например, выражение y = 2x + 1 устанавливает связь между множествами всех значений x и всех значений y, следовательно, это функция. Соответственно, графиком функции будет называться множество точек, координаты которых удовлетворяют заданному выражению.

На рисунке мы видим график функции y = x
. Это прямая и у каждой ее точки есть свои координаты на оси X
и на оси Y
. Исходя из определения, если мы подставим координату X
некоторой точки в данное уравнение, то получим координату этой точки на оси Y
.

Сервисы для построения графиков функций онлайн

Рассмотрим несколько популярных и лучших по сервисов, позволяющих быстро начертить график функции.

Открывает список самый обычный сервис, позволяющий построить график функции по уравнению онлайн. Umath содержит только необходимые инструменты, такие как масштабирование, передвижение по координатной плоскости и просмотр координаты точки на которую указывает мышь.

Инструкция:

  1. Введите ваше уравнение в поле после знака «=».
  2. Нажмите кнопку «Построить график»
    .

Как видите все предельно просто и доступно, синтаксис написания сложных математических функций: с модулем, тригонометрических, показательных — приведен прямо под графиком. Также при необходимости можно задать уравнение параметрическим методом или строить графики в полярной системе координат.

В Yotx есть все функции предыдущего сервиса, но при этом он содержит такие интересные нововведения как создание интервала отображения функции, возможность строить график по табличным данным, а также выводить таблицу с целыми решениями.

Инструкция:

  1. Выберите необходимый способ задания графика.
  2. Введите уравнение.
  3. Задайте интервал.
  4. Нажмите кнопку «Построить»
    .

Для тех, кому лень разбираться, как записать те или иные функции, на этой позиции представлен сервис с возможностью выбирать из списка нужную одним кликом мыши.

Инструкция:

  1. Найдите в списке необходимую вам функцию.
  2. Щелкните на нее левой кнопкой мыши
  3. При необходимости введите коэффициенты в поле «Функция:»
    .
  4. Нажмите кнопку «Построить»
    .

В плане визуализации есть возможность менять цвет графика, а также скрывать его или вовсе удалять.

Desmos безусловно – самый навороченный сервис для построения уравнений онлайн. Передвигая курсор с зажатой левой клавишей мыши по графику можно подробно посмотреть все решения уравнения с точностью до 0,001. Встроенная клавиатура позволяет быстро писать степени и дроби. Самым важным плюсом является возможность записывать уравнение в любом состоянии, не приводя к виду: y = f(x).

Инструкция:

  1. В левом столбце кликните правой кнопкой мыши по свободной строке.
  2. В нижнем левом углу нажмите на значок клавиатуры.
  3. На появившейся панели наберите нужное уравнение (для написания названий функций перейдите в раздел «A B C»).
  4. График строится в реальном времени.

Визуализация просто идеальная, адаптивная, видно, что над приложением работали дизайнеры. Из плюсов можно отметить огромное обилие возможностей, для освоения которых можно посмотреть примеры в меню в верхнем левом углу.

Сайтов для построения графиков функций великое множество, однако каждый волен выбирать для себя исходя из требуемого функционала и личных предпочтений. 3$.
2. Найдем точку А, координата x, которой равна 1,5. Мы видим, что координата функции находится между значениями 3 и 4 (см. рис. 2). Значит надо заказать 4 куба.

Составим таблицу значений функции

Мы видим, что при (куб положительного числа положителен), а при (куб отрицательного числа отрицателен). Следовательно, график расположится на координатной плоскости в I и III четвертях. Заменим значение аргумента х противоположным значением тогда и функция примет противоположное значение; так как если , то

Значит, каждой точке графика соответствует точка того же графика, расположенная симметрично относительно начала координат.

Таким образом, начало координат является центром симметрии графика.

График функции изображён на чертеже 81. Эта линия называется кубической параболой.

В I четверти кубическая парабола (при ) «круто» поднимается

вверх (значения у «быстро» возрастают при возрастания х. см. таблицу), при малых значениях х линия «тесно» подходит к оси абсцисс (при «малых» значение у «весьма мало», см. таблицу). Левая часть кубической параболы (в III четверти) симметрична правой относительно начала координат.

Аккуратно вычерченный график может служить средством приближённого возведения чисел в куб. Так, например, положив найдём по графику

Для приближённого вычисления кубов составлены специальные таблицы.

Такая таблица имеется и в пособии В. М. Брадиса «Четырёхзначные математические таблицы».

Эта таблица содержит приближённые значения кубов чисел от 1 до 10, округлённые до 4-х значащих цифр.

Устройство таблицы кубов и правила пользования ею такие же, как и таблицы квадратов. Однако при увеличении (или уменьшении) числа в 10, 100 и т. д. раз его куб увеличивается (или уменьшается) в 1000, 1000 000 и т. д. раз. Значит, при пользовании таблицей кубов надо иметь в виду следующее правило переноса запятой:

Если в числе перенести запятую на несколько цифр, то в кубе этого числа надо перенести запятую в ту же сторону на утроенное количество цифр.

Поясним сказанное примерами:

1) Вычислить 2,2353. По таблице находим: ; прибавляем к последней цифре поправку 8 на последний знак:

2) Вычислить . Так как то находим

По таблице найдем перенеся запятую, получим

Приближённые формулы. Если в тождестве

число а мало по сравнению с единицей, то, отбросив члены с получим приближённые формулы:

По этим формулам легко найти приближённые кубы чисел, близких к единице, например: точный куб: 1,061208;

Разберем как строить график с модулем.

Найдем точки при переходе которых знак модулей меняется.
Каждое выражения, которое под модулем приравниваем к 0. У нас их два x-3 и x+3.
x-3=0 и x+3=0
x=3 и x=-3

У нас числовая прямая разделится на три интервала (-∞;-3)U(-3;3)U(3;+∞). На каждом интервале нужно определить знак под модульных выражений.

1. Это сделать очень просто, рассмотрим первый интервал (-∞;-3). Возьмем с этого отрезка любое значение, например, -4 и подставим в каждое под модульное уравнение вместо значения х.
х=-4
x-3=-4-3=-7 и x+3=-4+3=-1

У обоих выражений знаки отрицательный, значит перед знаком модуля в уравнении ставим минус, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (-∞;-3).

y=

(x-3)-(

(x+3))=-х+3+х+3=6

На интервале (-∞;-3) получился график линейной функции (прямой) у=6

2. Рассмотрим второй интервал (-3;3). Найдем как будет выглядеть уравнение графика на этом отрезке. Возьмем любое число от -3 до 3, например, 0. Подставим вместо значения х значение 0.
х=0
x-3=0-3=-3 и x+3=0+3=3

У первого выражения x-3 знак отрицательный получился, а у второго выражения x+3 положительный. Следовательно, перед выражением x-3 запишем знак минус, а перед вторым выражением знак плюс.

y=

(x-3)-(+

(x+3))=-х+3-х-3=-2x

На интервале (-3;3) получился график линейной функции (прямой) у=-2х

3.Рассмотрим третий интервал (3;+∞). Возьмем с этого отрезка любое значение, например 5, и подставим в каждое под модульное уравнение вместо значения х.

х=5
x-3=5-3=2 и x+3=5+3=8

У обоих выражений знаки получились положительными, значит перед знаком модуля в уравнении ставим плюс, а вместо знака модуля ставим скобки и получим искомое уравнение на интервале (3;+∞).

y=+

(x-3)-(+

(x+3))=х-3-х-3=-6

На интервале (3;+∞) получился график линейной функции (прямой) у=-6

4. Теперь подведем итог.Постоим график y=|x-3|-|x+3|.
На интервале (-∞;-3) строим график линейной функции (прямой) у=6.

На интервале (-3;3) строим график линейной функции (прямой) у=-2х.

Чтобы построить график у=-2х подберем несколько точек.
x=-3 y=-2*(-3)=6 получилась точка (-3;6)
x=0 y=-2*0=0 получилась точка (0;0)
x=3 y=-2*(3)=-6 получилась точка (3;-6)
На интервале (3;+∞) строим график линейной функции (прямой) у=-6.

5. Теперь проанализируем результат и ответим на вопрос задания найдем значение k, при которых прямая y=kx имеет с графиком y=|x-3|-|x+3| данной функции ровно одну общую точку.

Прямая y=kx при любом значении k всегда будет проходить через точку (0;0). Поэтому мы можем изменить только наклон данной прямой y=kx, а за наклон у нас отвечает коэффициент k.

Если k будет любое положительное число, то будет одно пересечение прямой y=kx с графиком y=|x-3|-|x+3|. Этот вариант нам подходит.

Если k будет принимать значение (-2;0), то пересечений прямой y=kx с графиком y=|x-3|-|x+3| будет три.Этот вариант нам не подходит.

Если k=-2, решений будет множество [-2;2], потому что прямая y=kx будет совпадать с графиком y=|x-3|-|x+3| на данном участке. Этот вариант нам не подходит.

Если k будет меньше -2, то прямая y=kx с графиком y=|x-3|-|x+3| будет иметь одно пересечение.Этот вариант нам подходит.

Если k=0, то пересечений прямой y=kx с графиком y=|x-3|-|x+3| также будет одно.Этот вариант нам подходит.

Ответ: при k принадлежащей интервалу (-∞;-2)U и возрастает на промежутке }

Графические уравнения и системы уравнений с пошаговым решением математических задач

ВВЕДЕНИЕ В КВАДРАТИКУ

Цели

В этом разделе вы будете складывать, вычитать, умножать и строить графики квадратов.

Словарь : Стандартный формат квадратного уравнения : y = ax 2 + bx + c ; a, b, c — постоянные; x — независимая переменная, а y — зависимая переменная. Квадраты также называются полиномами второй степени , потому что наивысший показатель степени равен 2.Уравнение угла наклона-пересечения из второй главы y = mx + b называется полиномом первой степени , потому что наивысший показатель степени равен единице.

Зачем изучать квадратичность? Графики квадратных уравнений приводят к параболам (U-образные графики, открывающиеся вверх или вниз). Эта особенность квадратичности делает их хорошими моделями для описания пути объекта в воздухе или описания прибыли компании (примеры чего вы можете увидеть в конечной математике или в микроэкономике.)

Пример 1. Мальчик, лежащий на спине, выстрелом из пращи выстрелил в воздух камнем с начальной скоростью (силой, которую мальчик использует для выстрела камня) 64 фута в секунду. Квадратное уравнение, моделирующее высоту скалы, равно

.

ч = -16т 2 + 64т.

а. Найдите высоту камня при t = 0.

В формуле h = -16t 2 + 64t, заменить t на 0.

ч = -16 (0) 2 +64 (0)
ч = 0

Камень находится на нулевом уровне в воздухе за 0 секунд.(Это момент прямо перед тем, как он стреляет камнем в воздух.)

г. Найдите высоту камня при t = 1.

В формуле h = -16t 2 + 64t, заменить t на 1.

Камень поднимается на высоту 48 футов за одну секунду.

Объяснение : Возводится в квадрат только «1». -16 умножается на 1 2

г. Найдите высоту камня при t = 2.

В формуле h = -16t 2 + 64t заменить t на 2.

Камень находится на высоте 64 фута за 2 секунды.

Объяснение : Порядок операций требует, чтобы вы применяли экспоненты перед умножением.

г. Найдите высоту камня при t = 3.

В формуле h = -16t 2 + 64t, заменить t на 3.

Камень находится на высоте 48 футов за 3 секунды.

e. Найдите высоту камня при t = 4.

В формуле h = -16t 2 + 64t заменить t на 4.

Камень находится на нулевом уровне в воздухе за 4 секунды; то есть камень ударился о землю.

ф. Постройте график точек, полученных в частях от a до e.

Высота камня зависит от времени, поэтому h — зависимая переменная, а t — независимая переменная. Точки имеют вид (t, h).

Согласно графику, скала достигает максимальной высоты за 2 секунды. Максимальная высота 64 фута. Точка максимума или минимума квадратичной называется вершиной.Вы узнаете, как найти вершину в Разделе 4.3, Квадратичные приложения и графики.

Согласно графику, камень оказывается на земле в 0 секунд (прямо перед тем, как мальчик стреляет в него) и в 4 секунды (когда камень приземляется). Эти точки являются отсечками времени. Вы узнаете, как их найти, в следующем разделе 4.2, «Применение квадратичной формулы».

Сложение и вычитание квадратичных:

Словарь : Чтобы добавить или вычесть квадратичные, объедините одинаковые термины. Подобные термины , первоначально представленные в разделе 1.3, «Упрощение алгебраических выражений», имеют одинаковую переменную и одинаковый показатель степени. Например, 2x 2 и 5x 2 являются одинаковыми терминами, а 3x 2 и 7x — нет.

Коэффициент , первоначально представленный в Разделе 1.3, «Упрощение алгебраических выражений», является числом, умножающим переменную. Например, коэффициент 2x равен 2, а коэффициент -x 2 равен -1.

Правило: Чтобы объединить одинаковые термины, сложите их коэффициенты

Вспомните распределительное свойство : определение a (b + c) = ab + ac.

Не удалось объединить непохожие термины в скобках, поэтому мы использовали свойство распределения. После этого мы умножили 6x на 3, а затем -5 на 3.

Использовали свойство распределения и объединили похожие термины.

Пример 5. Уравнение прибыли: Прибыль = Выручка — Затраты

Если уравнение дохода для компании:

, а уравнение затрат:

найти уравнение прибыли для компании.

Подставил уравнения доходов и затрат в формулу для расчета прибыли. Необходимо использовать скобки.

Использовал свойство распределения и умножил уравнение доходов на 1 и уравнение затрат на -1.

Комбинированные одинаковые термины.

Подставил уравнения доходов и затрат в формулу прибыли. Необходимо использовать круглые скобки. Использовал распределительное свойство.
Умножил уравнение доходов на 1 и уравнение затрат на -1. Сочетание подобных терминов.

Умножение двух биномов.

Словарь : У бинома есть два члена (точно так же, как у велосипеда есть два колеса).

Правило: Чтобы умножить два бинома, умножьте каждый член первого члена на каждый член второго.

Пример 7. Умножаем (x + 2) (5x + 3).

Умножить x на 5x и 3 и умножить 2 на 5x и 3.

Объединить похожие термины.

FOIL — это простая мнемоника, чтобы запомнить, как умножить два бинома.

Пример 8. Умножьте (8x + 6) (x + 7).

Совет для изучения: Напишите карточку с объяснением мнемонической ФОЛЬГИ. Часто просматривайте карту.

Сводка

Квадраты — важные уравнения в физике и микроэкономике. Техника сложения и вычитания квадратиков такая же, как и мы практикуем весь семестр; то есть складывать или вычитать похожие термины. Для умножения используйте свойство распределения или FOIL. Вершина квадратичной будет более подробно объяснена в разделе «Графики квадратичных вычислений и приложения».«Вершина — это точка максимума или минимума на квадратичном графике.

ПРИМЕНЕНИЕ КВАДРАТИЧЕСКОЙ ФОРМУЛЫ

Цель

В этом разделе показано, как решать квадратные уравнения.

Словарь : квадратное уравнение — это ax 2 + bx + c = 0. a, b и c — константы, а x — переменная.

Квадратичная формула ,, используется для решения квадратного уравнения.

Анализируем

Учебный совет: Напишите квадратное уравнение и квадратную формулу на карточках для заметок, чтобы вы могли ссылаться на них при выполнении домашнего задания.

Пример 1. Предположим, вы стоите на вершине утеса на высоте 375 футов над дном каньона и подбрасываете в воздух камень с начальной скоростью 82 фута в секунду. Уравнение, моделирующее высоту скалы над дном каньона:

ч = -16т 2 + 82т + 375.

Узнайте, сколько времени требуется камню, чтобы упасть на дно каньона.

Найдите t, когда h = 0.
Решите 0 = -16t 2 + 82t + 375.
Определите константы a, b и c.

Объяснение : Одна часть квадратного уравнения должна быть равна нулю.

a = -16, b = 82, c = 375

Пояснение :
a — коэффициент переменной, возведенный в квадрат.
b — коэффициент переменной в первой степени.
c — постоянная.

Используйте формулу корней квадратного уравнения

с a = -16, b = 82 и c = 375.

T = -2,916 — бессмысленный ответ, поскольку t — это время, за которое камень ударится о дно каньона, и время не может быть отрицательным.

T = 8,041 секунды — это время, за которое камень ударится о дно каньона.

Камень ударится о дно каньона за 8,041 секунды.

Пример 2. У владельца ранчо есть 500 ярдов ограждения, чтобы ограждать два соседних загона для свиней, которые упираются в сарай. Если площадь двух ручек должна составлять 20 700 квадратных ярдов, каковы должны быть размеры ручек?

L — длина обоих ручек.

а. Воспользуйтесь таблицей, чтобы найти уравнение для площади ручек.

г. Упростите уравнение для площади.

г. Найдите W, когда A = 20700.

Ширина 76,67 или 90 ярдов.

г. Найдите длину ручек.

Из таблицы в Части a, L = 500 — 3W. Подставляем W = 76,67 и W = 90 в уравнение для длины, L = 500 — 3w.

Размеры загона для свиней, площадь которого составляет 20 700 квадратных ярдов, составляют 76,67 на 270 ярдов и 90 на 230 ярдов.

Пример 3. В ходе эксперимента необходимо контролировать температуру кислорода. Используя данные эксперимента, следующая квадратичная функция может смоделировать температуру кислорода,

T = 0,26 м 2 -4,1 м + 7,9

, где T измеряется в градусах Цельсия, а m представляет собой минуты, в течение которых был проведен эксперимент. Определите, когда температура кислорода составляет 0 градусов Цельсия.

Задача просит вас найти m при T = 0.

Температура кислорода будет 0 градусов Цельсия через 2.246 минут 13,52 минуты.

Подсказка для исследования: Ключевая идея, продемонстрированная в примере 3, заключается в том, как обрабатывать отрицательное b в квадратном уравнении.

Сводка

В этом разделе показано, как решить новый тип уравнения — квадратное. У них есть важные приложения во многих областях, таких как бизнес, физика и инженерия. Учить
разница между квадратным уравнением и квадратной формулой.

Квадратное уравнение: ax 2 + bx + c = 0.

  • Одна часть уравнения должна быть равна нулю.
  • a — коэффициент при x.
  • b — коэффициент при x.
  • c — постоянный член.

Квадратичная формула решает квадратное уравнение.

  • Формула дает два решения.
  • Калькулятор используется для поиска ответов.
  • Первым шагом в вычислении формулы является упрощение квадратного корня.

КВАДРАТИЧЕСКИЕ ПРИЛОЖЕНИЯ И ГРАФИКИ

Цели

В этом разделе исследуются дополнительные ключевые точки квадратичного графика, вершины и пересечений.Эти пункты будут интерпретированы в приложениях.

Пример 1. Мальчик, лежащий на спине, выстрелом из пращи выстрелил в воздух камнем с начальной скоростью (силой, которую мальчик использует, чтобы выстрелить в камень) 64 фута в секунду. Квадратное уравнение, моделирующее высоту скалы, равно

.

ч = -16т 2 + 64т.

(Этот пример взят из Раздела 4.1 «Введение в квадратику», стр. 317.)

На странице 318 мы сгенерировали следующие значения:

Мы использовали точки, чтобы получить график ниже. Вершина и пересечения также отмечены на графике.

Объяснение : Точка (0, 0) — это время и высота пересечения.

Вершина , (2,64) представляет максимальную высоту скалы. Скала достигает максимальной высоты 64 фута за 2 секунды.

Временные точки , (0, 0) и (4, 0) представляют, когда камень находится на земле. Камень оказывается на земле за 0 секунд до выстрела (это Высота Intercept ) и через 4 секунды, когда он возвращается на землю.

Чтобы построить квадратичную диаграмму, обозначенную уравнением y = ax 2 + bx + c, усвойте следующие термины:

Словарь : Вершина: Вершина — это максимальная или минимальная точка на графике. Чтобы найти вершину:

а. Найдите координату x:
b. Найдите координату y: подставьте значение x, полученное в части a, в формулу y = ax 2 + bx + c.

X intercept : установите y = 0 и решите 0 = ax 2 + bx + c, используя формулу корней квадратного уравнения,

Пересечение Y : установите x = 0 и найдите y. y всегда будет c, константой.

Учебный совет: Напишите процедуру и определения на трех карточках для удобного использования.

Пример 2. Компания D +++ производит компьютерные игры. Стоимость создания g игр в месяц составляет C = 0,4g 2 — 32g + 625. Выручка от продажи игр g в месяц составляет R = -0,6g 2 + 52g. Единицы измерения g — сотни, C и R — тысячи долларов.

а. Найдите уравнение прибыли.

г.Найдите вершину и объясните, что эта вершина означает с точки зрения создания компьютерных игр.

Формула для координаты g:

Из уравнения прибыли a = -1, b = 84.

Вершина (42,1139). Если D +++ продаст 4200 игр, то они получат максимальную прибыль в размере 1 139 000 долларов США.

г. Найдите g перехватывает и объясните, что они означают с точки зрения создания компьютерных игр.

Чтобы найти точку пересечения g, установите P = 0.

Решить 0 = -g 2 + 84g — 625.

Используйте формулу корней квадратного уравнения, a = -1, b = 84, c = -625.

Перехваты g: (8.251, 0) и (75.75, 0).

Если они продадут 825 или 7 575 игр, они выйдут на уровень безубыточности.

г. Найдите P перехватчики и объясните, что они означают с точки зрения создания компьютерных игр.

Чтобы найти точку пересечения с P, установите g = 0.
P = -0 2 + 84 * 0-625
P = -625
Перехват по оси P равен (0, -625).
Стартовые затраты компании составляют 625 000 долларов.

e. Постройте график функции.

Постройте точки:
Вершина. (42, 1139).
Данный перехватывает. (8,251, 0) и (75,75, 0).
Перехват P. (0, -625).

Объяснение : Одно из объяснений того, что прибыль имеет две точки безубыточности, заключается в том, насколько эффективна компания в производстве продукта. Изготовление очень небольшого количества предметов обычно неэффективно. В какой-то момент фабрика становится очень эффективной в производстве продукта, но если фабрика пытается производить слишком много предметов, компания становится неэффективной в производстве своей продукции.

Помните, что единицы измерения g — сотни, а единицы P — тысячи.

Предположим, D +++ необходимо получать прибыль в размере 500 000 долларов (P = 500) в месяц. Нарисуйте эту линию на графике, полученном в Части b, и найдите, где линия пересекает график квадратичного. Напишите предложение, объясняющее, что означают ответы.

Эскиз P = 500 на предыдущем графике.

P = 500 — горизонтальная линия.

Если D +++ хочет получить прибыль в размере 500 000 долларов, им необходимо сделать и продать 1 672 или 6 728 игр.

Пояснение : График дает оценку того, где пересекаются горизонтальная линия P = 500 и уравнение прибыли P = -g 2 + 84g-625. Алгебра дает точную точку их пересечения.

г. Используя график и ответы к Части c, определите, сколько компьютерных игр необходимо сделать и продать, чтобы гарантировать прибыль более 500 000 долларов.

Компания получит прибыль более 500 000 долларов, если график прибыли находится выше горизонтальной линии P = 500.Эта проблема аналогична примеру 2d на стр. 203 в Разделе 2.9 «Приложения графиков».

Это происходит между точками g = 16,72 и g = 67,28 или

.

16,72

Компания заработает более 500 000 долларов, если будет производить и продавать от 1 672 до 6 728 компьютерных игр.

Пример 3. Оператор питомника хочет поставить три соседние загоны для собак одинакового размера у стены. У него 96 метров забора.

а. Найдите формулу для площади.

Объяснение : Самая трудная часть таблицы — найти значение длины.Если фермер использует 10 метров для ширины загона, а есть 4 ширины, то он использовал 4 раза по 10, или 40 метров ограждения. Чтобы узнать, сколько ограждений осталось на эту длину, вычтите 40 из 96 — общего количества ограждений, доступных фермеру.

Формула площади загона для собаки

г. Найдите вершину и объясните, что это означает с точки зрения загонов для собак.

Формула для координаты W:

Из уравнения прибыли a = -4, b = 96.

Вершина равна (12, 576).

Вершина , (12, 576) представляет максимальную площадь трех загонов для собак. Когда W = 12, максимальная площадь будет 576. (Длина всех трех загонов будет 48 или длина одной собаки будет 16.) Будет три загона для собак размером 12 на 16 метров каждая.

г. Найдите W перехватывает и объясните, что они означают в терминах загонов для собак.

Чтобы найти точку пересечения с W, установите A = 0.

Решить 0 = -4 Вт 2 + 96 Вт.

Используйте формулу корней квадратного уравнения, a = -4, b = 96, c = 0.

W-точки перехвата: (0, 0) и (24, 0).

Перемычки W, (0, 0) и (24, 0) представляют ширину загонов для собак, которые дадут нулевую площадь.

г. Найдите точку перехвата A и объясните, что это означает с точки зрения загонов для собак.

Чтобы найти точку пересечения A, установите W = 0.

Объяснение : Если ширина прямоугольника равна нулю, то площадь должна быть равна нулю.

Перехватчик A равен (0, 0).

Перехватчик A, (0, 0) — это область, когда W = 0.

e. Изобразите уравнение

Постройте точки:
Вершина. (12, 576).
W перехватывает. (0, 0) и (24, 0).
Перехват. (0, 0).

ф. Предположим, общая площадь должна быть 400 квадратных метров. На графике A = 400 найдите размеры загонов для собак.

Эскиз A = 400 на предыдущем графике.

A = 400 — горизонтальная линия.

Поскольку W, ширина, известна, длину L можно определить по формуле A = LW.

Решите относительно L, разделив обе части на W.

Размеры загона для собак, дающего площадь 400 квадратных метров, составляют 5,367 на 74,53 и 18,63 на 21,47.

Пример 4. В ходе эксперимента необходимо контролировать температуру кислорода. Используя данные эксперимента, следующая квадратичная функция может смоделировать температуру кислорода,

Т = 0.26 м 2 -4,1 м + 7,9

, где T измеряется в градусах Цельсия, а m представляет собой минуты, в течение которых был проведен эксперимент. Постройте уравнение, найдя вершину и точки пересечения. Обозначьте эти точки на графике и объясните, что означают вершина и пересечения с точки зрения модели.

Вернуться назад: Это та же модель, что использовалась в примере 3 на стр. 332. Этот пример работал при нулевой температуре.

Найдите вершину из T = 0.26 м 2 — 4,1 м + 7,9.

Формула для координаты m вершины:

Вершина равна (7,885, -8,263).

Найдите точки пересечения м T = 0,26 м 2 -4,1 м + 7,9

Чтобы найти точки пересечения m, установите T = 0.

Решить 0 = 0,26 м 2 -4,1 м + 7,9.

Используйте формулу корней квадратного уравнения, a = 0,26, b = -4,1, c = 7,9.

M точек пересечения (13.52, 0) и (2.246, 0).

Найдите точки пересечения T T = 0,26 м 2 — 4,1 м + 7,9

Чтобы найти точку пересечения с Т, установите m = 0.

Т-образная точка пересечения (0, 7.9).

Vertex: Минимальная температура составляет 7,885 минут. Минимальная температура составит -8,263 градуса по Цельсию.

м пересекает: Температура будет ноль градусов Цельсия на отметках 2.246 и 13.52 мин.

T intercept: Температура в начале эксперимента составляла 7,9 градусов Цельсия.

Советы по изучению: Квадраты представляют собой U-образные графики. В некоторых случаях они имеют U-образную форму, как в примере выше, или форму, как в примерах с 1 по 3. Если a в уравнении, y = ax 2 + bx + c, положительно, тогда график имеет U-образную форму, что есть, открываясь. Если a отрицательно, график имеет форму, то есть раскрывается вниз. Этот факт следует записать на карточке для заметок.

Сводка

Графики квадратиков появляются по таким разнообразным предметам, как микроэкономика и физика. В этом разделе кратко излагаются основные идеи устройства.

Чтобы построить квадратичный график y = ax 2 + bx + c, вы должны найти:

  • Вершина .
    Формула для координаты x:

    Чтобы найти координату y, подставьте свой ответ вместо координаты x в уравнение y = ax 2 + bx + c.

  • x перехватывает .Установите y = 0 и решите уравнение 0 = ax 2 + bx + c, используя формулу корней квадратного уравнения
  • .

  • Перехват y .
    Установите x = 0 в уравнении, y = ax 2 + bx + c, и найдите y. Обратите внимание, когда x = 0, y = c.
  • Если a отрицательное , график обычно выглядит так:
  • Если a положительное значение , обычно график выглядит следующим образом:

ФАКТОРИНГ

Цели

Факторинг — это алгебраический метод, используемый для разделения выражения на составные части.Когда составные части перемножаются, результатом является исходное выражение. Иногда это можно использовать для решения квадратных уравнений. Факторинг — важный навык в MAT 100, Intermediate Algebra.

Словарь : алгебраическое выражение учитывается, если последней операцией при вычислении выражения является умножение.

Пример 1. Какое выражение подвергается факторизации , x 2 — 5x — 24 или (x — 8) (x + 3)?

Выберите значение x и подставьте его в выражение.

Пусть x = 3.

Поскольку последней операцией для (x — 8) (x + 3) было умножение, то факторизуется (x — 8) (x + 3).

Объяснение : Менее формально, алгебраическое выражение факторизуется, если оно заключено в круглые скобки.

Словарь : Распределительное свойство — это a (b + c) = ab + ac. Левая часть подвергается факторизации, и a является общим множителем.

У вас должна быть возможность проверить с помощью свойства distributive.

Объяснение : Хотя 8x 3 + 4x равно как 2x (4x 2 + 2), так и 4 (2x 3 + x), ни один из них не считается полностью разложенным, потому что в обоих случаях общее кратное 2, в 2x (4x 2 +2) и x в 4 (2x 3 + x) по-прежнему могут быть факторизованы из членов в скобках.

Факторинг трехчлена: (Трехчлен состоит из трех членов.) Чтобы разложить на множитель трехчлена, вспомните аббревиатуру FOIL.

Совет для изучения: Проверьте свои карточки для заметок на предмет определения ФОЛЬГИ.

Пример 4. Умножаем (x + 3) (x + 5).

(x + 3) (x + 5) учитывается, а x 2 + 8x +15 — нет. Чтобы разложить на множители трехчлены, вам нужно знать, как были вычислены 8x и 15. 8x произошло от сложения 5x и 3x, а 15 — от умножения 5 и 3.

Пример 5. Множитель x 2 + 8x +15. (Это из Примера 4.)

Нам нужны два числа, которые при сложении равны 8, а при умножении равны 15. 3 и 5 в сумме дают 8, а при умножении — 15.

Таким образом, x 2 + 8x +15 = (x + 3) (x + 5)

Пример 6. Коэффициент x 2 -4x- 12.

Нам нужны два числа, которые при сложении равны -4, а при умножении равны -12. -6 и 2 в сумме дают -4, а при умножении -12.

Итак, x 2 -4x -12 = (x-6) (x + 2).

Пример 7. Коэффициент x 2 — 64.

Это не трехчлен, но он может стать одним, добавив 0x.

x 2 -64 = x 2 + 0x -64

Нам нужны два числа, которые при сложении равны 0, а при умножении равны -64.

-8 и 8 складываются в 0, а при умножении получается -64.

Итак, x 2 -64 = (x-8) (x + 8).

Этот пример называется факторизацией разности полных квадратов, и вы снова увидите это, если возьмете MAT 100, промежуточную алгебру.

Словарь : a 2 — b 2 — это разность полных квадратов .
Разность полных квадратов имеет специальную формулу факторизации: a 2 — b 2 = (a — b) (a + b)

Решение квадратных уравнений с помощью факторинга:

Если вы умножаете две величины и результат равен нулю, то вы знаете, что одна из величин должна быть равна нулю.В математической записи

, если a.b = 0, то a = 0 или b = 0.

Прежде чем вы подумаете, что разложение на множители для решения квадратичных уравнений намного проще, чем использование квадратичной формулы, вы должны знать, что разложение на множители не всегда работает. Рассмотрите возможность изменения примера 8 всего на единицу до x 2 — 11x + 31 = 0. Вы не можете найти два целых числа, которые при сложении равны -11, а при умножении равны 31. Чтобы множить x 2 — 11x + 31, вы должны использовать квадратичная формула. Вы узнаете, как разложить на множители любое квадратное уравнение в Precalculus I, MAT 161.

Сводка

В этом модуле представлены два метода факторинга. Первый — это общие факторы, использующие свойство распределения, ab + ac = a (b + c). Другой — факторизация трехчленов. Чтобы разложить на множители трехчлены, вам нужно знать, как работает FOIL. Если вы возьмете MAT 100, промежуточную алгебру, вы увидите больше факторинга.

ОБЗОР ГЛАВЫ 4

Эта глава познакомила вас с квадратиками. Две основные темы — это квадратичная формула и квадратичные графики.Эти темы имеют множество приложений в бизнесе, физике и геометрии. Факторинг — важная тема в MAT 100, Intermediate Algebra.

Раздел 4.1: Введение в квадратичность

Раздел 4.2: Приложения квадратичной формулы

Определение: ax 2 + bx + c = 0 — квадратное уравнение.

Определение: квадратная формула.

Пример 4. Фермер хочет ограждать два соседних курятника напротив сарая.У него 125 футов забора. Какие должны быть размеры, если он хочет, чтобы общая площадь составляла 700 квадратных футов.

а. Заполните таблицу, чтобы найти уравнение для площади.

г. Найдите W, когда A = 700.

Размеры курятника, который даст площадь 700 квадратных футов, составляют 35 на 20 футов и 6,667 на 105 футов.
(Чтобы получить длину, разделите 700 на 6,667 и 35.)

Раздел 4.3: Квадратичные приложения и графики

Для построения квадратичного графика y = ax 2 + bx + c необходимо найти:

  1. Вершина:
    Координата x вычисляется по формуле
    Координата y вычисляется путем замены координаты x на y = ax 2 + bx + c.
  2. Пересечение x:
    Установите y = 0 и решите 0 = ax 2 + bx + c, используя формулу корней квадратного уравнения.
  3. Пересечение оси y:
    Замените x = 0 на y = ax 2 + bx + c. Обратите внимание, что когда x = 0, y = c.

Пример 5. Уравнение затрат на изготовление коробок для сока: C = 0,6B 2 — 24B + 36, а уравнение дохода — R = -0,4B 2 + 18B. B выражается в миллионах, а C и R — в тысячах долларов.

а. Найдите уравнение прибыли.

г. Изобразите уравнение прибыли и объясните, что точки пересечения B и P означают с точки зрения проблемы.

Вершина — (21, 405).

Найдите точку пересечения B. Установите P = 0.

Перехваты B — это (0.875, 0) и (41.13, 0).

Найдите точку пересечения P. Установите B = 0.

Перехватчик P равен (0, -36).

г. Предположим, компании нужно заработать 200 000 долларов прибыли (P = 200).Изобразите линию P = 200 и найдите, сколько коробок из-под сока нужно сделать компании, чтобы заработать 200 000 долларов.

Чтобы получить прибыль в размере 200 000 долларов, компании необходимо произвести 6 682 или 35,32 миллиона ящиков для сока.

Вершина (21,405) представляет максимальную прибыль. Компания получит максимальную прибыль в размере 405 000 долларов, когда продаст 21 миллион коробок для сока.

Перехватчики B (0,875, 0) и (41,13, 0) говорят нам, что компания сломается, даже если они продадут.875 или 41,13 миллиона ящиков сока.

Перехват P (0–36) представляет начальные затраты компании в размере 36 000 долларов.

Раздел 4.4: Факторинг

Общие факторы:

Триномы:

Решение квадратных уравнений на множители.

Если a. b = 0, тогда a = 0 или b = 0

Советы по обучению:

  1. Выполните повторный тест, начиная со следующей страницы, поместив себя в реалистичные условия экзамена.
  2. Найдите тихое место и используйте таймер, чтобы смоделировать продолжительность урока.
  3. Запишите свои ответы в домашнюю тетрадь или сделайте копию теста. Затем вы можете повторно сдать экзамен для дополнительной практики.
  4. Проверьте свои ответы.
  5. Дополнительный экзамен доступен на веб-странице MAT 011.
  6. НЕ ждите накануне вечером, чтобы заняться изучением.

Как отразить график через ось x, ось y или начало координат?

Это письмо недавно пришло от читателя Стюарта:

Можете ли вы объяснить принципы построения графика, включающего y = — f ( x ), который является отражением графика y = f ( x ) по оси x и график y = f (- x ) отражение графика y = f ( x ) по оси y- ?

Спасибо

Мой ответ

Привет Стюарт

Давайте посмотрим, что это означает на примере.

Пусть f ( x ) = 3 x + 2

Если вы не уверены, как это выглядит, вы можете построить график с помощью этого средства построения графиков.

Вы увидите, что это прямая линия, наклон 3 (положительный, т. Е. Идет вверх по мере того, как мы идем слева направо) и y — пересечение 2.

Теперь рассмотрим — f ( x ).

Это дает нам

f ( x ) = −3 x — 2

Наша новая линия имеет отрицательный наклон (он уменьшается при сканировании слева направо) и проходит через −2 на оси y .

Когда вы строите график двух уровней на одной и той же оси, это выглядит так:

Обратите внимание, что если вы отразите синий график ( y = 3 x + 2) по оси x , вы получите зеленый график ( y = −3 x — 2) (как показано красными стрелками).

Что мы сделали, так это взяли каждое значение y и перевернули их вверх дном (это эффект минус спереди).

Теперь для

f (- x )

Аналогично сделаем f (- x ).

Так как f ( x ) = 3 x + 2, то

f ( −x ) = −3 x + 2 (замените каждое « x » на « −x »).

Теперь, построив график на тех же осях, мы имеем:

Обратите внимание, что эффект «минуса» в f ( −x ) должен отражать синюю исходную линию ( y = 3 x + 2) по оси y , и мы получаем зеленая линия, которая равна ( y = −3 x + 2).Зеленая линия также проходит через 2 на оси y .

Дополнительный пример

Вот пример использования кубического графа.

Синий график: f ( x ) = x 3 — 3 x 2 + x — 2

Отражение по оси x (зеленый): f ( x ) = — x 3 + 3 x 2 x + 2

Теперь отразим в оси ординат.

Синий график: f ( x ) = x 3 — 3 x 2 + x — 2

Отражение по оси Y (зеленый): f ( −x ) = −x 3 — 3 x 2 x — 2

Четные и нечетные функции

Мы действительно должны упомянуть четные и нечетные функции , прежде чем покинуть эту тему.

Для каждого из приведенных выше примеров отражения на оси x или y давали график, который был различных .Но иногда отражение такое же, как и на исходном графике. Мы говорим, что отражение «отображается на» оригинале.

Четные функции

Функция , четная имеет свойство f ( −x ) = f ( x ). То есть, если мы отразим четную функцию на оси y , она будет выглядеть точно так же, как оригинал.

Пример четной функции: f ( x ) = x 4 -29 x 2 + 100

Вышеупомянутая четная функция эквивалентна:

f ( x ) = ( x + 5) ( x + 2) ( x — 2) ( x — 5)

Обратите внимание: если мы отразим график по оси y , мы получим тот же график (или мы могли бы сказать, что он «отображается на себя»).

Нечетные функции

Нечетная функция имеет свойство f ( −x ) = −f ( x ).

На этот раз, если мы отразим нашу функцию в и ось x и ось y , и если она выглядит точно так же, как оригинал, то у нас будет нечетная функция.

Этот вид симметрии называется симметрией происхождения . Нечетная функция либо проходит через начало координат (0, 0), либо отражается через начало координат.

Пример нечетной функции: f ( x ) = x 3 — 9 x

Вышеупомянутая нечетная функция эквивалентна:

f ( x ) = x ( x + 3) ( x — 3)

Обратите внимание: если мы отразим график по оси x , а затем по оси y , мы получим тот же график.

Другие примеры четных и нечетных функций

На этой странице есть еще несколько примеров: Четные и нечетные функции

Знание о четных и нечетных функциях очень полезно при изучении рядов Фурье.

Я надеюсь, что все имеет смысл, Стюарт.

См. 8 комментариев ниже.

Функции и линейные уравнения (Алгебра 2, Как построить график функций и линейных уравнений) — Mathplanet

Если в следующем уравнении y = x + 7 присвоить значение x, уравнение даст нам значение для y.


Пример

$$ y = x + 7 $$

$$ если \; х = 2 \; затем

$

$$ y = 2 + 7 = 9 $$

Если бы мы присвоили x другое значение, уравнение дало бы нам другое значение y.Вместо этого мы могли бы присвоить значение y и решить уравнение, чтобы найти совпадающее значение x.

В нашем уравнении y = x + 7 у нас есть две переменные, x и y. Переменная, которой мы присваиваем значение, мы называем независимой переменной, а другая переменная является зависимой переменной, поскольку ее значение зависит от независимой переменной. В нашем примере выше x — независимая переменная, а y — зависимая переменная.

Функция — это уравнение, которое имеет только один ответ для y для каждого x.Функция назначает ровно один выход каждому входу указанного типа.

Обычно функцию называют f (x) или g (x) вместо y. f (2) означает, что мы должны найти значение нашей функции, когда x равно 2.


Пример

$$ f (x) = x + 7 $$

$$ если \; х = 2 \; затем

$

$$ f (2) = 2 + 7 = 9 $$

Функция линейна, если ее можно определить с помощью

.

$$ f (x) = mx + b $$

f (x) — значение функции.
м — наклон линии.
b — значение функции, когда x равно нулю, или координата y точки, в которой линия пересекает ось y в координатной плоскости.
x — значение координаты x.

Эта форма называется формой пересечения наклона. Если наклон m отрицательный, значение функции уменьшается с увеличением x и наоборот, если наклон положительный.

Уравнение, такое как y = x + 7 , является линейным, и существует бесконечное количество упорядоченных пар x и y, которые удовлетворяют этому уравнению.

Наклон m здесь равен 1, а наш b (точка пересечения с y) равен 7.
Наклон прямой, проходящей через точки (x1, y1) и (x2, y2), равен

$$ m = \ frac {y_ {2} -y_ {1}} {x_ {2} -x_ {1}} $$

$$ x_ {2} \ neq x_ {1} $$

Если двум линейным уравнениям задан один и тот же наклон, это означает, что они параллельны, а если произведение двух наклонов m1 * m2 = -1, два линейных уравнения называются перпендикулярными.


Видеоурок

Если x равен -1, какое значение имеет f (x), когда f (x) = 3x + 5?

Линейные уравнения и функции — Функции и их графики

Функции и их графики

Функция, функция, какова ваша функция? Вы личный тренер, известный шпион, ограничитель дверей или что-то совсем другое? Думаем, последний.

Функция принимает некоторые входные данные, обычно называемые x , в уравнение, f ( x ). Затем x проходит через уравнение, и в конце мы получаем некоторый результат, обычно известный как y . Обратите внимание, что y и f ( x ) на самом деле одно и то же. Может, и — знаменитый шпион?

Мы называем x независимой переменной , а y зависимой переменной .Итак, x — хорошая работа, а y — все еще живет дома. Все возможные значения x- — это область , а все возможные значения y- — это диапазон .

Пример задачи

Найдите область и диапазон y = 3 x — 4, где 0 ≤ x <4.

Если бы нам просто дали уравнение, y = 3 x — 4, не говоря больше ни о чем, мы бы сказали, что домен — это все действительные числа.При этом не учитываются воображаемые, фальшивые, бредовые и позерские числа.

Однако в данном случае мы не можем выбрать x , которые нам нравятся под солнцем. Проблема говорит, что 0 ≤ x <4. Это означает, что наш домен ограничен всеми действительными числами от 0 до 4, включая 0, но не 4 (из-за линии под голодным ртом Пакмана).

А теперь ассортимент. Диапазон всех возможных и -значений. В нашем уравнении y = 3 x -4, значения y- — это то, что мы получаем, когда вставляем известные нам значения x-.Давайте составим таблицу, чтобы уточнить диапазон.

Диапазон этой функции: -4 ≤ y <8. Обратите внимание, что y меньше 8, потому что x не может равняться 4, поэтому y также никогда не может быть точно равно 8.

В этом случае диапазон легкий; мы могли бы посмотреть на наименьшее и наибольшее значения x , и они дают нам наименьшее и наибольшее значения y . Что, если бы у нас было что-то вроде y = — x 2 , с -2 < x <2?

Здесь, если мы просто подключим x = -2 и 2, мы получим y = -4 для них обоих.Мы знаем, что y не всегда находится на уровне -4. Мы должны проверить x = 0, чтобы найти, что y = 0, что дает нам диапазон -4 < y <0. Каждый раз, когда график может качаться или опускаться, проверьте различные числа, чтобы найти правильный диапазон.

Теперь поговорим на секунду о функциях построения графиков. Собственно, давайте поговорим и построим график одновременно. Только не проси нас тоже жевать жвачку.

Пример задачи

График y = 3 x — 4, где 0 ≤ x <4.

Ой, это снова ты. Вы собираетесь повторять вещь , не так ли?

Ничего страшного, потому что это означает, что мы уже проделали большую работу. Мы знаем домен и диапазон, и мы отметили несколько моментов.

Начните с рисования координатной плоскости . x ось холодит на спине, лежа, в то время как y ось стоит по стойке смирно. Они встречаются посередине у происхождения .Не пытайтесь слишком сильно визуализировать это; на самом деле это не так больно, как кажется. Мы надеемся.

Мы используем числа на осях для построения точек и линии. Мы делаем заказанных пар , которые выглядят так: ( x , y ). А x всегда вызывает дробовик, поэтому y никогда не будет первым.

Начиная с начала координат (0, 0), положительные значения x перемещаются вправо, а положительные значения y перемещаются вверх. Переместите оба числа вместе, чтобы построить каждую точку из нашей таблицы.

Видите, как красиво они выстраиваются? Почему они не могли так красиво выглядеть на школьных фотографиях? Что ж, проведем через них черту, пока они сидят неподвижно.

У нас здесь ограниченная область, поэтому мы рисуем только линию, где функция действительно существует. Несуществующие линии на удивление легко рисовать, так что будьте начеку.

Вертикальность

В функциях есть кое-что очень важное. Фактически, это настолько важно, что мы собираемся поместить его в отдельную строку:

На каждые x существует только один y .Другими словами, каждый вход имеет только один выход. Один x входит, один y уходит.

Если уравнение нарушает этот принцип, это не функция. К счастью, нам не нужно подключаться и проверять каждое значение x-, чтобы увидеть, разделяет ли какое-либо из них значение y-. Это было бы утомительно и ужасно. Вместо этого мы можем использовать тест с вертикальной линией . Какое имя, а?

Возьмем, к примеру, эти графики. Это именно то, на что похоже: рисование вертикальных линий поверх графика.Если какая-либо вертикальная линия может проходить через график более одного раза, тогда уравнение , а не функция.

Увидеть? Мы можем сразу сказать, что является функцией, а что нет. И обратите внимание, что второй график посередине имеет одинаковое значение y- для двух разных значений x- (например, при y = 0). Это полностью разрешено. Мы просто не можем иметь одно и то же значение x- для нескольких значений y-, как на первом и третьем графиках.

С этого момента мы будем иметь дело с линейными уравнениями, которые легко классифицировать как линейные функции (у-у, название отпадает). Это вертикальная линия? Если нет, то да, Вирджиния, это функция.

Системы линейных уравнений

Системы линейных уравнений


Часто приходится смотреть на несколько функций одного и того же независимого
Переменная. Рассмотрим предыдущий пример, где x — количество произведенных товаров.
и продано, была независимой переменной в трех функциях: функции затрат,
функция дохода и функция прибыли.

В целом
там может быть:

n уравнений

v переменные

Решение систем уравнений

Есть
четыре метода решения систем линейных уравнений:

а. графическое решение

б. алгебраическое решение

c. метод исключения

d.метод замещения

Графическое решение

Пример 1

даны являются
два следующих линейных уравнения:

f (x) = y = 1 + 0,5x

f (x) = y = 11 — 2x

Изобразите первое уравнение , найдя две точки данных. Установив
сначала x, а затем y равны нулю, можно найти точку пересечения y на
вертикальная ось и точка пересечения x на горизонтальной оси.

Если x = 0,
тогда f (0) = 1 + .5 (0) = 1

Если y = 0,
тогда f (x) = 0 = 1 + .5x

-,5x = 1

х = -2

Результирующий
точки данных: (0,1) и (-2,0)

Постройте график второго уравнения , найдя две точки данных. От
установив сначала x, а затем y равным нулю, можно найти точку пересечения y
по вертикальной оси и точка пересечения x по горизонтальной оси.

Если x = 0,
тогда f (0) = 11-2 (0) = 11

Если y = 0,
тогда f (x) = 0 = 11 — 2x

2x = 11

х = 5,5

Результирующий
точки данных: (0,11) и (5.5,0)

В точке пересечения двух уравнений x и y имеют одинаковые значения.
На графике эти значения можно прочитать как x = 4 и y = 3.

Пример 2

даны являются
два следующих линейных уравнения:

f (x) = y = 15 — 5x

f (x) = y = 25 — 5x

Изобразите первое уравнение , найдя две точки данных. Установив
сначала x, а затем y равны нулю, можно найти точку пересечения y на
вертикальная ось и точка пересечения x на горизонтальной оси.

Если x = 0,
тогда f (0) = 15-5 (0) = 15

Если y = 0,
тогда f (x) = 0 = 15 — 5x

5x = 15

х = 3

Результирующий
точки данных: (0,15) и (3,0)

Постройте график второго уравнения , найдя две точки данных. От
установив сначала x, а затем y равным нулю, можно найти точку пересечения y
по вертикальной оси и точка пересечения x по горизонтальной оси.

Если x = 0,
тогда f (0) = 25-5 (0) = 25

Если y = 0,
тогда f (x) = 0 = 25 — 5x

5x = 25

х = 5

Результирующий
точки данных: (0,25) и (5,0)

Из графика видно, что эти линии не пересекаются. Они
параллельны. У них одинаковый наклон.Нет однозначного решения.

Пример 3

даны являются
два следующих линейных уравнения:

21x — 7y = 14

-15x + 5y = -10

Переписать
уравнения, поместив их в форму пересечения наклона.

Первый
уравнение становится

7y = -14 + 21x

у = -2 + 3х

Второй
уравнение становится

5y = -10 + 15x

у = -2 + 3х

Изобразите любое уравнение, найдя две точки данных.Установив сначала
x, а затем y равный нулю, можно найти точку пересечения y по вертикали
ось и точку пересечения x на горизонтальной оси.

Если x = 0,
тогда f (0) = -2 +3 (0) = -2

Если y = 0,
тогда f (x) = 0 = -2 + 3x

3x = 2

х = 2/3

Результирующий
точки данных: (0, -2) и (2 / 3,0)

Из графика видно, что эти уравнения эквивалентны.Там
— бесконечное количество решений.

Алгебраическое решение

Этот метод будет проиллюстрирован с помощью анализа спроса и предложения. Этот
Тип анализа заимствован из работы великого английского экономиста Альфреда
Маршалл.

Q = количество и P = цена

P (s) = функция предложения и P (d) = функция спроса

При построении графика цена располагается на вертикальной оси. Таким образом, цена — это
зависимая переменная.Было бы логичнее рассматривать количество как
зависимая переменная, и этот подход использовал великий французский экономист,
Леон Вальрас. Однако по соглашению экономисты продолжают строить графики, используя
Анализ Маршалла, который называют крестом Маршалла.

Цель состоит в том, чтобы найти равновесную цену и количество, т. Е. Решение
где цена и количество будут иметь одинаковые значения в функции предложения
и функция цены.

Q E
= равновесная величина
P E = равновесная цена

Для равновесия
предложение = спрос
или P (s) = P (d)

Учитывая следующие функции

П (т) =
3Q + 10 и
P (d) = -1 / 2Q + 80

Приравняйте уравнения друг к другу и решите относительно Q.

P (т)
= 3Q + 10 = -1 / 2Q + 80 = P (d)

3.5Q = 70

Q = 20
Равновесное количество 20.

Подставьте это значение вместо Q в любое уравнение и решите для P.

P (т)
= 3 (20) + 10

П (т) =
70

П (г)
= -1/2 (20) + 80

П (г)
= 70
Цена равновесия — 70.

Метод исключения

Этот метод включает удаление переменных из уравнений. Переменные
удаляются последовательно, пока не останется только одна последняя переменная, т.е.
пока не будет одно уравнение с одним неизвестным. Затем это уравнение решается
для одного неизвестного. Затем решение используется для нахождения второго
последняя переменная. Процедура повторяется, добавляя обратно переменные в качестве их решений.
найдены.

Пример 1

2х + 3у = 5

-5x — 2y = 4

Порядок действий: удалить y.Коэффициенты при y не совпадают в
два уравнения, но если бы они были, можно было бы сложить два
уравнения и члены y будут сокращаться. Однако это возможно через
умножение каждого уравнения, чтобы заставить члены y иметь
одинаковые коэффициенты в каждом уравнении.

Шаг 1:
Умножьте первое уравнение на 2, а второе уравнение умножьте на 3.
Это дает

4х + 6у = 10

-15x — 6y = 12

Шаг 2:
Сложите два уравнения.Это дает

-11x = 22

х =
-2

Шаг 3:
Решить относительно y в любом из исходных уравнений

2 (-2) + 3у = 5

3 года = 9

г = 3
или

-5 (-2) — 2y = 4

10 — 2y = 4

2y = 6

г = 3

Альтернативная процедура: удалить x.Коэффициенты при x не совпадают
в двух уравнениях, но если бы они были, можно было бы добавить
два уравнения и члены y будут сокращаться. Однако возможно
путем умножения каждого уравнения, чтобы заставить члены x равняться
имеют одинаковые коэффициенты в каждом уравнении.

Шаг 1:
Умножьте первое уравнение на 5, а второе уравнение умножьте на 2.
Это дает

10x + 15y = 25

-10x — 4y = 8

Шаг 2:
Сложите два уравнения.Это дает

11лет = 33

y =
3

Шаг 3:
Решить относительно x в любом из исходных уравнений

2x + 3 (3) = 5

2x = -4

х = -2
или

-5x — 2 (3) = 4

— 5x =
10

х = -2

Пример 2

2x 1 + 5x 2 + 7x 3 =
2

4x 1 — 4x 2 — 3x 3 =
7

3x 1 — 3x 2 — 2x 3 =
5

В этом примере есть три переменные: x 1 , x 2 и
х 3 .Одна из возможных процедур — удалить первые x 1 ,
, чтобы исключить следующие x 2 , а затем найти x 3 .
Значение, полученное для x 3 , используется для решения x 2 и
наконец, значения, полученные для x 3 и x 2 , используются для
решить относительно x 1 .

Процедура Часть A Сначала удалите x 1 .

Шаг 1 Умножение
первое уравнение на 2 и вычтите второе уравнение из первого
уравнение.Это дает

4x 1 + 10x 2 + 14x 3 =
4
первое уравнение

4x 1 — 4x 2 — 3x 3
= 7
второе уравнение

14x 2 + 17x 3
= -3
второе уравнение вычитается из первого

Шаг 2 Умножение
первое уравнение на 3, третье уравнение умножьте на 2 и вычтите
третье уравнение из первого уравнения.Это дает

6x 1 + 15x 2 + 21x 3 =
6
первое уравнение

6x 1 — 6x 2 — 4x 3 =
10
третье уравнение

21x 2 + 25x 3
= -4
третье уравнение вычитается из первого

Процедура, часть B Второе удаление x 2 .
Из Части А осталось два уравнения. Из этих двух уравнений исключить
х 2 .

14x 2 + 17x 3 = -3
первое уравнение

21x 2 + 25x 3 = -4
второе уравнение

Шаг 1 Умножение
первое уравнение на 21, второе уравнение умножьте на 14. и вычтите
второе уравнение из первого уравнения.Это дает

294x 2 + 357x 3 = -63
первое уравнение

294x 2 + 350x 3 = -56
второе уравнение

7x 3 = -7
второе уравнение вычитается из первого

х 3
= -1

Часть C
Решите относительно x 2 , вставив значение, полученное для x 3 в
любое уравнение из Части B.

14x 2 + 17 (-1) = -3

1 4x 2 = 14

х 2 = 1
или

21x 2 + 25 (-1) = -4

21x 2
= 21

х 2
= 1

Часть D
Решите относительно x 1 , вставив полученные значения x 2
andx 3 в любом из трех исходных уравнений.

2x 1 + 5x 2
+ 7x 3 = 2
первое исходное уравнение

2x 1 + 5 (1) + 7 (-1)
= 2

2x 1 = 4

x 1 = 2 или

4x 1
— 4x 2 — 3x 3 = 7 секунд
исходное уравнение

4x 1 — 4 (1) — 3 (-1)
= 7

4x 1 = 8

х 1 = 2
или же

3x 1
— 3x 2 — 2x 3 = 5
третье исходное уравнение

3x 1 — 3 (1)
-2 (-1) = 5

3x 1
= 6

х 1 = 2

Метод замещения

Это включает выражение одной переменной через другую до тех пор, пока не будет
одно уравнение с одним неизвестным.Затем это уравнение решается для этого
один неизвестный. Затем результат используется для определения переменной, которая была
выражается через переменную, решение которой было только что найдено.

Пример

12x
— 7лет = 106
первое уравнение

8x
+ У = 82
второе уравнение

Решите
второе уравнение для y, а затем подставьте полученное значение y в первое
уравнение.

г
= 82 — 8x
второе уравнение, решенное относительно y

12x
— 7 (82 — 8х) = 106
первое уравнение переписано в x

12x
— 574 + 56x = 106

68x
= 680

х
= 10

Подставьте полученное значение x в любое из исходных эквивалентов.

12x
— 7лет = 106
первое уравнение

12 (10)
— 7лет = 106

7лет
= 14

г
= 2

8 (10)
+ У = 82
второе уравнение

г
= 2

[индекс]


Графические линейные функции | Колледж алгебры

Результаты обучения

  • Построение линейной функции путем нанесения точек
  • Постройте линейную функцию, используя наклон и точку пересечения оси Y
  • Построение линейной функции с помощью преобразований

Ранее мы видели, что график линейной функции представляет собой прямую линию.Мы также смогли увидеть точки функции, а также начальное значение на графике.

Существует три основных метода построения графиков линейных функций. Первый заключается в нанесении точек, а затем в проведении линии через точки. Второй — с использованием точки пересечения и наклона y-. Третий — применение преобразований к тождественной функции [латекс] f \ left (x \ right) = x [/ latex].

Построение графика функции по точкам

Чтобы найти точки функции, мы можем выбрать входные значения, оценить функцию по этим входным значениям и вычислить выходные значения.Входные значения и соответствующие выходные значения образуют пары координат. Затем мы наносим пары координат на сетку. В общем, мы должны оценивать функцию как минимум на двух входах, чтобы найти как минимум две точки на графике функции. Например, учитывая функцию [latex] f \ left (x \ right) = 2x [/ latex], мы можем использовать входные значения 1 и 2. Оценка функции для входного значения 1 дает выходное значение 2, которое представлена ​​точкой (1, 2). Оценка функции для входного значения 2 дает выходное значение 4, которое представлено точкой (2, 4).Часто рекомендуется выбирать три точки, потому что, если все три точки не попадают на одну линию, мы знаем, что допустили ошибку.

Как сделать: дана линейная функция, построить график с помощью точек.

  1. Выберите минимум два входных значения.
  2. Оцените функцию для каждого входного значения.
  3. Используйте полученные выходные значения для определения пар координат.
  4. Нанесите пары координат на сетку.
  5. Проведите линию через точки.

Пример: построение графика по точкам

График [латекс] f \ left (x \ right) = — \ frac {2} {3} x + 5 [/ latex] путем нанесения точек.

Показать решение

Начните с выбора входных значений. Эта функция включает дробь со знаменателем 3, поэтому давайте выберем в качестве входных значений числа, кратные 3. Мы выберем 0, 3 и 6.

Оцените функцию для каждого входного значения и используйте выходное значение для определения пар координат.

[латекс] \ begin {array} {llllll} x = 0 & & f \ left (0 \ right) = — \ frac {2} {3} \ left (0 \ right) + 5 = 5 \ Rightarrow \ left ( 0,5 \ right) \\ x = 3 & & f \ left (3 \ right) = — \ frac {2} {3} \ left (3 \ right) + 5 = 3 \ Rightarrow \ left (3,3 \ вправо) \\ x = 6 & & f \ left (6 \ right) = — \ frac {2} {3} \ left (6 \ right) + 5 = 1 \ Rightarrow \ left (6,1 \ right) \ end {array} [/ latex]

Постройте пары координат и проведите линию через точки.На приведенном ниже графике показана функция [латекс] f \ left (x \ right) = — \ frac {2} {3} x + 5 [/ latex].

Анализ решения

График функции представляет собой линию, как и ожидалось для линейной функции. Кроме того, график имеет наклон вниз, что указывает на отрицательный наклон. Это также ожидается от отрицательной постоянной скорости изменения уравнения для функции.

Попробуйте

График [латекс] f \ left (x \ right) = — \ frac {3} {4} x + 6 [/ latex] путем нанесения точек.

Показать решение

Построение линейной функции с использованием точки пересечения по оси Y и наклона

Другой способ построения графиков линейных функций — использование конкретных характеристик функции, а не построение точек.Первой характеристикой является точка пересечения y-, которая является точкой, в которой входное значение равно нулю. Чтобы найти точку пересечения y- , мы можем установить [latex] x = 0 [/ latex] в уравнении.

Другой характеристикой линейной функции является ее уклон м , который является мерой ее крутизны. Напомним, что наклон — это скорость изменения функции. Наклон линейной функции равен отношению изменения выходов к изменению входов.Другой способ думать о наклоне — разделить вертикальную разницу или подъем между любыми двумя точками на горизонтальную разницу или бег. Наклон линейной функции будет одинаковым между любыми двумя точками. Мы столкнулись как с точкой пересечения y-, так и с наклоном в линейных функциях.

Рассмотрим следующую функцию.

[латекс] f \ left (x \ right) = \ frac {1} {2} x + 1 [/ latex]

Уклон [латекс] \ frac {1} {2} [/ latex]. Поскольку наклон положительный, мы знаем, что график будет наклоняться вверх слева направо.Пересечение y- — это точка на графике, когда x = 0. График пересекает ось y в точке (0, 1). Теперь мы знаем наклон и точку пересечения y . Мы можем начать построение графика с построения точки (0, 1). Мы знаем, что уклон возрастает над пробегом, [latex] m = \ frac {\ text {rise}} {\ text {run}} [/ latex]. В нашем примере [latex] m = \ frac {1} {2} [/ latex], что означает, что подъем равен 1, а диапазон равен 2. Начиная с нашего интервала y (0, 1) , мы можем подняться на 1 и затем пробежать 2 или пробежать 2 и затем подняться на 1.Мы повторяем, пока не получим несколько точек, а затем проводим линию через точки, как показано ниже.

Общее примечание: графическая интерпретация линейной функции

В уравнении [латекс] f \ left (x \ right) = mx + b [/ latex]

  • b — пересечение графика y и указывает точку (0, b ), в которой график пересекает ось y .
  • м — наклон линии, обозначающий вертикальное смещение (подъем) и горизонтальное смещение (пробег) между каждой последовательной парой точек.Напомним формулу наклона:

[латекс] m = \ frac {\ text {изменение вывода (подъем)}} {\ text {изменение ввода (запуск)}} = \ frac {\ Delta y} {\ Delta x} = \ frac { {y} _ {2} — {y} _ {1}} {{x} _ {2} — {x} _ {1}} [/ latex]

Вопросы и ответы

Все ли линейные функции имеют точки пересечения y ?

Да. Все линейные функции пересекают ось Y и, следовательно, пересекаются по оси Y. (Примечание: Вертикальная линия, параллельная оси y, не имеет точки пересечения оси y.Имейте в виду, что вертикальная линия — единственная линия, которая не является функцией.)

Практическое руководство. Имея уравнение для линейной функции, постройте график функции, используя точку пересечения и наклон

y .

  1. Оцените функцию при нулевом входном значении, чтобы найти точку пересечения y-.
  2. Определите уклон.
  3. Постройте точку, представленную отрезком y- .
  4. Используйте [latex] \ frac {\ text {rise}} {\ text {run}} [/ latex], чтобы определить как минимум две дополнительные точки на линии.
  5. Проведите линию, проходящую через точки.

Пример: построение графика с использованием точки пересечения

y- и наклона

График [латекс] f \ left (x \ right) = — \ frac {2} {3} x + 5 [/ latex] с использованием точки пересечения и наклона y- .

Показать решение

Оцените функцию при x = 0, чтобы найти точку пересечения y- . Выходное значение, когда x = 0, равно 5, поэтому график пересечет ось y в точке (0, 5).

Согласно уравнению для функции, наклон линии равен [латекс] — \ frac {2} {3} [/ latex].Это говорит нам о том, что для каждого вертикального уменьшения «подъема» на [латекс] –2 [/ латекс] единиц, «пробег» увеличивается на 3 единицы в горизонтальном направлении. Теперь мы можем построить график функции, сначала построив точку пересечения и . От начального значения (0, 5) мы опускаемся на 2 единицы и вправо на 3 единицы. Мы можем продлить линию влево и вправо, повторяя, а затем провести линию через точки.

Анализ решения

График наклонен вниз слева направо, что означает, что он имеет отрицательный наклон, как и ожидалось.

Попробуйте

Найдите точку на графике, который мы нарисовали в примере: построение графика с использованием точки пересечения y и угла наклона, которая имеет отрицательное значение x .

Показать решение

Возможные ответы: [латекс] \ left (-3,7 \ right) [/ latex], [latex] \ left (-6,9 \ right) [/ latex] или [latex] \ left (-9, 11 \ справа) [/ латекс].

Построение линейной функции с помощью преобразований

Другой вариант построения графиков — использовать преобразований для функции идентичности [latex] f \ left (x \ right) = x [/ latex].Функция может быть преобразована сдвигом вверх, вниз, влево или вправо. Функция также может быть преобразована с помощью отражения, растяжения или сжатия.

Вертикальное растяжение или сжатие

В уравнении [латекс] f \ left (x \ right) = mx [/ latex], м действует как вертикальное растяжение или сжатие функции идентичности. Когда м отрицательное, также наблюдается вертикальное отражение графика. Обратите внимание, что умножение уравнения [латекс] f \ left (x \ right) = x [/ latex] на м растягивает график f на коэффициент м единиц, если м > 1, и сжимает график f с коэффициентом м единиц, если 0 < м <1.Это означает, что чем больше абсолютное значение м , тем круче уклон.

Вертикальные растяжения, сжатия и отражения функции [латекс] f \ left (x \ right) = x [/ latex].

Вертикальный сдвиг

В [латексе] f \ left (x \ right) = mx + b [/ latex], b действует как вертикальный сдвиг , перемещая график вверх и вниз, не влияя на наклон линии. Обратите внимание, что добавление значения b к уравнению [латекс] f \ left (x \ right) = x [/ latex] сдвигает график f всего на b единиц вверх, если b равно положительный и | b | единиц, если значение b отрицательное.

Этот график иллюстрирует вертикальные сдвиги функции [латекс] f \ влево (x \ вправо) = x [/ латекс].

Использование вертикального растяжения или сжатия вместе с вертикальным сдвигом — еще один способ определения различных типов линейных функций. Хотя это может быть не самый простой способ построить график функций такого типа, все же важно практиковать каждый метод.

Практическое руководство. Учитывая уравнение линейной функции, используйте преобразования, чтобы построить график линейной функции в виде [латекс] f \ left (x \ right) = mx + b [/ latex].

  1. График [латекс] f \ left (x \ right) = x [/ latex].
  2. Растянуть или сжать график по вертикали в м .
  3. Сдвинуть график вверх или вниз b ед.

Пример: построение графиков с использованием преобразований

График [латекс] f \ left (x \ right) = \ frac {1} {2} x — 3 [/ latex] с использованием преобразований.

Показать решение

Уравнение для функции показывает, что [latex] m = \ frac {1} {2} [/ latex], поэтому функция идентичности сжимается по вертикали с помощью [latex] \ frac {1} {2} [/ latex].Уравнение для функции также показывает, что [latex] b = -3 [/ latex], поэтому функция идентичности сдвинута по вертикали на 3 единицы.

Сначала нарисуйте функцию идентичности и покажите вертикальное сжатие.

Функция [latex] y = x [/ latex] сжата в [latex] \ frac {1} {2} [/ latex] раз.

Затем покажите вертикальный сдвиг.

Функция [latex] y = \ frac {1} {2} x [/ latex] сдвинута на 3 единицы вниз.

Попробуйте

График [латекс] f \ left (x \ right) = 4 + 2x [/ latex], с использованием преобразований.

Показать решение

Вопросы и ответы

В примере: построение графиков с помощью преобразований, могли бы мы изобразить график, изменив порядок преобразований на обратный?

Нет. Порядок преобразований соответствует порядку операций. Когда функция оценивается на заданном входе, соответствующий выход вычисляется в соответствии с порядком операций. Вот почему мы сначала выполнили сжатие. Например, следуя порядку операций, пусть на входе будет 2.

[латекс] \ begin {array} {l} f \ text {(2)} = \ frac {\ text {1}} {\ text {2}} \ text {(2)} — \ text {3} \ hfill \\ = \ text {1} — \ text {3} \ hfill \\ = — \ text {2} \ hfill \ end {array} [/ latex]

Внесите свой вклад!

У вас была идея улучшить этот контент? Нам очень понравится ваш вклад.

Улучшить эту страницуПодробнее

Смешанный обзор с пятью вопросами 1. Что это за функция: y = 3x-2 2. Что такое пересечение оси y в приведенном выше уравнении? 3. Решите для x: 16 = 5x.

Презентация на тему: «Смешанный обзор по пяти вопросам 1.Что это за функция: y = 3x-2 2. Какова точка пересечения оси y в приведенном выше уравнении? 3. Решите для x: 16 = 5x + 1 4. Что такое? »- стенограмма презентации:

ins [data-ad-slot = «4502451947»] {display: none! important;}}
@media (max-width: 800px) {# place_14> ins: not ([data-ad-slot = «4502451947»]) {display: none! important;}}
@media (max-width: 800px) {# place_14 {width: 250px;}}
@media (max-width: 500 пикселей) {# place_14 {width: 120px;}}
]]>

1

Смешанное рассмотрение по пяти вопросам 1.Что это за функция: y = 3x-2 2. Какова точка пересечения оси y в приведенном выше уравнении? 3. Решите относительно x: 16 = 5x + 1 4. Каков наклон этого уравнения: y = ½ x + 9 5. Запишите это уравнение в обозначении функции: y = 6p — 7

2

Смешанный обзор из пяти вопросов — ключ 1. Линейный 2. -2 3,16 = 5x + 1 15 = 5x 3 = x или -1 -1 5 5 x = 3 15 = 5x 4.½ 5. f (p) = 6p — 7

3

Параболы: природа или дизайнерские идеи?

4

Можете ли вы найти параболические формы?

5

6

7

8

9

10

11

12

13

14

Стандартные и важные вопросы MM1A1b: Постройте график основных функций f (x) = x n Существенный вопрос: можете ли вы идентифицировать квадратичную функцию по ее компонентам?

15

Сможете ли вы предсказать, как это будет выглядеть, всего за 2 очка? Наклон постоянный? Если нет, то что это? Он указывает вверх или вниз? Какая форма? Чем он отличается от линейного графика?

16

Что такое парабола? КЛЮЧЕВОЕ ПРИМЕЧАНИЕ: Парабола — это U-образный график.Он может быть направлен вверх (положительный наклон) или направлен вниз (отрицательный наклон).

17

Быстрый взгляд на уравнение Самая основная квадратная формула — y = x 2, она называется родительским графом. Это означает, что U-образная форма (парабола) повернута вверх, а вершина находится в точке (0,0).

18

Это квадратный родительский граф. Обратите внимание, где расположена вершина (0,0). Уравнение для этого графа Is y = x 2 Помните: вершина — это то место, где квадратичный граф поворачивается и меняет направление.Это еще называют критической точкой.

19

Как выглядит диаграмма ввода / вывода для этого родительского графика? xy -24 1 00 11 24 Значимые объекты Что вы замечаете? Повторяются ли значения x? Повторяются ли значения y? Как вы называете такое изображение? Вы видите вершину? Что вы заметили в наклоне?

20

Что изменилось? Вершина переместилась! Он поднялся на одну единицу! Когда здесь меняется число, это показывает, как график движется вверх и вниз.

21 год

Этот квадратичный график сдвинулся вниз на одну единицу. Новая вершина: (0, -1)

22

Назовите эту смену!

23

Назовите эту смену!

24

Сдвиг вверх и вниз по оси y называется вертикальным смещением.НО вы также можете сдвигать влево и вправо по оси x? Как это называется?

25

Это называется сдвигом по горизонтали (влево / вправо). Родительский граф сместился влево на 1 единицу. Новое уравнение будет выглядеть так: y = (x + 1) 2 Горизонтальное перемещение всегда заключено в круглые скобки с x. Однако в этих уравнениях есть одна хитрость — вы двигаетесь в противоположном направлении! Новая вершина: (-1,0)

26 год

Назовите эту смену! Что это за? Что такое новая вершина?

27

Назовите эту смену! Что это за? Что такое новая вершина?

28 год

Этот график сдвигается в обе стороны! Что такое вертикальный сдвиг? Что такое сдвиг по горизонтали? Что такое вершина?

29

Как насчет этого? Что такое вертикальный сдвиг? Что такое сдвиг по горизонтали? Что такое вершина? Обратите внимание, как уравнение соответствует вершине, за исключением противоположного знака внутри скобок?

30

Определение наклона ЭТО ФАКТ: в родительском графе вершина находится в точке (0,0), а наклон ПЕРВЫХ точек отражения равен 1.Остальная часть наклона ПЕРЕМЕННАЯ или МЕНЯЮЩАЯСЯ Наклон = 1 Наклон = 3 Наклон = 5 Наклон = подъем / спуск =

31 год

Что будет, если уклон больше 1? Slope = 4 Как он соотносится с родительским графом?

32

Наклон = -4 Что случилось?

33

Наклон = ½ Как это соотносится с родительским графом?

34

Наклон = -½ Как это соотносится с последним графиком?

35 год

Части квадратного уравнения смещение по оси y по вертикали = _2__ Наклон = __2_ Сдвиг по горизонтали = _2__ (Напротив значения вершины x) Вершину можно найти в точке (2, 2). Когда наклон больше 1, график становится…

36

Графический органайзер: части квадратного уравнения _________ _______shift _______ shift (противоположно значению вершины) Вершину можно найти в (__, __) ______

37

Части квадратного уравнения смещение по оси y по вертикали = ___ Наклон = ___ Сдвиг по горизонтали = ___ (противоположно значению вершины x) Вершину можно найти в (__, __)

38

Части квадратного уравнения y- перехват вертикального сдвига = ___ Наклон = ___ Горизонтальный сдвиг = ___ (Напротив значения вершины x) Вершину можно найти в (__, __) Когда наклон меньше 1, график становится…

39

Части квадратного уравнения y- перехват вертикального сдвига = ___ Наклон = ___ Горизонтальный сдвиг = ___ (противоположно значению вершины x) Вершину можно найти в (__, __) Имеет ли значение, насколько велики числа?

40

Для этого обратитесь к партнеру! Направления: Определите a) наклон b) точку пересечения y c) вершину и график 1 из них!

41 год

Задача партнера — Ключевые направления: Определите a) наклон b) точку пересечения y c) вершину и график 1 из них! Бывший.у = х 2 -2

42

Викторина с графиком квадратичных функций 1-8. Выберите правило функции, соответствующее графику. Поместите письмо в бланк. 9) Какой из приведенных выше графиков является родительским для квадратичных функций? #______ 10) Сколько графиков имеют отрицательный наклон? ____

43 год

Графики квадратичных функций викторины — ключевые слова 1-8.Выберите правило функции, соответствующее графику. Поместите письмо в бланк. 9) Какой из приведенных выше графиков является родительским для квадратичных функций? #___ 4___ 10) Сколько графиков имеют отрицательный наклон? __ 2__

44 год

Расширение / уточнение

45

46

47

48

49

50

51

52

53

Вернуться к фотографиям Определите все параболы, которые вы видите, и укажите, имеют ли они положительный или отрицательный наклон!

.

Добавить комментарий

Ваш адрес email не будет опубликован.