Решить матрицу онлайн методом гаусса онлайн: Онлайн калькулятор. Решение систем линейных уравнений. Метод Гаусса.

Содержание

Решение системы линейных алгебраических уравнений методом Гаусса

Система линейных уравнений вида:

может быть решена методом Гаусса при помощи нашего калькулятора.

Система уравнений задается в виде расширенной матрицы, т. е. матрицы коэффициентов и свободных членов размерности [n : n+1] вида:

Описание метода Гаусса следует сразу за калькулятором.

Решение системы линейных уравнений методом Гаусса

8 3 4 5 31
14 4 33 23 17
15 4 23 7 22
4 11 17 1 51

СЛАУ в матричном виде

Точность вычисления

Знаков после запятой: 2

Количество решений

 

Вектор решения системы уравнений

 

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Загрузить
close

content_copy Ссылка save Сохранить extension Виджет

Метод Гаусса

Метод был назван в честь гениального немецкого математика XIX века Карла Фридриха Гаусса. Сам Гаусс не был первооткрывателем метода (метод был известен и ранее (еще в I-II веке до н.  э. метод упоминался в китайском труде «Математика в девяти книгах»).

Приведение матрицы к ступенчатому виду

На первом шаге решения системы уравнений методом Гаусса матрица коэффициентов и свободных членов приводится к ступенчатому виду:

Матрица превращается в ступенчатую форму путем элементарных преобразований — перемена строк местами, умножение строки на коэффициент, сложение строк.
В нашем калькуляторе для перехода к ступенчатому виду осуществляется последовательное вычитание из нижних строк матрицы, помноженных на , верхних строк , помноженных на коэффициент , где i — индекс текущей строки (индекс строки, которую вычитают из нижних строк).
При осуществлении этой операции требуется, чтобы коэффициент главной переменной был не нулевым. В случае нулевого коэффициента, строка меняется местами с любой другой нижней строкой, в которой в текущем столбце значение отлично от нуля.

Выражение базисных переменных

Получив ступенчатую матрицу, мы переходим к выражению базисных переменных, для этого сначала выполняется деление текущей строки на коэффициент , затем производится обратное вычитание из верхних строк , этой строки , помноженных на коэффициент , где j — индекс текущей строки (индекс строки, которую вычитают из верхних строк). Операция повторяется с каждой строкой, начиная от n-й до 1-й.
В результате матрица приобретает диагональный вид:
,
далее, поделив строки матрицы на коэффициент , в столбце свободных членов получаем вектор решений системы уравнений.

Решение системы линейных уравнений (метод Гаусса)

Этот онлайн калькулятор позволит вам очень просто решить систему линейных уравнений (СЛУ) методом Гаусса.

Для того чтобы решить систему линейных уравнений методом Гаусса, выберите количество неизвестных величин:
2345

Заполните систему линейных уравнений

Для изменения в уравнении знаков с «+» на «-» вводите отрицательные числа. Если в вашем уравнение отсутствует какой-то коэффициент, то на его месте в калькуляторе введите ноль. Вводить можно числа или дроби. Например: 1.5 или 1/7 или -1/4 и т.д.

Решить систему

Воспользуйтесь также:
Решение системы линейных уравнений (метод подстановки)
Решение системы линейных уравнений (метод Крамера)
Решение системы линейных уравнений (матричный метод)

Решение системы линейных уравнений методом Гаусса

Метод Гаусса

Это классический метод решения системы линейных уравнений, в основе которого лежат элементарные преобразования системы (сложение, вычитание уравнений, умножение на коэффмцменты) для приведения к равносильной системе уравнений треугольного типа, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные неизвестные. Решение системы линейных уравнений методом Гаусса осуществляется в два этапа.

На нашем сайте решение происходит в режиме онлайн, каждый шаг решения имеет подробное описание, поэтому вы с легкость сможете освоить метод Гаусса решения систем линейных уравнений. Также мы применяем наиболее полную форму метода Гаусса, когда матрица приводится не к диагональному виду, а к единичной форме. В этом случае правая колонка и будет представлять значения неизвестных переменных. При этом нет необходимости вычислять новые неизвестные через ранее рассчитанные.

вычисление матрицы онлайн методом гаусса онлайн

Вы искали вычисление матрицы онлайн методом гаусса онлайн? На нашем сайте вы можете получить ответ на любой математический вопрос здесь. Подробное
решение с описанием и пояснениями поможет вам разобраться даже с самой сложной задачей и вычислить систему уравнений онлайн, не
исключение. Мы поможем вам подготовиться к домашним работам, контрольным, олимпиадам, а так же к поступлению
в вуз.
И какой бы пример, какой бы запрос по математике вы не ввели — у нас уже есть решение.
Например, «вычисление матрицы онлайн методом гаусса онлайн».

Применение различных математических задач, калькуляторов, уравнений и функций широко распространено в нашей
жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Математику человек
использовал еще в древности и с тех пор их применение только возрастает. Однако сейчас наука не стоит на
месте и мы можем наслаждаться плодами ее деятельности, такими, например, как онлайн-калькулятор, который
может решить задачи, такие, как вычисление матрицы онлайн методом гаусса онлайн,вычислить систему уравнений онлайн,гаусс калькулятор,гаусс онлайн,гаусса матрица онлайн,гаусса метод решения систем линейных уравнений онлайн,гаусса онлайн,гаусса онлайн калькулятор,гаусса онлайн решение,гаусса решение онлайн,гауссом решение онлайн,жордана гаусса калькулятор,исследовать на совместность систему онлайн,исследовать систему и если она совместна найти решение онлайн,исследовать систему на совместность онлайн калькулятор,исследовать совместность и найти общее решение системы онлайн,исследовать совместность системы и найти общее решение онлайн,как решить матрицу методом гаусса онлайн,как решить матрицу онлайн методом гаусса,калькулятор гаусс,калькулятор гаусса,калькулятор гаусса жордана,калькулятор гаусса жордана гаусса онлайн калькулятор,калькулятор гаусса онлайн,калькулятор гаусса с подробным решением,калькулятор для матриц метод гаусса,калькулятор для метода гаусса,калькулятор для решения линейных уравнений,калькулятор для решения уравнений линейных,калькулятор для систем уравнений,калькулятор для системы уравнений онлайн,калькулятор жордана гаусса,калькулятор линейного уравнения,калькулятор линейное уравнение,калькулятор линейные уравнения,калькулятор линейных уравнений,калькулятор линейных уравнений онлайн,калькулятор матриц гаусс,калькулятор матриц гаусса,калькулятор матриц гаусса онлайн,калькулятор матриц метод гаусса,калькулятор матриц метод гаусса онлайн,калькулятор матриц метод гаусса с решением,калькулятор матриц методом гаусса,калькулятор матриц методом гаусса онлайн,калькулятор матриц методом гаусса онлайн калькулятор,калькулятор матриц методом гаусса с решением онлайн,калькулятор матриц методом жордана гаусса онлайн калькулятор,калькулятор матриц онлайн гаусса,калькулятор матриц онлайн метод гаусса,калькулятор матриц онлайн методом гаусса,калькулятор матриц онлайн с решением метод гаусса,калькулятор матриц онлайн с решением методом гаусса,калькулятор матриц онлайн с решением методом гаусса онлайн,калькулятор матриц по методу гаусса,калькулятор матриц решение методом гаусса,калькулятор матриц с решением метод гаусса,калькулятор матрица метод гаусса,калькулятор матрицы гаусса,калькулятор матрицы метод гаусса,калькулятор матрицы методом гаусса,калькулятор матрицы методом гаусса онлайн,калькулятор матрицы онлайн метод гаусса,калькулятор матрицы онлайн методом гаусса,калькулятор матрицы онлайн с решением метод гаусса,калькулятор матричный метод гаусса,калькулятор метод гаусса,калькулятор метод гаусса жордана,калькулятор метод гаусса онлайн с решением,калькулятор метод гаусса решения систем линейных уравнений онлайн,калькулятор метод гаусса с подробным решением,калькулятор метод гаусса с решением,калькулятор метод жордана гаусса,калькулятор метода гаусса,калькулятор методом гаусса,калькулятор методом гаусса онлайн,калькулятор онлайн для системы уравнений,калькулятор онлайн линейное уравнение,калькулятор онлайн линейные уравнения,калькулятор онлайн линейных уравнений,калькулятор онлайн матриц гаусса,калькулятор онлайн матриц методом гаусса,калькулятор онлайн матриц методом гаусса онлайн,калькулятор онлайн матриц методом гаусса онлайн калькулятор,калькулятор онлайн матрицы методом гаусса,калькулятор онлайн метод гаусса без дробей,калькулятор онлайн метод гаусса жордана гаусса онлайн калькулятор,калькулятор онлайн решение линейных уравнений,калькулятор онлайн решение матриц методом гаусса,калькулятор онлайн решение методом гаусса,калькулятор онлайн решение методом гаусса онлайн с подробным решением,калькулятор онлайн решение систем,калькулятор онлайн решение системы,калькулятор онлайн решение системы методом гаусса онлайн,калькулятор онлайн решение системы уравнений,калькулятор онлайн решить систему методом гаусса,калькулятор онлайн систем уравнений,калькулятор онлайн системы линейных уравнений,калькулятор онлайн системы линейных уравнений методом гаусса онлайн,калькулятор онлайн системы уравнений,калькулятор онлайн системы уравнений методом гаусса онлайн,калькулятор онлайн слау,калькулятор по методу гаусса,калькулятор решение линейных уравнений онлайн,калькулятор решение матриц методом гаусса,калькулятор решение методом гаусса,калькулятор решение методом гаусса онлайн,калькулятор решение систем линейных уравнений,калькулятор решение систем линейных уравнений методом гаусса,калькулятор решение систем методом гаусса,калькулятор решение систем методом гаусса онлайн,калькулятор решение систем уравнений методом гаусса,калькулятор решение систем уравнений методом гаусса онлайн,калькулятор решение системы методом гаусса,калькулятор решение системы уравнений,калькулятор решение системы уравнений методом гаусса,калькулятор решение слау методом гаусса,калькулятор решение уравнений методом гаусса,калькулятор решение уравнений методом гаусса онлайн,калькулятор решения линейных уравнений,калькулятор решения систем линейных уравнений,калькулятор решения уравнений линейных,калькулятор решить систему методом гаусса,калькулятор систем линейных уравнений,калькулятор систем линейных уравнений методом гаусса,калькулятор систем линейных уравнений онлайн,калькулятор систем онлайн,калькулятор систем уравнений онлайн,калькулятор систем уравнений с решением онлайн,калькулятор система линейных уравнений,калькулятор система уравнений,калькулятор системы линейных уравнений,калькулятор системы линейных уравнений онлайн,калькулятор системы уравнений,калькулятор системы уравнений онлайн,калькулятор системы уравнений онлайн с решением,калькулятор системы уравнений с решением онлайн,калькулятор системы уравнения,калькулятор слау,калькулятор слау методом гаусса,калькулятор слау онлайн,калькулятор слу,калькулятор уравнение линейное,линейное уравнение калькулятор,линейное уравнение калькулятор онлайн,линейное уравнение онлайн,линейное уравнение онлайн калькулятор,линейное уравнение онлайн решение,линейное уравнение решение онлайн,линейное уравнение решить онлайн,линейные уравнения калькулятор,линейные уравнения калькулятор онлайн,линейные уравнения онлайн калькулятор,линейные уравнения онлайн решать,линейные уравнения онлайн решение,линейные уравнения онлайн решить,линейные уравнения решать онлайн,линейные уравнения решение онлайн,матрица гаусса онлайн,матрица калькулятор метод гаусса,матрица калькулятор онлайн метод гаусса,матрица метод гаусса калькулятор,матрица метод гаусса онлайн,матрица метод гаусса онлайн калькулятор,матрица методом гаусса онлайн,матрица онлайн гаусса,матрица онлайн калькулятор метод гаусса,матрица онлайн метод гаусса,матрица онлайн методом гаусса,матрица онлайн решение методом гаусса,матрица расширенная онлайн,матрица решение методом гаусса онлайн,матрица решение онлайн методом гаусса,матрицы гаусса калькулятор,матрицы калькулятор гаусса,матрицы калькулятор метод гаусса,матрицы метод гаусса калькулятор,матрицы метод гаусса онлайн,матрицы метод гаусса онлайн калькулятор,матрицы метод гаусса онлайн калькулятор с подробным решением,матрицы методом гаусса калькулятор,матрицы методом гаусса калькулятор онлайн,матрицы методом гаусса онлайн,матрицы методом гаусса онлайн калькулятор,матрицы онлайн калькулятор метод гаусса,матрицы онлайн калькулятор методом гаусса,матрицы онлайн калькулятор с решением метод гаусса,матрицы онлайн метод гаусса,матрицы онлайн методом гаусса,матрицы решение гаусса онлайн,матричный калькулятор гаусса,матричный калькулятор метод гаусса,матричный калькулятор метод гаусса онлайн,матричный калькулятор методом гаусса,матричный калькулятор онлайн метод гаусса,матричный онлайн калькулятор метод гаусса,метод гаусса для матриц онлайн,метод гаусса жордана гаусса онлайн калькулятор,метод гаусса жордана калькулятор,метод гаусса жордана онлайн,метод гаусса жордана онлайн калькулятор с подробным решением,метод гаусса калькулятор,метод гаусса калькулятор матрицы,метод гаусса калькулятор онлайн,метод гаусса калькулятор онлайн с решением,метод гаусса калькулятор с решением,метод гаусса матриц онлайн калькулятор,метод гаусса матрица онлайн,метод гаусса матрица онлайн калькулятор,метод гаусса матрицы калькулятор,метод гаусса матрицы онлайн,метод гаусса матрицы онлайн калькулятор с подробным решением,метод гаусса матричный калькулятор,метод гаусса онлайн,метод гаусса онлайн калькулятор,метод гаусса онлайн калькулятор без дробей,метод гаусса онлайн калькулятор матриц,метод гаусса онлайн калькулятор с подробным,метод гаусса онлайн калькулятор с подробным решением,метод гаусса онлайн калькулятор с подробным решением и с проверкой,метод гаусса онлайн калькулятор с подробным решением матрицы,метод гаусса онлайн калькулятор с решением,метод гаусса онлайн матрица,метод гаусса онлайн матрицы,метод гаусса онлайн матричный метод,метод гаусса онлайн решение,метод гаусса онлайн решение матриц,метод гаусса онлайн решения,метод гаусса онлайн решить,метод гаусса онлайн с подробным решением,метод гаусса онлайн слау,метод гаусса примеры с решением онлайн,метод гаусса решение матриц онлайн,метод гаусса решение матриц онлайн калькулятор,метод гаусса решение онлайн,метод гаусса решение систем линейных уравнений онлайн,метод гаусса решения онлайн,метод гаусса решения систем линейных уравнений онлайн,метод гаусса решения систем линейных уравнений онлайн калькулятор,метод гаусса решить онлайн,метод гаусса с подробным решением калькулятор,метод гаусса с подробным решением онлайн,метод гаусса слау онлайн,метод жордана гаусса калькулятор,метод жордана гаусса онлайн,метод жордана гаусса онлайн калькулятор,метод жордана гаусса онлайн калькулятор с подробным решением,метод решение гаусса онлайн,метод решения гаусса онлайн,метод решения систем линейных уравнений метод гаусса онлайн,методом гаусса жордана онлайн,методом гаусса калькулятор,методом гаусса матрицы онлайн,методом гаусса найти общее решение системы линейных уравнений онлайн,методом гаусса онлайн калькулятор,методом гаусса решить систему калькулятор,методом гаусса решить систему линейных уравнений онлайн,методом жордана гаусса онлайн,найти матрицу методом гаусса онлайн,найти матрицу онлайн методом гаусса,найти общее решение системы линейных уравнений методом гаусса онлайн,найти общее решение системы линейных уравнений онлайн,найти общее решение системы линейных уравнений онлайн методом гаусса,найти определитель методом гаусса онлайн,найти определитель онлайн методом гаусса,найти решение системы линейных уравнений онлайн,онлайн гаусс,онлайн гаусса,онлайн калькулятор гаусса,онлайн калькулятор гаусса жордана гаусса онлайн,онлайн калькулятор жордан гаусс,онлайн калькулятор исследовать систему на совместность,онлайн калькулятор исследовать систему на совместность онлайн,онлайн калькулятор линейное уравнение,онлайн калькулятор линейных систем уравнений,онлайн калькулятор линейных уравнений,онлайн калькулятор линейных уравнений метод гаусса онлайн,онлайн калькулятор матриц гаусса,онлайн калькулятор матриц метод гаусса,онлайн калькулятор матриц метод гаусса с решением,онлайн калькулятор матриц методом гаусса,онлайн калькулятор матриц с решением метод гаусса,онлайн калькулятор матрица методом гаусса,онлайн калькулятор матрицы метод гаусса,онлайн калькулятор матрицы методом гаусса,онлайн калькулятор матрицы методом гаусса онлайн с решением,онлайн калькулятор матрицы с решением метод гаусса,онлайн калькулятор матричный метод гаусса,онлайн калькулятор метод гаусса,онлайн калькулятор метод гаусса без дробей,онлайн калькулятор метод гаусса матрицы,онлайн калькулятор метод гаусса с решением,онлайн калькулятор методом гаусса,онлайн калькулятор методом гаусса жордана гаусса онлайн,онлайн калькулятор методом гаусса решить систему,онлайн калькулятор методом гаусса решить систему уравнений,онлайн калькулятор решение линейных уравнений,онлайн калькулятор решение линейных уравнений методом гаусса,онлайн калькулятор решение матриц методом гаусса,онлайн калькулятор решение матрицы методом гаусса,онлайн калькулятор решение методом гаусса,онлайн калькулятор решение методом гаусса онлайн с подробным решением,онлайн калькулятор решение систем,онлайн калькулятор решение систем линейных уравнений,онлайн калькулятор решение систем линейных уравнений методом гаусса,онлайн калькулятор решение систем методом гаусса,онлайн калькулятор решение систем уравнений,онлайн калькулятор решение систем уравнений методом гаусса,онлайн калькулятор решение системы,онлайн калькулятор решение системы линейных уравнений,онлайн калькулятор решение системы линейных уравнений методом гаусса,онлайн калькулятор решение системы методом гаусса онлайн,онлайн калькулятор решение системы уравнений методом гаусса,онлайн калькулятор решение слау,онлайн калькулятор решение слау методом гаусса,онлайн калькулятор решение уравнений методом гаусса,онлайн калькулятор решение уравнений методом гаусса онлайн,онлайн калькулятор решения уравнений методом гаусса,онлайн калькулятор решите систему уравнений,онлайн калькулятор решить матрицу методом гаусса,онлайн калькулятор решить систему линейных уравнений методом гаусса,онлайн калькулятор решить систему методом гаусса,онлайн калькулятор решить систему уравнений методом гаусса,онлайн калькулятор решить уравнение методом гаусса,онлайн калькулятор систем,онлайн калькулятор систем линейных уравнений методом гаусса онлайн,онлайн калькулятор систем уравнений,онлайн калькулятор система линейных алгебраических уравнений,онлайн калькулятор система линейных уравнений,онлайн калькулятор система линейных уравнений методом гаусса,онлайн калькулятор система уравнений методом гаусса,онлайн калькулятор системы линейных уравнений,онлайн калькулятор системы линейных уравнений методом гаусса онлайн,онлайн калькулятор системы уравнений,онлайн калькулятор системы уравнений методом гаусса онлайн,онлайн калькулятор слау,онлайн калькулятор слау методом гаусса,онлайн калькулятор уравнение методом гаусса онлайн,онлайн линейное уравнение,онлайн линейные уравнения,онлайн матрица гаусса,онлайн матрица метод гаусса,онлайн матрица методом гаусса,онлайн матрицы метод гаусса,онлайн матрицы методом гаусса,онлайн матричный калькулятор метод гаусса,онлайн методом гаусса,онлайн решение гаусса,онлайн решение гауссом,онлайн решение задач методом гаусса,онлайн решение канонических уравнений,онлайн решение линейное уравнение,онлайн решение линейных уравнений,онлайн решение линейных уравнений методом гаусса,онлайн решение матриц гаусса,онлайн решение матриц метод гаусса,онлайн решение матриц методом гаусса,онлайн решение матриц методом гаусса жордана,онлайн решение матриц методом гаусса с решением,онлайн решение матриц по гауссу,онлайн решение матриц по методу гаусса,онлайн решение матрицы гаусса,онлайн решение матрицы метод гаусса,онлайн решение матрицы методом гаусса онлайн с решением,онлайн решение матричных уравнений методом гаусса,онлайн решение метод гаусса,онлайн решение методом гаусса,онлайн решение методом гаусса жордана,онлайн решение методом гаусса жордана гаусса,онлайн решение методом гаусса жордана онлайн,онлайн решение методом гаусса с подробным решением,онлайн решение методом жордана гаусса,онлайн решение систем,онлайн решение систем линейных алгебраических уравнений,онлайн решение систем линейных уравнений,онлайн решение систем методом гаусса,онлайн решение систем методом гаусса онлайн калькулятор,онлайн решение систем уравнений,онлайн решение систем уравнений методом гаусса,онлайн решение система линейных уравнений,онлайн решение систему уравнений,онлайн решение системы,онлайн решение системы линейных уравнений,онлайн решение системы линейных уравнений методом гаусса,онлайн решение системы методом гаусса,онлайн решение системы методом гаусса онлайн с,онлайн решение системы уравнений методом гаусса,онлайн решение системы уравнений методом гаусса онлайн с решением,онлайн решение системы уравнений с тремя неизвестными,онлайн решение системы уравнения,онлайн решение слау методом жордана гаусса,онлайн решение уравнений гаусса,онлайн решение уравнений методом гаусса,онлайн решение уравнений методом жордана гаусса онлайн,онлайн решение уравнений с тремя неизвестными,онлайн решение уравнения методом гаусса,онлайн решения матриц методом гаусса,онлайн решения метод гаусса,онлайн решения методом гаусса онлайн,онлайн решения систем уравнений,онлайн решить систему линейных уравнений методом гаусса,онлайн решить уравнение методом гаусса онлайн,онлайн система,онлайн система гаусса,онлайн система уравнений методом гаусса,онлайн система уравнений методом гаусса онлайн,онлайн система уравнений решение,онлайн системы,онлайн уравнение гаусса,посчитать матрицу методом гаусса онлайн,посчитать матрицу онлайн методом гаусса,проверить на совместимость матрицу онлайн,проверить на совместность систему онлайн,проверить систему на совместность онлайн,проверить совместимость системы уравнений онлайн,проверить совместность системы уравнений онлайн,проверка на совместность матрицы онлайн,расширенная матрица онлайн,решатель систем уравнений онлайн,решать онлайн линейные уравнения,решать онлайн систему уравнений,решение гаусса онлайн,решение гауссом онлайн,решение задач методом гаусса онлайн,решение канонических уравнений онлайн,решение линейное уравнение онлайн,решение линейные уравнения онлайн,решение линейных алгебраических уравнений онлайн,решение линейных систем уравнений калькулятор,решение линейных систем уравнений калькулятор онлайн,решение линейных уравнений калькулятор онлайн,решение линейных уравнений методом гаусса онлайн,решение линейных уравнений методом гаусса онлайн калькулятор,решение линейных уравнений онлайн,решение линейных уравнений онлайн калькулятор,решение линейных уравнений онлайн калькулятор с решением,решение линейных уравнений онлайн методом гаусса,решение матриц гаусса онлайн,решение матриц гауссом онлайн,решение матриц метод гаусса онлайн,решение матриц метод гаусса онлайн калькулятор,решение матриц методом гаусса жордана онлайн,решение матриц методом гаусса калькулятор,решение матриц методом гаусса онлайн,решение матриц методом гаусса онлайн калькулятор,решение матриц методом гаусса онлайн с подробным решением,решение матриц методом гаусса онлайн с решением,решение матриц методом гаусса онлайн с решением подробно,решение матриц методом жордана гаусса онлайн,решение матриц онлайн гаусса,решение матриц онлайн гауссом,решение матриц онлайн калькулятор метод гаусса,решение матриц онлайн калькулятор методом гаусса,решение матриц онлайн метод гаусса,решение матриц онлайн метод гаусса онлайн,решение матриц онлайн методом гаусса,решение матриц онлайн методом гаусса онлайн,решение матриц онлайн методом гаусса онлайн с,решение матриц онлайн методом гаусса с подробным решением,решение матриц онлайн методом гаусса с решением,решение матриц онлайн методом жордана гаусса,решение матриц онлайн по методу гаусса,решение матриц онлайн с подробным решением методом гаусса,решение матриц онлайн с решением методом гаусса,решение матриц по гауссу онлайн,решение матриц по методу гаусса онлайн,решение матрица методом гаусса онлайн,решение матрицы гаусса онлайн,решение матрицы методом гаусса онлайн,решение матрицы методом гаусса онлайн калькулятор,решение матрицы методом гаусса онлайн решение,решение матрицы методом гаусса онлайн с подробным решением,решение матрицы методом гаусса онлайн с решением,решение матрицы методом гаусса онлайн с решением калькулятор,решение матрицы онлайн гаусса,решение матрицы онлайн методом гаусса,решение матрицы онлайн методом гаусса онлайн,решение матрицы онлайн методом гаусса с подробным решением,решение матрицы онлайн методом гаусса с решением,решение матричных уравнений методом гаусса онлайн,решение матричных уравнений онлайн методом гаусса,решение метод гаусса онлайн,решение методом гаусса жордана онлайн,решение методом гаусса калькулятор,решение методом гаусса калькулятор онлайн,решение методом гаусса матрицы онлайн калькулятор,решение методом гаусса онлайн,решение методом гаусса онлайн калькулятор,решение методом гаусса онлайн с подробным решением,решение методом гаусса онлайн с решением,решение методом жордана гаусса онлайн,решение онлайн гаусса,решение онлайн гауссом,решение онлайн линейные уравнения,решение онлайн линейных уравнений методом гаусса,решение онлайн метод гаусса,решение онлайн методом гаусса,решение онлайн методом гаусса с подробным решением,решение онлайн методом жордана гаусса,решение онлайн систем методом гаусса онлайн калькулятор,решение онлайн система линейных уравнений,решение онлайн система уравнений,решение онлайн системы линейных уравнений методом гаусса,решение онлайн системы методом гаусса онлайн с,решение онлайн уравнений с 3 неизвестными,решение по методу гаусса онлайн,решение расширенной матрицы онлайн,решение систем калькулятор онлайн,решение систем линейных алгебраических уравнений онлайн,решение систем линейных уравнений калькулятор,решение систем линейных уравнений калькулятор онлайн,решение систем линейных уравнений метод гаусса онлайн,решение систем линейных уравнений методом гаусса калькулятор,решение систем линейных уравнений методом гаусса онлайн,решение систем линейных уравнений методом гаусса онлайн калькулятор,решение систем линейных уравнений методом гаусса онлайн с решением,решение систем линейных уравнений онлайн,решение систем линейных уравнений онлайн калькулятор,решение систем линейных уравнений онлайн метод гаусса,решение систем линейных уравнений онлайн с решением,решение систем методом гаусса калькулятор,решение систем методом гаусса калькулятор онлайн,решение систем методом гаусса онлайн,решение систем методом гаусса онлайн калькулятор,решение систем онлайн калькулятор,решение систем онлайн методом гаусса,решение систем онлайн с решением,решение систем уравнений калькулятор онлайн,решение систем уравнений методом гаусса калькулятор,решение систем уравнений методом гаусса онлайн,решение систем уравнений методом гаусса онлайн калькулятор,решение систем уравнений методом гаусса онлайн с подробным решением,решение систем уравнений онлайн,решение систем уравнений онлайн калькулятор,решение систем уравнений онлайн метод гаусса онлайн,решение систем уравнений онлайн методом гаусса,решение систем уравнений онлайн с подробным решением,решение систем уравнений онлайн с подробным решением методом гаусса,решение систем уравнения онлайн,решение система линейных уравнений онлайн,решение система уравнений онлайн,решение системных уравнений методом гаусса онлайн,решение системных уравнений онлайн методом гаусса,решение систему уравнений онлайн,решение системы линейных уравнений калькулятор онлайн,решение системы линейных уравнений методом гаусса онлайн,решение системы линейных уравнений методом гаусса онлайн калькулятор,решение системы линейных уравнений методом гаусса онлайн с решением,решение системы линейных уравнений онлайн,решение системы линейных уравнений онлайн калькулятор,решение системы линейных уравнений онлайн методом гаусса,решение системы методом гаусса калькулятор,решение системы методом гаусса онлайн,решение системы методом гаусса онлайн с решением,решение системы онлайн,решение системы онлайн калькулятор,решение системы онлайн методом гаусса,решение системы онлайн методом гаусса онлайн с,решение системы уравнений методом гаусса калькулятор,решение системы уравнений методом гаусса калькулятор онлайн,решение системы уравнений методом гаусса онлайн,решение системы уравнений методом гаусса онлайн калькулятор,решение системы уравнений методом гаусса онлайн с решением,решение системы уравнений онлайн,решение системы уравнений онлайн калькулятор,решение системы уравнений онлайн методом гаусса,решение системы уравнений онлайн методом гаусса онлайн,решение системы уравнений онлайн с решением,решение системы уравнений с тремя неизвестными онлайн,решение системы уравнения онлайн,решение слау калькулятор онлайн,решение слау методом гаусса жордана онлайн,решение слау методом гаусса калькулятор,решение слау методом гаусса онлайн,решение слау методом гаусса онлайн калькулятор,решение слау методом жордана гаусса онлайн,решение слау онлайн,решение слау онлайн калькулятор,решение слау онлайн методом гаусса,решение слау онлайн методом гаусса онлайн,решение слау онлайн методом жордана гаусса,решение слу метод гаусса онлайн,решение слу онлайн,решение слу онлайн метод гаусса,решение уравнений гаусса онлайн,решение уравнений методом гаусса жордана гаусса онлайн,решение уравнений методом гаусса жордана онлайн,решение уравнений методом гаусса калькулятор,решение уравнений методом гаусса калькулятор онлайн,решение уравнений методом гаусса онлайн,решение уравнений методом гаусса онлайн калькулятор,решение уравнений методом гаусса онлайн с решением,решение уравнений методом гаусса решение онлайн калькулятор,решение уравнений методом жордана гаусса онлайн,решение уравнений онлайн гаусса,решение уравнений онлайн методом гаусса,решение уравнений онлайн методом гаусса калькулятор онлайн,решение уравнений онлайн с 3 неизвестными,решение уравнений с 3 неизвестными онлайн,решение уравнения методом гаусса онлайн,решение уравнения онлайн методом гаусса,решения линейных уравнений калькулятор,решения матриц методом гаусса онлайн,решения матриц онлайн методом гаусса,решения онлайн методом гаусса онлайн,решения систем уравнений методом гаусса калькулятор,решите линейное уравнение онлайн,решите систему уравнений методом гаусса онлайн,решите систему уравнений онлайн с решением,решить линейное уравнение методом гаусса онлайн,решить линейное уравнение онлайн,решить линейное уравнение онлайн методом гаусса,решить матрицу методом гаусса онлайн,решить матрицу методом гаусса онлайн калькулятор,решить матрицу методом гаусса онлайн с подробным решением,решить матрицу методом гаусса онлайн с решением,решить матрицу онлайн калькулятор методом гаусса,решить матрицу онлайн методом гаусса,решить матрицу онлайн методом гаусса онлайн,решить матрицу онлайн методом гаусса онлайн с,решить матрицу онлайн методом гаусса с решением,решить метод гаусса онлайн,решить методом гаусса онлайн,решить методом гаусса онлайн с подробным решением,решить методом гаусса систему линейных алгебраических уравнений онлайн,решить методом гаусса систему линейных уравнений онлайн,решить методом гаусса слау онлайн,решить неоднородную систему линейных уравнений методом гаусса,решить неоднородную систему линейных уравнений методом гаусса онлайн,решить онлайн алгебраическое уравнение,решить онлайн линейные уравнения,решить онлайн матрицу методом гаусса,решить онлайн метод гаусса,решить онлайн методом гаусса,решить онлайн систему линейных уравнений методом гаусса,решить онлайн систему уравнение,решить онлайн систему уравнений с решением,решить онлайн системы уравнений,решить онлайн уравнение методом гаусса,решить систему линейных алгебраических уравнений методом гаусса онлайн,решить систему линейных уравнений методом гаусса калькулятор онлайн,решить систему линейных уравнений методом гаусса онлайн,решить систему линейных уравнений методом гаусса онлайн калькулятор,решить систему линейных уравнений методом гаусса онлайн с решением,решить систему линейных уравнений онлайн,решить систему линейных уравнений онлайн методом гаусса,решить систему методом гаусса жордана онлайн,решить систему методом гаусса калькулятор,решить систему методом гаусса калькулятор онлайн,решить систему методом гаусса онлайн,решить систему методом гаусса онлайн калькулятор,решить систему методом гаусса онлайн с подробным решением,решить систему методом жордана гаусса онлайн,решить систему уравнение онлайн с решением,решить систему уравнений калькулятор онлайн,решить систему уравнений калькулятор онлайн с решением,решить систему уравнений методом гаусса калькулятор онлайн,решить систему уравнений методом гаусса онлайн,решить систему уравнений методом гаусса онлайн калькулятор,решить систему уравнений методом гаусса онлайн с подробным решением,решить систему уравнений методом гаусса онлайн с подробным решением онлайн,решить систему уравнений онлайн калькулятор с решением,решить систему уравнений онлайн методом гаусса,решить систему уравнений онлайн методом гаусса онлайн,решить систему уравнений онлайн с комплексными числами,решить систему уравнений онлайн с подробным решением,решить систему уравнений онлайн с решением,решить систему уравнений с комплексными числами онлайн,решить систему уравнений с тремя неизвестными онлайн,решить систему уравнения онлайн,решить системы линейных уравнений методом гаусса онлайн,решить системы уравнений онлайн,решить слау,решить слау методом гаусса онлайн,решить слау методом гаусса онлайн с решением,решить слау онлайн,решить слау онлайн методом гаусса,решить уравнение методом гаусса онлайн,решить уравнение методом гаусса онлайн калькулятор,решить уравнение онлайн методом гаусса,решить уравнение онлайн методом гаусса онлайн,решить уравнение с тремя неизвестными онлайн,систем линейных уравнений методом гаусса калькулятор,систем линейных уравнений онлайн калькулятор,система гаусса онлайн,система линейных алгебраических уравнений онлайн калькулятор,система линейных уравнений калькулятор,система линейных уравнений калькулятор онлайн,система линейных уравнений методом гаусса калькулятор онлайн,система линейных уравнений методом гаусса онлайн,система линейных уравнений методом гаусса онлайн калькулятор,система линейных уравнений онлайн,система линейных уравнений онлайн калькулятор,система линейных уравнений онлайн методом гаусса,система линейных уравнений онлайн решение,система линейных уравнений решение онлайн,система методом гаусса онлайн,система уравнений гаусса онлайн,система уравнений калькулятор,система уравнений методом гаусса онлайн,система уравнений методом гаусса онлайн калькулятор,система уравнений онлайн гаусса,система уравнений онлайн калькулятор,система уравнений онлайн калькулятор с подробным решением,система уравнений онлайн методом гаусса,система уравнений онлайн методом гаусса онлайн,система уравнений онлайн решение,системы линейных алгебраических уравнений онлайн,системы линейных уравнений калькулятор онлайн,системы линейных уравнений онлайн,системы линейных уравнений онлайн калькулятор,системы онлайн калькулятор,системы уравнений калькулятор,системы уравнений калькулятор онлайн,системы уравнений методом гаусса калькулятор,системы уравнений онлайн,системы уравнений онлайн калькулятор,слау калькулятор,слау калькулятор онлайн,слау метод гаусса онлайн,слау методом гаусса жордана гаусса онлайн,слау методом гаусса калькулятор,слау методом гаусса онлайн,слау методом гаусса онлайн калькулятор,слау онлайн,слау онлайн калькулятор,слау онлайн метод гаусса,слу калькулятор,слу калькулятор онлайн,слу онлайн калькулятор,слу онлайн решение,слу решить,совместность матрицы онлайн,уравнение гаусса онлайн,уравнение методом гаусса онлайн,уравнение с тремя неизвестными онлайн,уравнения онлайн методом гаусса онлайн. На этой странице вы найдёте калькулятор,
который поможет решить любой вопрос, в том числе и вычисление матрицы онлайн методом гаусса онлайн. Просто введите задачу в окошко и нажмите
«решить» здесь (например, гаусс калькулятор).

Где можно решить любую задачу по математике, а так же вычисление матрицы онлайн методом гаусса онлайн Онлайн?

Решить задачу вычисление матрицы онлайн методом гаусса онлайн вы можете на нашем сайте https://pocketteacher.ru. Бесплатный
онлайн решатель позволит решить онлайн задачу любой сложности за считанные секунды. Все, что вам необходимо
сделать — это просто
ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как правильно ввести
вашу задачу на нашем сайте. А если у вас остались вопросы, то вы можете задать их в чате снизу слева на странице
калькулятора.

Ранг матрицы методом Гаусса | Мозган калькулятор онлайн


Для того что бы вычислить ранг матрицы можно применить метод окаймляющих миноров или метод Гаусса.
Рассмотрим метод Гаусса или метод элементарных преобразований.

Рангом матрицы называют максимальный порядок её миноров, среди которых есть хотя бы один, не равный нулю.

Рангом системы строк (столбцов) называется максимальное количество линейно независимых строк (столбцов) этой системы.

Метод Гаусса использует элементарные преобразования, которые не изменяют ее ранг:

  1. Транспонирование.

  2. Перестановка местами строк или столбцов.

  3. Прибавление одной строки/столбца к другой строке/столбцу умноженного на ненулевое число.

  4. Умножение строки или столбца на ненулевое число.

С помощью данного метода нужно привести матрицу к ступенчатому виду и посчитать количество строк, в которых есть хоть один не нулевой элемент.

Пример

Рассмотрим данный метод на примере. Дана матрицы:

Для облегчения дальнейших расчетов поменяем местами строку №1 со строкой №2.

Сделаем элемент a3,1 равный нулю.

Из строки №3 вычтем строку №1, умноженную на 3/2.

Сделаем элемент a4,1 равный нулю.

Из строки №4 вычитаем строку №1, умноженную на 2.

Сделаем элемент a3,2 равный нулю.

Из строки №3 вычтем строку №2, умноженную на -1/4. Мы его получили разделив элимент a3,2 = -0.5 на элимент a2,2 = 2.

Сделаем элемент a4,2 равный нулю.

Из строки №4 вычтем строку №2, умноженную на -1/2.

Сделаем элемент a4,3 равный нулю.

Из строки №4 вычитаем строку №3, умноженную на 2.

В получившейся матрице одна строка содержит нулевые элементы, а три строки имеют не нулевые элементы. Ответ: Ранг=3.

Решение системы линейных уравнений методом Гаусса онлайн

Для решения любой системы линейных уравнений метод Гаусса или метод последовательного исключения неизвестных является наиболее универсальным и достаточно простым при небольшом количестве переменных. Этот метод универсален, его применяют, когда система уравнений имеет:

  • единственное решение;
  • бесконечное множество решений;
  • вовсе не имеет решений.

Суть метода состоит в переходе от заданной системы линейных уравнений к более простой с помощью таких эквивалентных преобразований в системе, как:

  • перемена двух уравнений местами;
  • умножение обеих частей уравнения на любое действительное число, не равное 0;
  • прибавление к одному уравнению соответствующих частей другого, умноженных на произвольное число.

С помощью преобразований последовательно исключаем одну переменную за другой пока в одной из строк не будет определена переменная xi.

Метод Гаусса позволяет решать СЛАУ при небольшом числе вычислительных операций.

Алгоритм решения:

  • записываем систему в виде расширенной матрицы;
  • прямой ход — приводим матрицу к ступенчатому виду;
  • обратный ход — приводим матрицу к специальному ступенчатому виду.

Пусть дана система из n уравнений с n неизвестными переменными:

Определитель основной матрицы не равен 0.

Исключим из всех уравнений системы переменную х1, начиная со 2-го, для чего:

  • ко 2-му уравнению прибавим 1-е, умноженное на — а2111;
  • к 3-му уравнению прибавим 1-е, умноженное на — а3111, и т.д.;
  • к n-му уравнению прибавим 1-е, умноженное на — аn111.

В результате преобразований система приняла вид:

Далее таким же путем исключаем неизвестную переменную х2 из всех уравнений, начиная с 3-го.

Для этого к 3-му уравнению прибавляем 2-е, умноженное на — а3222 и т.д. К n-му уравнению прибавим 2-е, умноженное на — аn222.

Таким же способом исключаем неизвестную х3 из всех уравнений системы, начиная с 4-го.

Прямой ход продолжается, пока в последнем уравнении не останется единственная неизвестная. Система будет иметь вид:

аnn(n-1) хn = bn(n-1)

После окончания прямого хода метода Гаусса — последовательного исключения неизвестных, вычисляем неизвестную в последнем уравнении:

  • из последнего уравнения системы находим хn по формуле:
  • из предпоследнего уравнения находим хn-1 и т.д.
  • из первого уравнения находим х1.

Последовательное нахождение неизвестных, начиная с последнего уравнения к первому, называется обратным ходом.

Заметим, если в матрице есть хоть одна нулевая строка, у которой правая часть (свободный член) не равна 0, система несовместима, решения отсутствуют.

Для быстрого и правильного решения СЛАУ методом Гаусса можно воспользоваться калькулятором онлайн.

Решение системы линейных уравнений методом Гаусса

123456
 — количество неизвестных
Количество знаков после разделителя дроби в числах: 0123456789101112

Решение системы линейных уравнений методом гаусса-жордана

Здесь вы сможете бесплатно решить систему линейных уравнений методом Гаусса онлайн
больших размеров в комплексных числах с очень подробным решением. Наш калькулятор умеет решать онлайн как обычную определенную, так и неопределенную систему линейных уравнений методом Гаусса, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие, свободные. Также можно проверить систему уравнений на совместность онлайн, используя решение методом Гаусса.

О методе

При решении системы линейных уравнений онлайн методом Гаусса выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Фактически решение разделяют на прямой и обратный ход метода Гаусса. Прямым ходом метода Гаусса называется приведение матрицы к ступенчатому виду. Обратным ходом метода Гаусса называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
  3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение линейной системы в таком случае не существует.

Чтобы лучше всего понять принцип работы алгоритма Гаусса онлайн введите любой пример, выберите «очень подробное решение» и посмотрите его решение онлайн.

метод Гаусса–Жордана — один из наиболее известных и широко применяемых методов решения систем линейных уравнений. Матричный метод и метод Крамера обладают тем недостатком,
что они не дают ответа в том случае, когда detA = 0, а определяют лишь единственное решение при detA неравном 0. Еще одним недостатком является то, что объем математических вычислений
в рамках этих методов резко возрастает с ростом числа уравнений. Метод Гаусса практически свободен от этих недостатков.

Алгоритм метода Гаусса

  1. На основании системы линейных уравнений составляем расширенную матрицу системы;
  2. Приводим матрицу к «треугольному» виду;
  3. Определяем ранги основной и расширенной матриц, и на основании этого делаем вывод о совместности системы и количестве допустимых решений;
  4. В случае, если система имеет единственное решение производим обратную подстановку и находим его, если система имеет множество решений: выражаем базисные переменные через
    переменные которые могут принимать произвольные значения;

Комментарий к шагу 2 Метода Гаусса.
Треугольной называют матрицу, в которой все элементы расположенные ниже главной диагонали равны нулю.

Для приведения исходной расширенной матрицы к треугольному виду используем следующие два свойства определителей:

Свойство 1. Определитель не изменит свое значение, если ко всем элементам какой-либо строки (столбца) матрицы прибавить соответствующие элементы параллельной строки (столбца), умноженные на произвольное одно и то же число.

Свойство 2. При перестановке двух любых столбцов или строк матрицы ее определитель меняет знак на противоположный, а абсолютная величина определителя остается неизменной.

На основании этих свойств определителей составим алгоритм преобразования матрицы к треугольному виду:

  1. Рассматриваем строку i(начиная с первой). Если, элемент a i i равен нулю, меняем местами i-ю и i+1-ю строки матрицы. Знак определителя при этом изменится на противоположный. Если a 1 1 отличен от нуля — переходим к следующему шагу;
  2. Для каждой строки j, ниже i-й находим значение коэффициента K j =a j i /a i i ;
  3. Пересчитываем элементы всех строк j, расположенных ниже текущей строки i, с использованием соответствующих коэффициентов по формуле: a j k нов. =a j k -K j *a i k ;
    После чего, возвращаемся к первому шагу алгоритма и рассматриваем следующую строку, пока не доберемся до строки i=n-1, где n — размерность матрицы A
  4. В полученной треугольной матрице расчитываем произведение всех элементов главной диагонали Пa i i , которое и будет являтся определителем;

Другими словами, суть метода можно сформулировать следующим образом. Нам необходимо сделать нулевыми все элементы матрицы ниже главной диагонали. Сначала мы получаем нули в первом столбце.
Для этого мы последовательно вычитаем первую строку, домноженную на нужное нам число (такое, чтоб при вычитании мы получили ноль в первом элементе строки), из всех ниже лежащих строк.
Затем проделываем то же самое для второй строки, чтобы получить нули во втором столбце ниже главной диагонали матрицы. И так далее пока не доберемся до предпоследней строки.

4. Метод Жордана — Гаусса.

Схема с выбором главного элемента состоит в том, что требование неравенства нулю диагональных элементов akk, на которые происходит деление в процессе исключения, заменятся более жестким: из всех элементов К-го столба выбрать наибольший по модулю и переставить уравнения так, чтобы этот элемент оказался на месте элемента акк. Выбор главного элемента и связанная с ним перестановка строк необходимы в тех случаях, когда на каком-либо i-ом шаге акк=0 либо же акк очень мало по остальными элементами i- го столбца: при делении на такое «малое» акк будут получаться большие числа с большими абсолютными погрешностями, в результате чего решение может сильно исказиться.

Ниже излагается алгоритм полного исключения неизвестных или метод Жордана – Гаусса. Суть метода состоит в том, что, рассмотрев первое уравнение, в нем неизвестное с коеффициэнтом, отличным от нуля (в дальнейшем разрешающий элемент), и разделив первое уравнение на этот коэффициент, с помощью первого уравнения исключают это неизвестное из всех уравнений, кроме первого. Выбрав во втором уравнении неизвестное с коэффициентом, отличным от нуля, и разделив на него второе уравнение, с помощью второго исключают другие неизвестные из всех уравнений, кроме второго и т.д., т.е. с помощью одного уравнения производят полное исключение одного неизвестного. Процесс продолжается до тех пор, пока не будут использованы все уравнения.

Как известно, системы линейных алгебраических уравнений могут имеет одно решение, множество решений или системы несовместны. При элементарных преобразованиях элементов матрицы системы эти случаи выявляются в следующем:

1. В процессе исключений левая часть I –го уравнения системы обращается в нуль, а правая часть равна некоторому числу, отличному от нуля. т.е. 02+=bc0.

Это означает, что система не имеет решений, так как I – му уравнению не могут удовлетворять никакие значения неизвестных;

2. Левая и правая части I – го уравнения обращаются в нуль. Это означает, что I – ое уравнение является линейной комбинацией остальных, ему удовлетворяет любое найденное решение системы, поэтому оно может быть отброшено. В системе количество неизвестных больше количества уравнений и, следовательно, такая система имеет множество решений;

3. После того как все уравнения использованы для исключения неизвестных получено решение системы.

Таким образом, конечной целью преобразований Жордана-Гаусса является получение из заданной линейной системы

a11x1 + a12x2 + … + a1nxn = b1,n+1

a21x1 + a22x2 + … + a2nxn = b2,n+1

am1x1 + am2x2 + … + amnxn = bm. n+1

Здесь x1, x2, …, xn — неизвестные, которые надо определить. a11, a12, …, amn — коэффициенты системы — и b1, b2, … bm — свободные члены — предполагаются известными. Индексы коэффициентов (aij) системы обозначают номера уравнения (i) и неизвестного (j), при котором стоит этот коэффициент, соответственно.

Система (1) называется однородной, если все её свободные члены равны нулю (b1 = b2 = … = bm = 0), иначе — неоднородной.

Система (1) называется квадратной, если число m уравнений равно числу n неизвестных.

Решение системы (1) — совокупность n чисел c1, c2, …, cn, таких что подстановка каждого ci вместо xi в систему (1) обращает все ее уравнения в тождества.

Система (1) называется совместной, если она имеет хотя бы одно решение, и несовместной, если у нее нет ни одного решения.

Совместная система вида (1) может иметь одно или более решений.

Решения c1(1), c2(1), …, cn(1) и c1(2), c2(2), …, cn(2) совместной системы вида (1) называются различными, если нарушается хотя бы одно из равенств:

c1(1) = c1(2), c2(1) = c2(2), …, cn(1) = cn(2).

Совместная система вида (1) называется определенной, если она имеет единственное решение; если же у нее есть хотя бы два различных решения, то она называется неопределенной. Если уравнений больше, чем неизвестных, она называется переопределённой.

Решим следующую систему уравнений:

Запишем её в виде матрицы 3×4, где последний столбец является свободным членом:

Проведём следующие действия:

· К строке 2 добавим: -4 * Строку 1.

· К строке 3 добавим: -9 * Строку 1.

· К строке 3 добавим: -3 * Строку 2.

· Строку 2 делим на -2

· К строке 1 добавим: -1 * Строку 3.

· К строке 2 добавим: -3/2 * Строку 3.

· К строке 1 добавим: -1 * Строку 2.

В правом столбце получаем решение:

.

В методе Ньютона наблюдается ускорение сходимости процесса приближений. 5. Метод касательных (метод Ньютона)
Метод касательных, связанный с именем И. Ньютона, является одним из наиболее эффективных численных методов решения уравнений. Идея метода очень проста. Возьмём производную точку x0 и запишем в ней уравнение касательной к графику функции f(x): y=f(x0)+ f ¢(x) (x-x0) (1.5) Графики…

Решения от численных методов расчёта. Для определения корней уравнения не требуется знания теорий групп Абеля, Галуа, Ли и пр. и применения специальной математической терминологии: колец, полей, идеалов, изоморфизмов и т.д. Для решения алгебраического уравнения n — ой степени нужно только умение решать квадратные уравнения и извлекать корни из комплексного числа. Корни могут быть определены с…

Математики тригонометрической подстановки и проверка эффективности разработанной методики преподавания. Этапы работы: 1. Разработка факультативного курса на тему: «Применение тригонометрической подстановки для решения алгебраических задач» с учащимися классов с углубленным изучением математики. 2. Проведение разработанного факультативного курса. 3. Проведение диагностирующей контрольной…

«проявляется» лишь в процессе преобразований. Очевидность и «завуалированность» новой переменной мы рассмотрим на конкретных примерах во второй главе данной работы. 2. Возможности применения метода замены неизвестного при решении алгебраических уравнений В этой главе выявим возможности применения метода замены неизвестного при решении алгебраических уравнений в стандартных и нестандартных…

Однажды немецкий математик Вильгельм Йордан (мы неверно транскрибируем с немецкого
Jordan как Жордан)
сел решать очередную систему уравнений. Он любил этим заниматься и в свободное время совершенствовал свои навыки. Но вот настал момент, когда ему наскучили все методы решения и метод Гаусса
в том числе…

Предположим, дана система с тремя уравнениями, тремя неизвестными и записана её расширенная матрица . В наиболее распространенном случае получаются стандартные ступеньки , и так каждый день…. Одно и то же – как беспросветный ноябрьский дождь.

На некоторое время развевает тоску другой способ
приведения матрицы к ступенчатому виду: , причём он совершенно равноценен и может быть неудобен только по причине субъективного восприятия. Но всё рано или поздно приедается…. И подумал тогда Жо
рдан – а зачем вообще мучиться с обратным ходом гауссовского алгоритма? Не проще ли сразу получить ответ с помощью дополнительных элементарных преобразований?

…да, такое бывает только по любви =)

Для освоения данного урока «чайникам» придётся пойти путём Жо
рдана и прокачать элементарные преобразования хотя бы среднего уровня, прорешав, минимум, 15-20 соответствующих заданий. Поэтому если вы смутно понимаете, о чём идёт разговор и/или у вас возникнет недопонимание чего-либо по ходу занятия, то рекомендую ознакомиться с темой в следующем порядке:

Ну, и совсем замечательно, если отработано понижение порядка определителя
.

Как все поняли, метод Гаусса-Жордана представляет собой модификацию метода Гаусса
и с реализацией основной, уже озвученной выше идеи, мы встретимся на ближайших экранах. Кроме того, в число немногочисленных примеров данной статьи вошло важнейшее приложение – нахождение обратной матрицы с помощью элементарных преобразований
.

Не мудрствуя лукаво:

Пример 1

Решить систему методом Гаусса-Жордана

Решение
: это первое задание урока Метод Гаусса для чайников
, где мы 5 раз трансформировали расширенную матрицу системы и привели её к ступенчатому виду:

Теперь вместо обратного хода
в игру вступают дополнительные элементарные преобразования. Сначала нам необходимо получить нули на этих местах: ,
а потом ещё один ноль вот здесь: .

Идеальный с точки зрения простоты случай:

(6) Ко второй строке прибавили третью строку. К первой строке прибавили третью строку.

(7) К первой строке прибавили вторую строку, умноженную на –2.

Не могу удержаться от иллюстрации итоговой системы:

Ответ
:

Предостерегаю читателей от шапкозакидательского настроения – это был простейший демонстрационный пример. Для метода Гаусса-Жордана характерны свои специфические приёмы и не самые удобные вычисления, поэтому, пожалуйста, настройтесь на серьёзную работу.

Не хочу показаться категоричным или придирчивым, но в подавляющем большинстве источников информации, которые я видел, типовые задачи рассмотрены крайне плохо – нужно обладать семью пядями во лбу и потратить массу времени/нервов на тяжёлое неуклюжее решение с дробями. За годы практики мне удалось отшлифовать, не скажу, что самую лучшую, но рациональную и достаточно лёгкую методику, которая доступна всем, кто владеет арифметическими действиями:

Пример 2

Решить систему линейных уравнений методом Гаусса-Жордана.

Решение
: первая часть задания хорошо знакома:

(1) Ко второй строке прибавили первую строку, умноженную на –1. К третьей строке прибавили первую строку, умноженную на 3. К четвертой строке прибавили первую строку, умноженную на –5.

(2) Вторую строку разделили на 2, третью строку разделили на 11, четвёртую строку разделили на 3.

(3) Вторая и третья строки пропорциональны, 3-ю строку удалили. К четвёртой строке прибавили вторую строку, умноженную на –7

(4) Третью строку разделили на 2.

Очевидно, что система имеет бесконечно много решений, и наша задача – привести её расширенную матрицу к виду .

Как действовать дальше? Прежде всего, следует отметить, что мы лишились вкусного элементарного преобразования – перестановки строк. Точнее говоря, переставить-то их можно, но в этом нет смысла (просто выполним лишние действия). И далее целесообразно придерживаться следующего шаблона:

Находим наименьшее общее кратное
чисел третьего столбца (1, –1 и 3), т.е. – наименьшее число, которое бы делилось без остатка и на 1, и на –1 и на 3. В данном случае, это, конечно же, «тройка». Теперь в третьем столбце нам нужно получить одинаковые по модулю числа
, и этими соображениями обусловлено 5-е преобразование матрицы:

(5) Первую строку умножаем на –3, вторую строку умножаем на 3. Вообще говоря, первую строку можно было умножить тоже на 3, но это было бы менее удобно для следующего действия. К хорошему привыкаешь быстро:

(6) Ко второй строке прибавили третью строку. К первой строке прибавили третью строку.

(7) Во втором столбце два ненулевых значения (24 и 6) и нам снова нужно получить одинаковые по модулю числа
. В данном случае всё сложилось довольно удачно – наименьшее кратное 24, и эффективнее всего умножить вторую строку на –4.

(8) К первой строке прибавили вторую.

(9) Заключительный штрих: первую строку разделили на –3, вторую строку разделили на –24 и третью строку разделили на 3. Это действие выполняется В ПОСЛЕДНЮЮ ОЧЕРЕДЬ! Никаких преждевременных дробей!

В результате элементарных преобразований получена эквивалентная исходной система:

Элементарно выражаем базисные переменные через свободную:

и записываем:

Ответ
: общее решение:

В подобных примерах применение рассмотренного алгоритма чаще всего оправдано, поскольку обратный ход метода Гаусса
обычно требует трудоёмких и неприятных вычислений с дробями.

И, разумеется, крайне желательна проверка, которая выполняется по обычной схеме, рассмотренной на уроке Несовместные системы и системы с общим решением
.

Для самостоятельного решения:

Пример 3

Найти базисное решение с помощью элементарных преобразований

Такая формулировка задачи предполагает использование метода Гаусса-Жордана, и в образце решения матрица приводится к стандартному виду с базисными переменными . Однако всегда держите на заметке, что в качестве базисных можно выбрать и другие переменные
. Так, например, если в первом столбце громоздкие числа, то вполне допустимо привести матрицу к виду (базисные переменные ), или к виду (базисные переменные ), или даже к виду с базисными переменными . Существуют и другие варианты.

Но всё-таки это крайние случаи – не стОит лишний раз шокировать преподавателей своими знаниями, техникой решения и уж тем более не надо выдавать экзотических жордановсих результатов вроде . Впрочем, бывает трудно удержаться от нетипового базиса, когда в исходной матрице, скажем, в 4-м столбце есть два готовых нуля.

Примечание

: термин «базис» имеет алгебраический смысл и понятие геометрического базиса
здесь не при чём!

Если в расширенной матрице данных размеров вдруг обнаруживается пара линейно зависимых
строк, то её следует попытаться привести к привычному виду с базисными переменными . Образец такого решения есть в Примере №7 статьи об однородных системах линейных уравнений
, причём там выбран другой базис
.

Продолжаем совершенствовать свои навыки на следующей прикладной задаче:

Как найти обратную матрицу методом Гаусса?

Обычно условие формулируют сокращённо, но, по существу, здесь также работает алгоритм Гаусса-Жордана. Более простой метод нахождения обратной матрицы
для квадратной матрицы мы давным-давно рассмотрели на соответствующем уроке, и суровой поздней осенью тёртые студенты осваивают мастерский способ решения.

Краткое содержание предстоящих действий таково: сначала следует записать квадратную матрицу в тандеме с единичной матрицей: . Затем с помощью элементарных преобразований необходимо получить единичную матрицу слева, при этом (не вдаваясь в теоретические подробности)
справа нарисуется обратная матрица. Схематически решение выглядит следующим образом:

(Понятно, что обратная матрица должна существовать)

Демо-пример 4

Найдём обратную матрицу для матрицы с помощью элементарных преобразований. Для этого запишем её в одной упряжке с единичной матрицей, и понеслась «двойка скакунов»:

(1) Ко второй строке прибавили первую строку, умноженную на –3.

(2) К первой строке прибавили вторую строку.

(3) Вторую строку разделили на –2.

Ответ
:

Сверьтесь с ответом первого примера урока Как найти обратную матрицу?

Но то была очередная заманивающая задачка – в действительности решение гораздо более длительно и кропотливо. Как правило, вам будет предложена матрица «три на три»:

Пример 5

Решение
: присоединяем единичную матрицу и начинаем выполнять преобразования, придерживаясь алгоритма «обычного» метода Гаусса
:

(1) Первую и третью строки поменяли местами. На первый взгляд, перестановка строк кажется нелегальной, но на самом деле переставлять их можно – ведь по итогу слева нам нужно получить единичную матрицу, а справа же «принудительно» получится именно матрица (вне зависимости от того будем ли мы переставлять строки в ходе решения или нет)
. Обратите внимание, что здесь вместо перестановки можно организовать «шестёрки» в 1-м столбце (наименьшее общее кратное (НОК) чисел 3, 2 и 1)
. Решение через НОК особенно удобно, когда в первом столбце отсутствуют «единицы».

(2) Ко 2-й и 3-й строкам прибавили 1-ю строку, умноженную на –2 и –3 соответственно.

(3) К 3-й строке прибавили 2-ю строку, умноженную на –1

Вторая часть решения проводится по уже известной из предыдущего параграфа схеме: перестановки строк становятся бессмысленными, и мы находим наименьшее общее кратное чисел третьего столбца (1, –5, 4): 20. Существует строгий алгоритм нахождения НОК, но здесь обычно хватает подбора. Ничего страшного, если взять бОльшее число, которое делится и на 1, и на –5, и на 4, например, число 40. Отличие будет в более громоздких вычислениях.

К слову о вычислениях. Для решения задачи совсем не зазорно вооружиться микрокалькулятором – числа здесь фигурируют немалые, и будет очень обидно допустить вычислительную ошибку.

(4) Третью строку умножаем на 5, вторую строку на 4, первую строку на «минус двадцать»:

(5) К 1-й и 2-й строкам прибавили третью строку.

(6) Первую и третью строки разделили на 5, вторую строку умножили на –1.

(7) Наименьшее общее кратное ненулевых чисел второго столбца (–20 и 44) равно 220. Первую строку умножаем на 11, вторую строку – на 5.

(8) К первой строке прибавили вторую строку.

(9) Первую строку умножили на –1, вторую строку разделили «обратно» на 5.

(10) Теперь на главной диагонали левой матрицы целесообразно получить наименьшее общее кратное чисел диагонали

(44, 44 и 4). Совершенно понятно, что это число 44. Третью строку умножаем на 11.

(11) Каждую строку делим на 44. Данное действие выполняется в последнюю очередь!

Таким образом, обратная матрица:

Внесение и вынесение -й, в принципе, лишние действия, но того требует протокол оформления задачи.

Ответ
:

Проверка выполняется по обычной схеме, рассмотренной на уроке об обратной матрице
.

Продвинутые люди могут несколько сократить решение, но должен предупредить, спешка тут чревата ПОВЫШЕННЫМ риском допустить ошибку.

Аналогичное задание для самостоятельного решения:

Пример 6

Найти обратную матрицу методом Гаусса-Жордана.

Примерный образец оформления задачи внизу страницы. И ради того, чтобы вы «не проехали мимо с песнями» я оформил решение в уже упомянутом стиле – исключительно через НОК столбцов без единой перестановки строк и дополнительных искусственных преобразований. По моему мнению, эта схема – если и не самая, то одна из самых надёжных
.

Иногда бывает удобно более короткое «модернистское» решение, которое заключается в следующем: на первом шаге всё как обычно: .

На втором шаге накатанным приёмом (через НОК чисел 2-го столбца) организуются сразу два нуля во втором столбце: . Перед данным действием особенно трудно устоять, если во 2-м столбце нарисовались одинаковые по модулю числа, например, те же банальные «единицы».

И, наконец, на третьем шаге точно так же получаем нужные нули в третьем столбце: .

Что касается размерности, то в большинстве случаев приходится разруливать матрицу «три на три». Однако время от времени встречается лайт-версия задачи с матрицей «два на два» и хард… – специально для всех читателей сайт:

Пример 7

Найти обратную матрицу с помощью элементарных преобразований

Это задание из моей собственной физматовской контрольной работы по алгебре, …эх, где мой первый курс =) Пятнадцать лет назад (листочек на удивление ещё не пожелтел)
, я уложился в 8 шагов, а сейчас – всего лишь в 6! Матрица, кстати, весьма творческая – на первом же шаге просматривается несколько заманчивых путей решения. Моя поздняя версия внизу страницы.

И заключительный совет – после таких примеров очень полезна гимнастика для глаз и какая-нибудь хорошая музыка для релаксации =)

Желаю успехов!

Решения и ответы:

Пример 3: Решение
: запишем расширенную матрицу системы и с помощью элементарных преобразований получим базисное решение:

(1) Первую и вторую строки поменяли местами.

(2) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на 5.

(3) Третью строку разделили на 3.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 7.

(6) Наименьшее кратное чисел 3-го столбца (–3, 5, 1) равно 15. Первую строку умножили на 5, вторую строку умножили на –3, третью строку умножили на 15.

(7) К первой строке прибавили 3-ю строку. Ко второй строке прибавили 3-ю строку.

(8) Первую строку разделили на 5, вторую строку разделили на –3, третью строку разделили на 15.

(9) Наименьшее кратное ненулевых чисел 2-го столбца (–2 и 1) равно: 2. Вторую строку умножили на 2

(10) К первой строке прибавили вторую строку.

(11) Вторую строку разделили на 2.

Выразим базисные переменные через свободные переменные :


Ответ

: общее решение:

Пример 6: Решение
: обратную матрицу найдём с помощью элементарных преобразований:

(1) Первую строку умножили на –15, вторую строку умножили на 3, третью строку умножили на 5.

(2) Ко 2-й и 3-й строкам прибавили первую строку.

(3) Первую строку разделили на –15, вторую строку разделили на –3, третью строку разделили на –5.

(4) Вторую строку умножили на 7, третью строку умножили на –9.

(5) К третьей строке прибавили вторую строку.

(6) Вторую строку разделили на 7.

(7) Первую строку умножили на 27, вторую строку умножили на 6, третью строку умножили на –4.

(8) К первой и второй строкам прибавили третью строку.

(9) Третью строку разделили на –4. К первой строке прибавили вторую строку, умноженную на –1.

(10) Вторую строку разделили на 2.

(11) Каждую строку разделили на 27.

В результате:
Ответ

:

Пример 7: Решение
: найдём обратную матрицу методом Гаусса-Жордана:

(1) К 1-й и 4-й строкам прибавили 3-ю строку.

(2) Первую и четвёртую строки поменяли местами.

(3) Ко 2-й строке прибавили 1-ю строку. К 3-й строке прибавили 1-ю строку, умноженную на 2:



(4) К 3-й строке прибавили 2-ю строку, умноженную на –2. К 4-й строке прибавили 2-ю строку.

(5) К 1-й и 3-й строкам прибавили 4-ю строку, умноженную на –1.

(6) Вторую строку умножили на –1, третью строку разделили на –2.

Ответ

:

Записывается в виде расширенной матрицы, т.е. в столбец свободных членов помещается в одну матрицу с коэффициентами неизвестных. Аалгоритм заключается в приведении исходной матрицы, характеризующей систему линейных уравнений, к единичной путем эквивалентных преобразований (домножения строки матрицы на константу и сложения с другой строкой матрицы). В качестве константы используется 1/a[i][i] , т.е. число, обратное по отношению к элементу диагонали. Естественно, в ряде случаев возникают проблемы, связанные с делением на ноль, которые решаются перестановкой строк и столбцов:

Весь алгоритм можно представить 10 пунктами:

    В качестве опорной выбираем первую строку матрицы.

    Если элемент опорной строки, индекс которого равен номеру опорной строки, равен нулю, то меняем всю опорную строку на первую попавшуюся строку снизу, в столбце которого нет нуля.

    Все элементы опорной строки делим на первый слева ненулевой элемент этой строки.

    Из оставшихся снизу строк вычитают опорную строку, умноженную на элемент, индекс которого равен номеру опорной строки.

    В качестве опорной строки выбираем следующую строку.

    Повторяем действия 2 – 5 пока номер опорной строки не превысит число строк.

    В качестве опорной выбираем последнюю строку.

    Вычитаем из каждой строки выше опорную строку, умноженную на элемент этой строки с индексом равным номеру опорной строки.

    В качестве опорной строки выбираем строку выше.

    Повторяем 8 – 9 пока номер опорной строки не станет меньше номера первой строки.

Пусть имеется система уравнений:

Запишем расширенную матрицу системы:

и выполним элементарные преобразования ее строк.

Для этого умножим первую строку на 1 и вычитаем из второй строки; затем умножим первую строку на 2 и вычтем из третьей строки.

В результате мы исключим переменную
x

1
из всех уравнений, кроме первого. Получим:

Теперь вычтем из строки 3 строку 2, умноженную на 3:

Теперь вычитаем из 1 строки сначала 3 строку, а затем 2 строку:

После преобразований получаем систему уравнений:

Из этого следует, что система уравнений имеет следующее решение:

x1 = 1, x2 = 3 , x3 = -1

    В качестве примера решим систему уравнений, представленную в виде матрицы (Таблица 1), методом Гаусса – Жордана.

Делим первую строку на 3 (элемент первой строки, расположенный на главной диагонали), получим:

Умножаем первую строку на 1 и вычитаем из второй строки. Умножаем первую строку на 6 и вычитаем из третьей строки. Получим:

В первом столбце все элементы кроме диагонального равны нулю, займемся вторым столбцом, для этого выберем вторую строку в качестве опорной. Вторая Делим ее на 17/3:

Умножаем строку 2 на -6 и вычитаем из третьей строки:

Теперь третья строка – опорная, делим ее на
-33/17:

Умножаем опорную строку на 3/17 и вычитаем ее из второй. Умножаем третью строку на 1 и вычитаем ее из первой

Получена треугольная матрица, начинается обратный ход алгоритма
(во время которого получим единичную матрицу). Вторая строка становится опорной. Умножаем третью строку на 4/3 и вычитаем ее из первой:

Последний столбец матрицы – решение системы уравнений.


Решение СЛАУ методом Гаусса — online presentation

1. Решение СЛАУ методом Гаусса

2. Иоганн Карл Фридрих Гаусс (30 апреля 1777, Брауншвейг — 23 февраля 1855, Гёттинген)

Имя Гаусса известно почти во всех областях
математики, а также в геодезии, астрономии,
механике. За глубину и оригинальность мысли, за
требовательность к себе и гениальность ученый и
получил звание «король математиков».
Метод решения системных уравнений, открытый
ученым, был назван методом Гаусса. Метод
состоит в последовательном исключении
переменных до приведения уравнения к
ступенчатому виду. Решение методом Гаусса
считается классическим и активно используется и
сейчас.
Память о Гауссе навсегда осталась в
математических и физических терминах (метод
Гаусса, дискриминанты Гаусса, прямая Гаусса,
Гаусс – единица измерения магнитной индукции
и др.). Имя Гаусса носит лунный кратер, вулкан в
Антарктиде и малая планета.

3. Метод Гаусса

Метод Гаусса — классический метод решения системы
линейных алгебраических уравнений (СЛАУ).
Это метод последовательного исключения переменных,
когда с помощью элементарных преобразований система
уравнений приводится к равносильной системе
ступенчатого (или треугольного) вида, из которого
последовательно, начиная с последних (по номеру)
переменных, находятся все остальные переменные.

4. Пример. Решить СЛАУ методом Гаусса:

Запишем расширенную матрицу системы, составленную из
коэффициентов системы и свободных слагаемых.

5. С помощью элементарных преобразований сведем расширенную матрицу к подобной матрице ступенчатого вида:

6. Получаем систему линейных уравнений, эквивалентную исходной системе уравнений.

Ответ:

7. Ощутим свежее дыхание моря…

9. Самостоятельная работа

1 вариант
Решить СЛАУ
методом Гаусса:
2 вариант
Решить СЛАУ
методом Гаусса:

10. Домашнее задание

Решить СЛАУ:
Калькулятор метода исключения Гаусса

— Онлайн-программа для сокращения строк

Поиск инструмента

Исключение по Гауссу

Инструмент для применения метода исключения Гаусса и получения формы сокращенного эшелона строки с шагами, деталями, обратной матрицей и векторным решением.

Результаты

Исключение Гаусса — dCode

Тег (и): Матрица, символьное вычисление

Поделиться

dCode и другие

dCode является бесплатным, а его инструменты являются ценным подспорьем в играх, математике, геокешинге, головоломках и задачах, которые нужно решать каждый день!
Предложение? обратная связь? Жук ? идея ? Запись в dCode !

Рекламные объявления

Калькулятор исключения по Гауссу

Преобразователь системы уравнений в матрицу

Ответы на вопросы (FAQ)

Что такое метод исключения Гаусса?

Алгоритм исключения Гаусса (также называемый методом Гаусса-Жордана или методом поворота) позволяет находить решения системы линейных уравнений и определять обратную матрицу.

Алгоритм работает со строками матрицы путем обмена или умножения строк между ними (с точностью до множителя).

На каждом шаге алгоритм стремится ввести в матрицу на элементах за пределами диагонали нулевые значения.

Как вычислить решения системы линейных уравнений с Гауссом?

Первым шагом из системы линейных уравнений является преобразование уравнений в матрицу.

Пример: $$ \ left \ {\ begin {array} {} x & — & y & + & 2z & = & 5 \\ 3x & + & 2y & + & z & = & 10 \\ 2x & — & 3y & — & 2z & = & — 10 \\\ end {массив} \ право.$$ можно записать в форме умножения «> матричного умножения: $$ \ left (\ begin {array} {ccc} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 2 & -3 & 2 \ end { array} \ right). \ left (\ begin {array} {c} x \\ y \\ z \ end {array} \ right) = \ left (\ begin {array} {c} 5 \\ 10 \\ -10 \ end {array} \ right) $$, который соответствует (расширенной) матрице $$ \ left (\ begin {array} {ccc | c} 1 & -1 & 2 & 5 \\ 3 & 2 & 1 & 10 \\ 2 & -3 & 2 & -10 \ end {array} \ right) $$

Затем для каждого элемента за пределами ненулевой диагонали выполните соответствующие вычисления, добавляя или вычитая другие строки, чтобы элемент стал 0.

Пример: Вычтите 3 раза (строка 1) из (строка 2), например, элемент в строке 2, столбец 1 станет 0: $$ \ left (\ begin {array} {ccc | c} 1 & -1 & 2 & 5 \\ 0 & 5 & -5 & -5 \\ 2 & -3 & -2 & -10 \ end {array} \ right) $$
Вычтите 2 раза (строка 1) до (строка 3) например, элемент в строке 3, столбец 1 становится 0: $$ \ left (\ begin {array} {ccc | c} 1 & -1 & 2 & 5 \\ 0 & 5 & -5 & -5 \\ 0 & -1 & -6 & -20 \ end {array} \ right) $$
Вычтите 1/5 раз (строка 2) из ​​(строка 3), например, элемент в строке 3, столбец 2 станет 0: $$ \ слева (\ begin {array} {ccc | c} 1 & -1 & 2 & 5 \\ 0 & 5 & -5 & -5 \\ 0 & 0 & -7 & -21 \ end {array} \ right) $$
Вычтите 1/5 раз (строка 2) из ​​(строка 1), например, элемент в строке 1, столбец 2 станет 0: $$ \ left (\ begin {array} {ccc | c} 1 & 0 & 1 & 4 \\ 0 & 5 & -5 & -5 \\ 0 & 0 & -7 & -21 \ end {array} \ right) $$
Отнимите 1/7 раз (строка 3) до (строка 1), например как элемент в строке 1, столбец 3 становится 0: $$ \ left (\ begin {array} {ccc | c} 1 & 0 & 0 & 1 \\ 0 & 5 & -5 & -5 \\ 0 & 0 & -7 & -21 \ end {array} \ right) $$
Вычтите 5/7 раз (строка 3) из (строка 2), например, элемент в строке 2, столбец 3 станет 0: $$ \ left (\ begin {array} {ccc | c} 1 & 0 & 0 & 1 \\ 0 & 5 & 0 & 10 \\ 0 & 0 & -7 & -21 \ end {array} \ right) $$

Упростите каждую строку, разделив значение по диагонали.

Пример: $$ \ left (\ begin {array} {ccc | c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 3 \ end {array } \ right) $$

Вектор результата — последний столбец.

Пример: $ {1,2,3} $, что соответствует $ {x, y, z} $, поэтому $ x = 1, y = 2, z = 3 $

Задайте новый вопрос

Исходный код

dCode сохраняет за собой право собственности на исходный код онлайн-инструмента «Исключение Гаусса». За исключением явной лицензии с открытым исходным кодом (обозначенной CC / Creative Commons / бесплатно), любой алгоритм, апплет или фрагмент алгоритма исключения Гаусса (конвертер, решатель, шифрование / дешифрование, кодирование / декодирование, шифрование / дешифрование, переводчик) или любой алгоритм исключения Гаусса ‘функция (вычислить, преобразовать, решить, расшифровать / зашифровать, расшифровать / зашифровать, декодировать / закодировать, перевести), написанная на любом информационном языке (Python, Java, PHP, C #, Javascript, Matlab и т. д.)), и никакая загрузка данных, скрипт, копипаст или доступ к API для «Исключения Гаусса» не будут бесплатными, то же самое для автономного использования на ПК, планшете, iPhone или Android! dCode распространяется бесплатно и онлайн.

Нужна помощь?

Пожалуйста, посетите наше сообщество dCode Discord для запросов о помощи!
NB: для зашифрованных сообщений проверьте наш автоматический идентификатор шифра!

Вопросы / комментарии

Сводка

Похожие страницы

Поддержка

Форум / Справка

Ключевые слова

исключение, точка поворота, гаусс, иордания, матрица, система, уравнение

Ссылки

Источник: https: // www.dcode.fr/gaussian-elimination

© 2021 dCode — Лучший «инструментарий» для решения любых игр / загадок / геокэшинга / CTF.

Калькулятор исключения Гаусса

Как найти неизвестные переменные в уравнениях методом исключения Гаусса?

Исключение Гаусса или сокращение строки , это алгоритм решения системы линейных уравнений. Этот метод также называется исключением Гаусса-Жордана. Он представлен последовательностью операций, выполняемых над матрицей.Метод назван в честь Карла Фридриха Гаусса (1777-1855), хотя был известен китайским математикам.
Метод решения системы линейных уравнений методом исключения Гаусса аналогичен методу решения матриц. Например, существует связь между системой трех линейных уравнений и ее матрицей коэффициентов.
$$ \ begin {align} & a_1x + b_1y + c_1z = {d_1} \\
& a_2x + b_2y + c_2z = {d_2} \\
& a_3x + b_3y + c_3z = {d_3} \\
\ end {align} \ quad \ longmapsto \ left (
\ begin {array} {ccc}
{a_1} & b_1 & c_1 \\
{a_2} & b_2 & c_2 \\
{a_3} & b_3 & c_3 \\
\ end {массив}
\ right) $$
Есть три типа операций с элементарными строками:

  • Замена двух рядов;
  • Умножение строки на ненулевое число;
  • Добавление числа, кратного одной строке, к другой строке.

Метод исключения Гаусса состоит из двух частей. Первая часть сводит данную систему к \ underline {форме эшелона строк}. Из формы эшелона строк мы можем сделать вывод, что у системы нет решений, единственное решение или бесконечно много решений. Во второй части используются строковые операции до тех пор, пока не будет найдено решение.
Форма рядного эшелона удовлетворяет следующим свойствам:

  • Старший коэффициент каждой строки должен быть 1 $;
  • Все элементы в столбце ниже $ 1 $ должны быть $ 0 $;
  • Все строки, содержащие нули, находятся внизу матрицы.

Например, следующие матрицы представлены в виде эшелона строк
$$ \ left (
\ begin {array} {cc}
1 и 5 \\
0 и 1 \\
\ end {массив}
\ справа), \ quad \ left (
\ begin {array} {cccc}
1 и 1 и 0 и 5 \\
0 и 1, 3 и 4 \\
0 & 0 & 1 & 2 \\
\ end {массив}
\ справа), \ quad \ left (
\ begin {array} {cccc}
1 и 2 и 3 и 4 \\
0 и 1, 3 и 4 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
\ end {массив}
\ right) $$
Матрица находится в форме сокращенного звена строк , если, кроме того, в каждом столбце, содержащем ведущий коэффициент, все другие записи в этом столбце равны нулю.Например, матрицы, показанные ниже, являются примерами матриц в сокращенной форме эшелона строк.
$$ \ left (
\ begin {array} {cc}
1 & 0 \\
0 и 1 \\
\ end {массив}
\ справа), \ quad \ left (
\ begin {array} {cccc}
1 & 0 & 0 & 7 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2 \\
\ end {массив}
\ справа), \ quad \ left (
\ begin {array} {cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & -2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
\ end {массив}
\ right) $$
Расширенная матрица — это матрица, полученная путем добавления столбцов двух заданных матриц.В случае решения системы нам необходимо увеличить матрицу коэффициентов и постоянную матрицу. Вертикальная линия показывает разделение между матрицей коэффициентов и постоянной матрицей. Итак, для системы трех уравнений
$$ \ begin {align} & a_1x + b_1y + c_1z = {d_1} \\
& a_2x + b_2y + c_2z = {d_2} \\
& a_3x + b_3y + c_3z = {d_3} \\
\ end {align} $$
расширенная матрица
$$ \ left (
\ begin {array} {ccc | c}
a_1 & b_1 & c_1 & d_1 \\
a_2 & b_2 & c_2 & d_2 \\
a_3 & b_3 & c_3 & d_3 \\
\ end {массив}
\ right) $$
Количество решений системы зависит только от ранга матрицы, представляющей систему, и ранга соответствующей расширенной матрицы.На основании теоремы Кронекера-Капелли любая система из трех линейных уравнений не имеет решений, если ранг расширенной матрицы больше ранга матрицы коэффициентов. Если ранги этих двух матриц равны, система должна иметь хотя бы одно решение. Решение уникально тогда и только тогда, когда ранг равен количеству переменных, в данном случае, если ранг равен 3 $.
Например, решим решение системы методом исключения Гаусса
$$ \ begin {align} & 4x + 5y + 3z = {10} \\
& 3x + 6y + 7z = {8} \\
& 2x + 3y + 0z = {8} \\
\ end {align} $$
Коэффициенты и постоянные члены системы дают матрицы
$$ \ left (
\ begin {array} {ccc}
4 и 5 и 3 \\
3 и 6 и 7 \\
2 и 3 и 0 \\
\ end {массив}
\ вправо), \ квад \ влево (
\ begin {array} {c}
10 \\
8 \\
8 \\
\ end {массив}
\ right) $$
Расширенная матрица
$$ \ left (
\ begin {array} {ccc | c}
4 и 5 и 3 и 10 \\
3 и 6 и 7 и 8 \\
2 и 3 и 0 и 8 \\
\ end {массив}
\ right) $$
Чтобы решить систему, приведите расширенную матрицу к сокращенной форме эшелона строк следующим образом.

  • Разделите строку $ 1 $ на $ 4 $ ($ R_1 = \ frac {R_1} 4) $, чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & \ frac 54 & \ frac 34 & \ frac {5} 2 \\
    3 и 6 и 7 и 8 \\
    2 и 3 и 0 и 8 \\
    \ end {массив}
    \ right) $$
  • Вычтите строку $ 1 $, умноженную на $ 3 $, из строки $ 2 $ ($ R_2 = R_2-3R_1 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & \ frac 54 & \ frac 34 & \ frac {5} 2 \\
    0 & \ frac 94 & \ frac {19} 4 & \ frac 12 \\
    2 и 3 и 0 и 8 \\
    \ end {массив}
    \ справа) $$
  • Вычтите строку $ 1 $, умноженную на $ 2 $, из строки $ 3 $ ($ R_3 = R_3-2R_1 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & \ frac 54 & \ frac 34 & \ frac {5} 2 \\
    0 & \ frac 94 & \ frac {19} 4 & \ frac 12 \\
    0 & \ frac12 & — \ frac 32 & 3 \\
    \ end {массив}
    \ справа) $$
  • Умножьте строку $ 2 $ на $ \ frac 49 $ ($ R_2 = \ frac49 R_2 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & \ frac 54 & \ frac 34 & \ frac {5} 2 \\
    0 & 1 & \ frac {19} 9 & \ frac 29 \\\
    0 & \ frac12 & — \ frac 32 & 3 \\
    \ end {массив}
    \ справа) $$
  • Вычтите строку $ 2 $, умноженную на $ \ frac 54 $, из строки $ 1 $ ($ R_1 = R_1- \ frac54 R_2 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & 0 & — \ frac {17} 9 & \ frac {20} 9 \\
    0 & 1 & \ frac {19} 9 & \ frac 29 \\
    0 & \ frac12 & — \ frac 32 & 3 \\
    \ end {массив}
    \ справа) $$
  • Вычтите строку $ 2 $, умноженную на $ \ frac 12 $, из строки $ 3 $ ($ R_3 = R_3- \ frac12R_2 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & 0 & — \ frac {17} 9 & \ frac {20} 9 \\
    0 & 1 & \ frac {19} 9 & \ frac 29 \\
    0 & 0 & — \ frac {23} 9 & \ frac {26} 9 \\
    \ end {массив}
    \ right) $$
  • Умножьте строку $ 3 $ на $ — \ frac9 {23} $ ($ R_3 = — \ frac9 {23} R_3 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & 0 & — \ frac {17} 9 & \ frac {20} 9 \\
    0 & 1 & \ frac {19} 9 & \ frac 29 \\
    0 & 0 & 1 & — \ frac {26} {23} \\
    \ end {массив}
    \ справа) $$
  • Добавьте строку $ 3 $, умноженную на $ \ frac {17} 9 $, в строку $ 1 $ ($ R_1 = R_1 + \ frac {17} 9R_3 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & 0 & 0 & \ frac2 {23} \\
    0 & 1 & \ frac {19} 9 & \ frac 29 \\
    0 & 0 & 1 & — \ frac {26} {23} \\
    \ end {массив}
    \ справа) $$
  • Вычтите строку $ 3 $, умноженную на $ \ frac {19} 9 $, из строки $ 2 $ ($ R_2 = R_2- \ frac {19} 9R_3 $), чтобы получить
    $$ \ left (
    \ begin {array} {ccc | c}
    1 & 0 & 0 & \ frac2 {23} \\
    0 & 1 & 0 & \ frac {60} {23} \\
    0 & 0 & 1 & — \ frac {26} {23} \\
    \ end {массив}
    \ right) $$
    Итак, решение системы: $ (x, y, z) = (\ frac {2} {23}, \ frac {60} {23}, — \ frac {26} {23}) $.

Работа исключения Гаусса с шагами показывает полное пошаговое вычисление для нахождения решения линейной системы трех уравнений с использованием метода исключения Гаусса. Для любой другой системы просто введите двенадцать действительных чисел в качестве коэффициентов линейных уравнений и нажмите кнопку «Создать работу». Учащиеся начальной школы используют этот Калькулятор исключения Гаусса для создания работы, проверки результатов решения систем линейных уравнений, выведенных вручную, или для эффективного выполнения домашних заданий.Во многих приложениях необходимо вычислить исключение матрицы, где этот онлайн-калькулятор исключения матрицы Гаусса может помочь легко упростить вычисления для соответствующих входных данных.

Обращение матрицы с использованием исключения Гаусса-Джордана

М. Борна

В этом разделе мы увидим, как работает метод исключения Гаусса-Жордана, на примерах.

Вы можете повторно загружать эту страницу сколько угодно раз и каждый раз получать новый набор чисел. Вы также можете выбрать матрицу другого размера (внизу страницы).

(Если вам сначала нужна дополнительная информация, вернитесь к «Введение в матрицы»).

Выберите размер матрицы, который вас интересует, и нажмите кнопку.

Матрица A:

Пример, сгенерированный случайным образом, показан ниже.

Пользователи телефона

ПРИМЕЧАНИЕ: Если вы разговариваете по телефону, вы можете прокрутить любую матрицу шириной на этой странице вправо или влево, чтобы увидеть все выражение.

Пример (3 × 3)

Найдите матрицу, обратную матрице A , используя метод исключения Гаусса-Жордана.

А = 10 3 11
5 9 13
12 4 7

Наша процедура

Запишем матрицу A слева и матрицу идентичности I справа, разделенные пунктирной линией, как показано ниже.
Результат называется расширенной матрицей .

Мы включили номера строк, чтобы было понятнее.

1 0 0 Ряд [1]
0 1 0 Ряд [2]
0 0 1 ряд [3]

Затем мы выполняем несколько операций со строками над двумя матрицами, и наша цель — получить единичную матрицу на левом , например:

? ? ? Ряд [1]
? ? ? Ряд [2]
? ? ? Ряд [3]

(Технически мы сокращаем матрицу A до сокращенной формы эшелона строк , также называемой канонической формой строки ).

Результирующая матрица справа будет обратной матрицей для A .

Наша процедура операций со строками выглядит следующим образом:

  1. Получим «1» в верхнем левом углу, разделив первую строку
  2. Тогда мы получим «0» в оставшейся части первого столбца
  3. Затем нам нужно получить «1» во второй строке, втором столбце
  4. Затем мы делаем все остальные записи во втором столбце «0».

Продолжаем так до тех пор, пока слева не останется единичная матрица.

Давайте теперь продолжим и найдем обратное.

Решение

Начнем с:

1 0 0 Ряд [1]
0 1 0 Ряд [2]
0 0 1 Ряд [3]

Новый ряд [1]

Разделите строку [1] на 10 (чтобы получить «1» в нужной позиции):

Это дает нам:

1 0.3 1,1
5 9 13
12 4 7
0,1 0 0 Ряд [1]
0 1 0 Ряд [2]
0 0 1 Ряд [3]

Новый ряд [2]

Ряд [2] — 5 × Ряд [1] (чтобы дать нам 0 в желаемой позиции):

5 — 5 × 1 = 0
9 — 5 × 0.3 = 7,5
13 — 5 × 1,1 = 7,5
0 — 5 × 0,1 = -0,5
1 — 5 × 0 = 1
0 — 5 × 0 = 0

Это дает нам новую строку [2]:

1 0,3 1,1
0 7,5 7,5
12 4 7
0,1 0 0 Ряд [1]
-0.5 1 0 Ряд [2]
0 0 1 Ряд [3]

Новый ряд [3]

Ряд [3] — 12 × Ряд [1] (чтобы дать нам 0 в желаемой позиции):

12 — 12 × 1 = 0
4 — 12 × 0,3 = 0,4
7 — 12 × 1,1 = -6,2
0 — 12 × 0,1 = -1,2
0 — 12 × 0 = 0
1 — 12 × 0 = 1

Это дает нам новую строку [3]:

1 0.3 1,1
0 7,5 7,5
0 0,4 -6,2
0,1 0 0 Ряд [1]
-0,5 1 0 Ряд [2]
-1,2 0 1 Ряд [3]

Новый ряд [2]

Разделите строку [2] на 7.5 (чтобы поставить нам «1» в нужной позиции):

Это дает нам:

1 0,3 1,1
0 1 1
0 0,4 -6,2
0,1 0 0 Ряд [1]
-0,0667 0,1333 0 Ряд [2]
-1.2 0 1 Ряд [3]

Новый ряд [1]

Ряд [1] — 0,3 × Ряд [2] (чтобы дать нам 0 в желаемой позиции):

1 — 0,3 × 0 = 1
0,3 — 0,3 × 1 = 0
1,1 — 0,3 × 1 = 0,8
0,1 — 0,3 × -0,0667 = 0,12
0 — 0,3 × 0,1333 = -0,04
0 — 0,3 × 0 = 0

Это дает нам новую строку [1]:

1 0 0,8
0 1 1
0 0.4 -6,2
0,12 -0,04 0 Ряд [1]
-0,0667 0,1333 0 Ряд [2]
-1,2 0 1 Ряд [3]

Новый ряд [3]

Ряд [3] — 0,4 × Ряд [2] (чтобы дать нам 0 в желаемой позиции):

0 — 0,4 × 0 = 0
0.4 — 0,4 × 1 = 0
-6,2 — 0,4 × 1 = -6,6
-1,2 — 0,4 × -0,0667 = -1,1733
0 — 0,4 × 0,1333 = -0,0533
1 — 0,4 × 0 = 1

Это дает нам новую строку [3]:

1 0 0,8
0 1 1
0 0 -6,6
0,12 -0,04 0 Ряд [1]
-0.0667 0,1333 0 Ряд [2]
-1,1733 -0,0533 1 Ряд [3]

Новый ряд [3]

Разделите строку [3] на -6,6 (чтобы получить «1» в нужной позиции):

Это дает нам:

0,12 -0,04 0 Ряд [1]
-0,0667 0.1333 0 Ряд [2]
0,1778 0,0081 -0,1515 Ряд [3]

Новый ряд [1]

Ряд [1] — 0,8 × Ряд [3] (чтобы дать нам 0 в желаемой позиции):

1 — 0,8 × 0 = 1
0 — 0,8 × 0 = 0
0,8 — 0,8 × 1 = 0
0,12 — 0,8 × 0,1778 = -0,0222
-0,04 — 0,8 × 0,0081 = -0,0465
0 — 0,8 × -0,1515 = 0,1212

Это дает нам новую строку [1]:

-0.0222 -0,0465 0,1212 Ряд [1]
-0,0667 0,1333 0 Ряд [2]
0,1778 0,0081 -0,1515 Ряд [3]

Новый ряд [2]

Ряд [2] — 1 × Ряд [3] (чтобы дать нам 0 в желаемой позиции):

0 — 1 × 0 = 0
1 — 1 × 0 = 1
1 — 1 × 1 = 0
-0.0667 — 1 × 0,1778 = -0,2444
0,1333 — 1 × 0,0081 = 0,1253
0 — 1 × -0,1515 = 0,1515

Это дает нам новую строку [2]:

-0,0222 -0,0465 0,1212 Ряд [1]
-0,2444 0,1253 0,1515 Ряд [2]
0,1778 0,0081 -0,1515 Ряд [3]

Мы достигли нашей цели по созданию матрицы идентичности слева.Таким образом, мы можем заключить, что инверсия матрицы A является правой частью расширенной матрицы:

A -1 = -0,0222 -0,0465 0,1212
-0,2444 0,1253 0,1515
0,1778 0,0081 -0,1515

Примечания

  1. В приведенном выше объяснении показаны все шаги.Человек обычно может пойти несколькими путями. Кроме того, иногда в правильной позиции уже есть «1» или «0», и в этих случаях нам не нужно ничего делать для этого шага.
  2. Всегда записывайте, что вы делаете на каждом этапе — очень легко заблудиться!
  3. Я показал результаты с точностью до 4 знаков после запятой, но с максимальной точностью использовалась повсюду. Имейте в виду, что небольшие ошибки округления будут накапливаться во всей задаче. Всегда используйте полную точность калькулятора! (Полностью используйте память вашего калькулятора.)
  4. Очень иногда возникают странные результаты из-за внутреннего представления чисел компьютером. То есть он может хранить «1» как 0,999999999872.

Смотрите еще?

Вы можете вернуться к началу страницы и выбрать другой пример.

Калькулятор системы уравнений

3×3

В этом разделе мы кратко рассмотрим, как распространить идеи, которые мы обсуждали для решения систем дифференциальных уравнений 2 x 2, на системы размера 3 x 3.Воспользовавшись этим онлайн-калькулятором, вы получите подробное пошаговое решение вашей задачи, которое поможет понять алгоритм решения системы линейных уравнений методом обратной матрицы. Решение: x = 5, y = 3, z = −2. Особенности: Показывает пошаговое решение. a21. • Системный решатель 2×2 Решает системы двух линейных уравнений с двумя переменными путем подстановки или использования правила Крамера. Теория линейных уравнений — основная и фундаментальная часть линейной алгебры. Решающая программа вычисляет решение системы уравнений шаг за шагом с помощью правила Крамера и метода Гаусса.Решение уравнений. Очень легко понять! На всякий случай, если вам потребуется руководство по выражениям или умножению многочленов, Polymathlove. Решение системы с тремя переменными Матричный метод Решение системы уравнений с тремя переменными. Решение уравнений. а12. a11. Простой в использовании калькулятор для решения систем из n линейных уравнений от n переменных. Введите свои уравнения через запятую в поле и нажмите «Рассчитать»! Наш калькулятор способен решать системы с одним уникальным решением, а также неопределенные системы, которые имеют бесконечное множество решений.Обработка почвы. Калькулятор для решения систем линейных уравнений (2×2 3×3 4×4 5×5 6×6 7×7 8×8 9×9 10×10 11×11). Существует несколько методов решения системы двух уравнений с двумя неизвестными: метод подстановки, метод комбинации, графический метод, метод Крамера. Факторинговые полиномы. Два метода решения + подробные шаги. Калькулятор — это программа для решения систем уравнений, которая использует очень простой синтаксис для решения систем линейных уравнений, допускающих единственное решение. Пример: 4x + 2y — 2z = 10 2x + 8y + 4z = 32 30x + 12y — 4z = 24.а22. Освоение Hp 39gs 40gs. Решите систему 3×3 с помощью исключения по Гауссу 2 You. В случае двух переменных эти системы можно рассматривать как линии, проведенные в двухмерном пространстве. Калькуляторы полиномов. Калькулятор сокращения строки гауссовского исключения вы решаете систему 3×3 с 2 графическими справочными листами системы уравнений, как 3 переменные с помощью метода одновременной подстановки гаусса casio fx 991es плюс навыки решения дробей или десятичных решений. Системный решатель 3×3 TRIAL Удобный калькулятор, который позволяет вам решать системы трех линейных уравнений с тремя неизвестными.Калькуляторы. Калькулятор правила Крамера решает систему трех линейных уравнений с действительными коэффициентами. Линейное уравнение относится к уравнению линии. a31. Этот калькулятор предназначен для студентов, инженеров и всех, кому необходимо решать системы линейных уравнений, содержащие до 11 неизвестных. Этот онлайн-калькулятор поможет вам решить систему линейных уравнений методом обратной матрицы. Если вы используете приложение на своем телефоне, вам следует повернуть телефон в альбомную ориентацию, чтобы ввести три уравнения.Опять же на практике это проще, чем кажется на бумаге! Поддерживает до 5 функций, 2×2, 3×3 и т. Д. Вы также можете проверить свою линейную систему уравнений на непротиворечивость, используя наш Калькулятор исключения Гаусса-Жордана. Это важно, когда матрица используется для решения системы линейных уравнений (например, Решение системы из 3-х линейных уравнений). Или щелкните пример. Это системный калькулятор линейных уравнений с 3-мя переменными. Очень легко понять! Введите десятичные дроби или дроби. Решатель системы уравнений 3×3.Показать пошаговые решения. Определитель матрицы 3×3 определяется как. Джозеф П. Превайт Департамент математики Пенн Стейт Эри, Беренд Колледж Стейшн Роуд Эри, Пенсильвания 16563 (814) -898-6091 Эл. Почта [email protected] Решатель системы уравнений 3×3 Калькулятор решает систему трех уравнений с тремя неизвестными (система 3×3). Калькулятор будет использовать метод исключения Гаусса или правило Крамера для создания пошагового объяснения. Решение дифференциальных уравнений рассчитывается численно.Этот калькулятор вычисляет определитель матриц 3×3. Используя этот сайт, вы соглашаетесь с нашей Политикой в ​​отношении файлов cookie. Решение системы уравнений с помощью правила Крамера, метода Гаусса и подхода Гаусса-Жордана. а32. Наш онлайн-калькулятор системы уравнений поможет вам решить любые неизвестные переменные x, z, n, m и y. Вышеупомянутый калькулятор одновременных уравнений поможет вам решить одновременные линейные уравнения с двумя, тремя неизвестными Система из 3 линейных уравнений с 3 неизвестными x , y, z — классический пример.Калькулятор решает системы линейных уравнений с двумя и тремя переменными. 1 x + 5 y + 9 z = 2. Калькуляторы. Калькулятор системы уравнений. x + y + z = x + y + z = x + y + z = x = y = z = Ограничить размер дробных решений цифрами в числителе или знаменателе. Решатель уравнений 3 x 3 решает систему линейных уравнений 3 x 3 Направления: введите коэффициенты 3 линейных уравнений, затем нажмите «Решить». Калькуляторы. Система трех уравнений и трех неизвестных. Решение систем трех линейных уравнений с тремя переменными Системы трех линейных уравнений с тремя переменными 3×3 a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = b 2 a 31 x 1 + a 32 x 2 + a 33 x 3 = b 3, где x 1, x 2, x 3 — неизвестные, a 11 ,…, a 33 — коэффициенты системы, b 1, b 2, b 3 — постоянные члены. 3×3 программа для решения системы линейных уравнений. Онлайн калькулятор для систем линейных уравнений 3×3. Калькулятор линейных уравнений. Калькуляторы. Вы можете использовать этот калькулятор исключения, чтобы попрактиковаться в решении систем. Калькулятор для систем дифференциальных уравнений 3×3 1. заказ. В противном случае система называется несовместимой, не имеющей решений. Калькулятор Row Reduction Gaussian Elimination You. Решатель системы уравнений 3×3 с подробным объяснением.а13. Используя Матричный Калькулятор, мы получаем следующее: (Я оставил определитель 1 / вне матрицы, чтобы упростить числа) Затем умножьте A-1 на B (мы снова можем использовать Матричный Калькулятор): И все готово! Самые популярные песни в Mp4 скачать бесплатно на телугу. Это калькулятор уравнений типа: После заполнения формы нажмите кнопку РАССЧИТАТЬ, чтобы просмотреть результаты. Система уравнений относится к набору двух или более линейных уравнений, работающих вместе с одним и тем же набором переменных. • Системный решатель 3×3 Решает системы трех линейных уравнений с тремя переменными, используя матрицы R… Крамера и одновременные линейные уравнения.Как мы увидим, они в основном являются естественным продолжением того, что мы уже знаем, кому делать. Помощь. Это онлайн-инструмент алгебры, запрограммированный для определения упорядоченной тройки как решения системы трех линейных уравнений. Калькулятор решает системы линейных уравнений с двумя и тремя переменными. — /. Помощники Коника. Классная математика и алгебра Справочные уроки: системы уравнений 3×3 показывают справку ↓↓ примеры ↓↓). • Системный решатель 3×3 Решает системы трех линейных уравнений с тремя переменными, используя правило Крамера.До этого момента мы работали с системами 2×2 двух уравнений с двумя переменными, такими как x и y. Мы решали линейно-линейные системы, состоящие из двух прямых линий, и линейно-квадратичные системы, состоящие из одной прямой и либо одна парабола или один круг. Решатель уравнений: Equation_solver. Точность расчетов. Калькулятор правила Крамера. Об исключении Используйте исключение, когда вы решаете систему уравнений, и вы можете быстро исключить одну переменную, складывая или вычитая ваши уравнения вместе.Мы также сделаем несколько быстрых замечаний по поводу систем 4 x 4. 4×4 Решатель системы уравнений. • Системный решатель 2×2 Решает системы двух линейных уравнений с двумя переменными путем подстановки или использования правила Крамера. а33. Скачать редактор Pho.to. Решите систему, используя матричное уравнение. Система дифференциальных уравнений имеет следующий вид: ODE 1: y 1 ′ = f (x, y 1, y 2, y 3) ODE 2: y 2 ′ = g (x, y 1, y 2, y 3) ODE 3: y 3 ′ = h (x, y 1, y 2, y 3) Численное решение ODE-системы. Калькулятор найдет Вронскиан набора функций с указанными шагами.x + y + z = x + y + z = x + y + z = x = y = z = 4×4 решатель! Бесплатный калькулятор системы линейных уравнений — решите систему линейных уравнений поэтапно. Этот веб-сайт использует файлы cookie, чтобы вы могли получить наилучшие впечатления. • Системный решатель 2×2 Решает системы двух линейных уравнений с двумя переменными путем подстановки или использования правила Крамера. Калькуляторы. Введите систему уравнений (пустые поля будут заменены нулями) x + y + z + t = x + y + z + t = x + y + z + t = x + y + z + t = Решить систему. • Системный решатель 2×2 Решает системы двух линейных уравнений с двумя переменными путем подстановки или использования правила Крамера.а23. Новый решатель nxm! КАЛЬКУЛЯТОР ПРАВИЛ 3×3 CRAMER’S. Если все прямые сходятся к общей точке, система называется согласованной и имеет решение в этой точке пересечения. • Системный решатель 3×3 Решает системы трех линейных уравнений с тремя переменными, используя правило Крамера. Правило Крамера с тремя переменными chilimath. Для решения систем уравнений 3×3 следует выбрать альбомную ориентацию. (Воспользуйтесь калькулятором) x + 2y — z = 7 2x — 3y — 4z = -3 x + y + z = 0. Узнайте о линейных уравнениях с помощью нашего бесплатного математического решателя с пошаговыми решениями.Калькулятор решает систему трех уравнений с тремя неизвестными (система 3×3). Системы линейных уравнений — это общее и применимое подмножество систем уравнений. Используйте этот калькулятор системы уравнений для решения линейных уравнений с различными переменными. Эта программа для решения линейных уравнений 3 неизвестных поможет вам систематически решать такие системы. Решение системы уравнений 3×3 с использованием обратной матрицы. Система линейных уравнений состоит из двух или более линейных уравнений. Решение уравнений. Путеводитель по Ti 80.Калькуляторы. Для решения систем уравнений 3×3 следует выбрать альбомную ориентацию. В этом случае вы получите зависимость одних переменных от других, которые называются свободными. Найдите обратную матрицу 3×3 и умножьте ее на полученные ответы, чтобы найти x, y и z. Калькулятор правила Крамера 3×3 — решение системы уравнений с использованием правила Крамера всего в один клик. Калькулятор решает системы линейных уравнений с двумя и тремя переменными. Калькулятор, приведенный в этом разделе, может использоваться для решения системы линейных уравнений с тремя неизвестными с использованием правила Крамера или метода определителей.Как я могу ввести систему линейных уравнений 3×3 на моем iPhone? Система уравнений 2×2 Уроки алгебры с множеством отработанных примеров и практических задач. Когда я запускаю приложение, оно не показывает никаких вариантов ввода системы уравнений с тремя переменными. Этот калькулятор решает систему четырех уравнений с четырьмя неизвестными. Используя этот калькулятор, мы сможем понять алгоритм решения системы линейных уравнений по правилу Крамера. Определитель матриц 3×3. Полный.Решение системы 2-х уравнений с 2-мя неизвестными. Калькулятор решает системы линейных уравнений с двумя и тремя переменными. Решение системы уравнений 3×3 на калькуляторе youtube. Калькулятор решает системы линейных уравнений с двумя и тремя переменными. • Системный решатель 3×3 Решает системы трех линейных уравнений с тремя переменными, используя правило Крамера. Чтобы узнать, как решить систему уравнений 3×3 с помощью метода исключения Гаусса, посмотрите видеоурок ниже. Прямо как на странице «Системы линейных уравнений».Численное решение дифференциальных алгебраических уравнений Wolfram Age Documentation.

Почему Порция так нервничает ?,
Евразийский голубь с воротником
Вопросы для интервью Дэна Мерфи,
Стиль Аратикая Пачади Андхра,
Subaru Impreza Sedan 2008 года выпуска,

3×3 Решатель Системы Уравнений

О правиле Крамера

Этот калькулятор использует правило Крамера для решения систем трех уравнений с тремя
неизвестные. Правило Крамера можно сформулировать следующим образом:

Учитывая систему:

$$
\ begin {выровнено}
a_1x + b_1y + c_1z = d_1 \\
а_2x + b_2y + c_2z = d_2 \\
a_3x + b_3y + c_3z = d_3
\ end {выровнен}
$$

с

$$
D = \ left | \ begin {array} {ccc}
a_1 и b_1 и c_1 \\
a_2 и b_2 и c_2 \\
a_3 & b_3 & c_3 \\
\ end {array} \ right | \ ne 0
$$
$$
D_x = \ left | \ begin {array} {ccc}
d_1 & b_1 & c_1 \\
d_2 & b_2 & c_2 \\
d_3 & b_3 & c_3 \\
\ end {array} \ right |
$$
$$
D_y = \ left | \ begin {array} {ccc}
a_1 и d_1 и c_1 \\
a_2 & d_2 & c_2 \\
a_3 & d_3 & c_3 \\
\ end {array} \ right |
$$
$$
D_z = \ left | \ begin {array} {ccc}
a_1 и b_1 и d_1 \\
а_2 и b_2 и d_2 \\
a_3 & b_3 & d_3 \\
\ end {array} \ right |
$$

, то решение этой системы:

$$
x = \ frac {D_x} {D}
$$
$$
y = \ frac {D_y} {D}
$$
$$
z = \ frac {D_z} {D}
$$

Пример: Решите систему уравнений, используя правило Крамера

$$
\ begin {выровнено}
4x + 5y -2z = & -14 \\
7x — ~ y + 2z = & 42 \\
3x + ~ y + 4z = & 28 \\
\ end {выровнен}
$$

Решение: Сначала мы вычисляем $ D, ~ D_x, ~ D_y $ и $ D_z $.

$$
\ begin {выровнено}
& D ~~ = \ left | \ begin {массив} {ccc}
{\ color {blue} {4}} & {\ color {red} {~ 5}} & {\ color {green} {- 2}} \\
{\ color {blue} {7}} & {\ color {red} {- 1}} & {\ color {green} {~ 2}} \\
{\ color {blue} {3}} & {\ color {red} {~ 1}} & {\ color {green} {~ 4}}
\ end {array} \ right | = -16 + 30-14-6-8-140 = -154 \\
& D_x = \ left | \ begin {массив} {ccc}
-14 & {\ color {red} {~ 5}} & {\ color {green} {- 2}} \\
~ 42 & {\ color {red} {- 1}} & {\ color {green} {~ 2}} \\
~ 28 & {\ color {red} {1}} & {\ color {green} {~ 4}}
\ end {array} \ right | = 56 + 280 — 84 — 56 + 28 — 840 = -616 \\
& D_y = \ left | \ begin {массив} {ccc}
{\ color {blue} {4}} & -14 & {\ color {green} {- 2}} \\
{\ color {blue} {7}} & ~ 42 & {\ color {green} {~ 2}} \\
{\ color {blue} {3}} & ~ 28 & {\ color {green} {~ 4}}
\ end {array} \ right | = 672 — 84 — 392 + 252 — 224 + 392 = 616 \\
& D_Z = \ left | \ begin {array} {ccc}
{\ color {blue} {4}} & {\ color {red} {~ 5}} & -14 \\
{\ color {blue} {7}} & {\ color {red} {- 1}} & ~ 42 \\
{\ color {blue} {3}} & {\ color {red} {~ 1}} & ~ 28
\ end {array} \ right | = -112 + 630 — 98 — 42 — 168 — 980 = -770 \\
\ end {выровнен}
$$

Следовательно,

$$
\ begin {выровнено}
& x = \ frac {D_x} {D} = \ frac {-616} {- 154} = 4 \\
& y = \ frac {D_y} {D} = \ frac {616} {- 154} = -4 \\
& z = \ frac {D_z} {D} = \ frac {-770} {- 154} = 5
\ end {выровнен}
$$

Примечание: Вы можете проверить решение с помощью вышеуказанного калькулятора

М.7 Исключение Гаусса-Джордана | STAT ONLINE

Исключение Гаусса-Жордана — это алгоритм, который можно использовать для решения систем линейных уравнений и поиска обратной матрицы для любой обратимой матрицы. Он основан на трех операциях с элементарной строкой , которые можно использовать с матрицей:

  1. Поменять местами две строки
  2. Умножьте одну из строк на ненулевой скаляр.
  3. Добавить или вычесть скалярное кратное одной строки из другой строки.

В качестве примера операции с первой элементарной строкой поменяйте местами 1-ю и 3-ю строки.

\ [\ begin {pmatrix} 4 & 0 & -1 \\ 2 & -2 & 3 \\ 7 & 5 & 0 \ end {pmatrix} \ Rightarrow \ begin {pmatrix} 7 & 5 & 0 \\ 2 & -2 & 3 \\ 4 & 0 & -1 \ end {pmatrix} \]

Для примера операции второй элементарной строки умножьте вторую строку на 3.

\ [\ begin {pmatrix} 4 & 0 & -1 \\ 2 & -2 & 3 \\ 7 & 5 & 0 \ end {pmatrix} \ Rightarrow \ begin {pmatrix} 4 & 0 & -1 \\ 6 & -6 & 9 \\ 7 & 5 & 0 \ end {pmatrix} \]

В качестве примера операции с третьей элементарной строкой добавьте дважды первую строку ко второй строке.

\ [\ begin {pmatrix} 4 & 0 & -1 \\ 2 & -2 & 3 \\ 7 & 5 & 0 \ end {pmatrix} \ Rightarrow \ begin {pmatrix} 4 & 0 & -1 \\ 10 & -2 & 1 \\ 7 & 5 & 0 \ end {pmatrix} \]


Редукторный эшелон формы

Цель метода исключения Гаусса-Жордана состоит в том, чтобы использовать три операции с элементарными строками для преобразования матрицы в эшелонированную форму сокращенных строк. Матрица находится в форме уменьшенного ряда строк , также известной как каноническая форма строки , если выполняются следующие условия:

  1. Все строки с нулевыми записями находятся внизу матрицы
  2. Первая ненулевая запись в строке, называемая ведущей записью или опорной точкой , каждой ненулевой строки находится справа от ведущей записи строки над ней.
  3. Начальная запись, также известная как точка поворота, в любой ненулевой строке — 1.
  4. Все остальные записи в столбце, содержащем начальную единицу, являются нулями.

Например,

\ [A = \ begin {pmatrix} 1 & 0 & 0 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \ end {pmatrix}, B = \ begin {pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \ end {pmatrix}, C = \ begin {pmatrix} 0 & 7 & 3 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \ end {pmatrix}, D = \ begin {pmatrix} 1 & 7 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \ end {pmatrix} \]

Матрицы A, и B находятся в виде эшелона с уменьшенной строкой, а матрицы C и D — нет. C не находится в форме пониженного ряда, поскольку нарушает условия два и три. D не находится в форме пониженного ряда, поскольку нарушает четвертое условие. Кроме того, операции с элементарными строками могут использоваться для уменьшения матрицы D в матрицу B .


Шаги для исключения Гаусса-Джордана

Для выполнения исключения Гаусса-Джордана:

  1. Поменяйте местами строки так, чтобы все строки со всеми нулевыми записями находились внизу
  2. Поменяйте местами строки так, чтобы строка с самой большой левой ненулевой записью находилась наверху.
  3. Умножьте верхнюю строку на скаляр так, чтобы ведущая запись верхней строки стала 1.
  4. Сложить / вычесть кратные числа верхней строки из других строк, чтобы все остальные записи в столбце, содержащем ведущую запись верхней строки, были равны нулю.
  5. Повторите шаги 2–4 для следующей самой левой ненулевой записи, пока все ведущие записи не станут 1.
  6. Поменяйте местами строки так, чтобы ведущая запись каждой ненулевой строки находилась справа от ведущей записи строки над ней.

Выбранные примеры видео показаны ниже:

Чтобы получить инверсию матрицы n × n A :

  1. Создайте разделенную матрицу \ ((A | I) \), где I — единичная матрица.{-1} = I \).

3.3: Решение систем с исключением Гаусса-Джордана

Цели обучения

  • Напишите расширенную матрицу системы уравнений.
  • Напишите систему уравнений из расширенной матрицы.
  • Решите систему линейных уравнений с помощью матриц и графического калькулятора.
  • Решайте финансовые приложения с помощью матриц и графического калькулятора.

Необходимые навыки

Прежде чем начать, пройдите предварительный тест.

Введите в калькулятор следующие матрицы и затем выполните указанные операции. Если операция не может быть проведена, укажите причину.

\ (A = \ begin {bmatrix} 5 & 1 & -2 \\ 2 & 6 & 7 \\ 4 & 1 & −5 \ end {bmatrix} \), \ (B = \ begin {bmatrix} 3 & -7 \\ 0 & 1 \\ 2 & −8 \ end {bmatrix} \), \ (C = \ begin {bmatrix} 9 & 4 \\ 6 & -5 \\ 7 & −1 \ end {bmatrix} \)

а. \ (А \ cdot B \)

г. \ (B \ cdot A \)

г. \ (4B-2C \)

г.\ (А + С \)

Нажмите здесь, чтобы проверить свой ответ

а. \ (\ begin {bmatrix} 11 & -18 \\ 20 & -64 \\ 2 & 13 \ end {bmatrix} \)

г. Не определено, поскольку количество столбцов в матрице \ (B \) не соответствует количеству строк в матрице \ (A \).

г. \ (\ begin {bmatrix} -6 & -36 \\ — 12 & 14 \\ — 6 & −30 \ end {bmatrix} \)

г. Не определено, поскольку размер матрицы \ (A \) не соответствует размерам матрицы \ (C \).{th} \) века, но он по-прежнему считается одним из самых плодовитых математиков в истории. Его вклад в математику и физику охватывает такие области, как алгебра, теория чисел, анализ, дифференциальная геометрия, астрономия и оптика. Его открытия в области теории матриц изменили способ работы математиков за последние два столетия.

Рисунок \ (\ PageIndex {1} \): немецкий математик Карл Фридрих Гаусс (1777–1855).

Ранее в этой главе мы исследовали методы решения систем уравнений.В этом разделе мы изучим другую технику решения систем, на этот раз с использованием матриц.

Расширенные матрицы

Матрица может служить средством представления и решения системы уравнений. Чтобы выразить систему в матричной форме, мы извлекаем коэффициенты переменных и констант, и они становятся элементами матрицы. Мы используем вертикальную линию, чтобы отделить записи коэффициентов от констант, по сути заменяя знаки равенства. Когда система написана в такой форме, мы называем ее расширенной матрицей .

Например, рассмотрим следующую систему уравнений \ (2 × 2 \).

\ [\ begin {align *} 3x + 4y & = 7 \\ 4x-2y & = 5 \ end {align *} \]

Мы можем записать эту систему в виде расширенной матрицы:

\ (\ left [\ begin {array} {cc | c} 3 & 4 & 7 \\ 4 & -2 & 5 \ end {array} \ right] \)

Мы также можем написать матрицу, содержащую только коэффициенты. Это называется матрицей коэффициентов .

\ (\ begin {bmatrix} 3 & 4 \\ 4 & −2 \ end {bmatrix} \)

Трехкратная система уравнений , например

\ [\ begin {align *} 3x-y-z & = 0 \\ x + y & = 5 \\ 2x-3z & = 2 \ end {align *} \]

имеет матрицу коэффициентов

\ (\ begin {bmatrix} 3 & −1 & −1 \\ 1 & 1 & 0 \\ 2 & 0 & −3 \ end {bmatrix} \)

и представлена ​​расширенной матрицей

\ (\ left [\ begin {array} {ccc | c} 3 & −1 & −1 & 0 \\ 1 & 1 & 0 & 5 \\ 2 & 0 & −3 & 2 \ end {array} \ right] \)

Обратите внимание, что матрица написана так, что переменные выстраиваются в свои собственные столбцы: \ (x \) — члены идут в первый столбец, \ (y \) — термины во втором столбце, и \ (z \) — термины в третьем столбце.Очень важно, чтобы каждое уравнение было записано в стандартной форме \ (ax + by + cz = d \), чтобы переменные совпадали. Когда в уравнении отсутствует член переменной, коэффициент равен \ (0 \).

Как: для данной системы уравнений написать расширенную матрицу

  1. Запишите коэффициенты членов \ (x \) — числами в первом столбце.
  2. Запишите коэффициенты членов \ (y \) в виде чисел во втором столбце.
  3. Если есть \ (z \) — члены, запишите коэффициенты как числа в третьем столбце.
  4. Нарисуйте вертикальную линию и напишите константы справа от нее.

Пример \ (\ PageIndex {1} \): написание расширенной матрицы для системы уравнений

Напишите расширенную матрицу для данной системы уравнений.

\ [\ begin {align *} x + 2y-z & = 3 \\ 2x-y + 2z & = 6 \\ x-3y + 3z & = 4 \ end {align *} \]

Решение

Расширенная матрица отображает коэффициенты переменных и дополнительный столбец для констант.

\ (\ left [\ begin {array} {ccc | c} 1 & 2 & −1 & 3 \\ 2 & −1 & 2 & 6 \\ 1 & −3 & 3 & 4 \ end {array} \ right] \)

Упражнение \ (\ PageIndex {1} \)

Запишите расширенную матрицу данной системы уравнений.

\ [\ begin {align *} 4x-3y & = 11 \\ 3x + 2y & = 4 \ end {align *} \]

Ответ

\ (\ left [\ begin {array} {cc | c} 4 & −3 & 11 \\ 3 & 2 & 4 \ end {array} \ right] \)

Написание системы уравнений из расширенной матрицы

Мы можем использовать расширенные матрицы, чтобы помочь нам решать системы уравнений, потому что они упрощают операции, когда системы не обременены переменными.Однако важно понимать, как переключаться между форматами, чтобы поиск решений был более плавным и интуитивно понятным. Здесь мы будем использовать информацию в расширенной матрице, чтобы записать систему уравнений в стандартной форме.

Пример \ (\ PageIndex {2} \): Написание системы уравнений из расширенной матричной формы

Найдите систему уравнений из расширенной матрицы.

\ (\ left [\ begin {array} {ccc | c} 1 & −3 & −5 & -2 \\ 2 & −5 & −4 & 5 \\ — 3 & 5 & 4 & 6 \ end {array} \ right] \)

Решение

Когда столбцы представляют переменные \ (x \), \ (y \) и \ (z \),

\ [\ left [\ begin {array} {ccc | c} 1 & -3 & -5 & -2 \\ 2 & -5 & -4 & 5 \\ — 3 & 5 & 4 & 6 \ end {array} \ right] \ rightarrow \ begin {align *} x-3y-5z & = -2 \\ 2x-5y-4z & = 5 \\ -3x + 5y + 4z & = 6 \ end {align *} \]

Упражнение \ (\ PageIndex {2} \)

Напишите систему уравнений из расширенной матрицы.

\ (\ left [\ begin {array} {ccc | c} 1 & -1 & 1 & 5 \\ 2 & -1 & 3 & 1 \\ 0 & 1 & 1 & -9 \ end {array} \ right] \)

Ответ

\ (\ begin {align *} x-y + z & = 5 \\ 2x-y + 3z & = 1 \\ y + z & = -9 \ end {align *} \)

Уменьшенная форма рядка-эшелон

Чтобы решить систему уравнений, мы хотим преобразовать ее матрицу в сокращенную форму строки , в которой единицы находятся на главной диагонали от верхнего левого угла до нижнего правого угла, а нули в каждое положение выше и ниже главной диагонали, как показано.

Уменьшенная форма строки-эшелона \ (\ begin {bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \ end {bmatrix} \)

Следующие расширенные матрицы представлены в сокращенной форме строки-эшелона.

\ (\ left [\ begin {array} {cc | c} 1 & 0 & -2 \\ 0 & 1 & 5 \ end {array} \ right] \), \ (\ left [\ begin {array} {ccc | c} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \ end {array} \ right] \)

Следующие расширенные матрицы не являются сокращенными строками.

\ (\ left [\ begin {array} {cc | c} 2 & 4 & -6 \\ 4 & 0 & 7 \ end {array} \ right] \), \ (\ left [\ begin {array} {ccc | c} 0 & 2 & 3 & 3 \\ 1 & 5 & 0 & 2 \\ 0 & 0 & 1 & 0 \ end {array} \ right] \)

Пример \ (\ PageIndex {3} \): матрицы в сокращенной форме строки-эшелон

Запишите систему уравнений из каждой из матриц в приведенной строчно-эшелонированной форме сверху. В чем преимущество этой формы?

а. \ (\ left [\ begin {array} {cc | c} 1 & 0 & -2 \\ 0 & 1 & 5 \ end {array} \ right] \)

г.\ (\ left [\ begin {array} {ccc | c} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 2 \ end {array} \ right] \)

Решение

а. \ (\ begin {align *} x = -2 \\ y = 5 \ end {align *} \)

г. \ (\ begin {align *} x = 4 \\ y = 3 \\ z = 2 \ end {align *} \)

Преимущество сокращенной формы строки-эшелон состоит в том, что решение системы уравнений приводится в правом столбце.

УСТРАНЕНИЕ ПО ГАУСС-ИОРДАНИИ

Метод исключения Гаусса-Жордана относится к стратегии, используемой для получения уменьшенной строковой формы матрицы.Цель состоит в том, чтобы записать матрицу \ (A \) с числом \ (1 \) в качестве записи вниз по главной диагонали и иметь все нули сверху и снизу.

\ (A = \ begin {bmatrix} a_ {11} & a_ {12} & a_ {13} \\ a_ {21} & a_ {22} & a_ {23} \\ a_ {31} & a_ {32} & a_ {33} \ end {bmatrix} \ xrightarrow {После \ space Gauss-Jordan \ space elimination} A = \ begin {bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \ end {bmatrix} \)

Мы можем выполнить операций со строками над матрицей, например сложение, умножение на константу и перестановку строк, чтобы создать сокращенную форму строки-эшелон.Процесс выполнения этих шагов вручную выходит за рамки этого класса. Тем не менее, вы можете найти дополнительную информацию о методе Гаусса-Джордана ЗДЕСЬ.

Решение систем уравнений с исключением Гаусса-Жордана

В рамках этого курса мы продемонстрируем, как найти сокращенную форму строки-эшелон в графическом калькуляторе.

Как: решить систему уравнений с помощью матриц с помощью калькулятора

  1. Сохранить расширенную матрицу как матричную переменную \ ([A], [B], [C] ,… \)
    1. Press 2 nd MATRIX. На экране отобразится меню матрицы. Дважды нажмите кнопку со стрелкой вправо, чтобы выбрать меню ПРАВКА. В меню EDIT используйте стрелку вниз для перемещения курсора, чтобы выбрать желаемое имя матрицы из меню, и нажмите ENTER. Появится экран ввода матрицы.

    2. Введите размеры общего размера матрицы в виде строк \ (\ times \) столбцов. Введите количество строк, нажмите ENTER, введите количество столбцов и снова нажмите ENTER.Форма матрицы настраивается на экране, чтобы отобразить требуемое количество строк и столбцов. Убедитесь, что форма соответствует желаемой матрице; в противном случае вернитесь в верхний ряд и отрегулируйте размеры. Если матрица слишком велика для экрана, используйте клавиши со стрелками для прокрутки вправо или вниз, чтобы увидеть оставшиеся строки и столбцы.

    3. Введите элементы матрицы, нажимайте ENTER после каждого. Курсор прокручивает матрицу, перемещаясь по каждой строке слева направо, а затем вниз к следующей строке.Использование клавиш со стрелками для перемещения курсора вместо нажатия ENTER может привести к тому, что значение не будет сохранено в памяти калькулятора.

    4. Нажмите 2 nd QUIT, чтобы завершить процесс сохранения и вернуться на главный экран.

  2. Используйте функцию rref (в калькуляторе, чтобы найти сокращенную форму строки-эшелон матрицы.
    1. На главном экране нажмите 2 nd MATRIX.Используйте стрелку вправо один раз, чтобы перейти в меню МАТЕМАТИКА.

    2. Прокрутите вниз (или вверх) до rref (, стараясь не выбрать ref (, и нажмите ENTER.

    3. Снова нажмите 2 nd MATRIX и используйте стрелку вниз (при необходимости), чтобы выбрать имя матрицы, и нажмите ENTER.

    4. Нажмите ENTER, чтобы завершить операцию.

  3. Если существует сокращенная форма строки-эшелона матрицы, калькулятор отобразит ее на главном экране. ×

Пример \ (\ PageIndex {4} \): решение систем уравнений с матрицами с помощью калькулятора

Решите систему уравнений.

\ [\ begin {align *} 6x + 4y + 3z & = -6 \\ x + 2y + z & = \ dfrac {1} {3} \\ -12x-10y-7z & = 11 \ end {align *} \ ]

Решение

Напишите расширенную матрицу для системы уравнений.

\ (\ left [\ begin {array} {ccc | c} 6 & 4 & 3 & -6 \\ 1 & 2 & 1 & \ dfrac {1} {3} \\ — 12 & -10 & -7 & 11 \ end {array} \ right] \)

На странице матриц калькулятора введите расширенную матрицу выше как матричную переменную \ ([A] \).

\ ([A] = \ left [\ begin {array} {ccc | c} 6 & 4 & 3 & -6 \\ 1 & 2 & 1 & \ dfrac {1} {3} \\ — 12 & -10 & -7 & 11 \ end {array} \ right] \)

Используйте в калькуляторе функцию rref (, вызывающую матричную переменную \ ([A] \).

rref ([A])

Используйте опцию MATH -> FRAC в калькуляторе, чтобы выразить матричные элементы в виде дробей.

Оценить

\ [\ begin {array} {cc} {\ left [\ begin {array} {ccc | c} 1 & 0 & 0 & — \ dfrac {2} {3} \\ 0 & 1 & 0 & \ dfrac {5} {2} \\ 0 & 0 & 1 & — 4 \ end {array} \ right] \ rightarrow} & {\ begin {align *} x + 0y + 0z & = — \ dfrac {2} {3} \\ y + 0z & = \ dfrac {5} {2 } \\ z & = -4 \ end {align *}} \ end {array} \]

Таким образом, решение, которое легко найти в правом столбце приведенной строковой формы матрицы, будет \ (\ left (- \ dfrac {2} {3}, \ dfrac {5} {2}, −4 \ справа) \).

Упражнение \ (\ PageIndex {3} \)

Решите систему уравнений.

\ [\ begin {align *} 4x-7y + 2z & = -5 \\ -x + 3y-8z & = -10 \\ -5x-4y + 6z & = 19 \ end {align *} \]

Ответ

Напишите расширенную матрицу для системы уравнений.

\ (\ left [\ begin {array} {ccc | c} 4 & -7 & 2 & -5 \\ -1 & 3 & -8 & -10 \\ -5 & -4 & 6 & 19 \ end {array} \ right] \)

На странице матриц калькулятора введите расширенную матрицу выше как матричную переменную \ ([A] \).

\ ([A] = \ left [\ begin {array} {ccc | c} 4 & -7 & 2 & -5 \\ -1 & 3 & -8 & -10 \\ -5 & -4 & 6 & 19 \ end {array} \ right] \)

Используйте в калькуляторе функцию rref (, вызывающую матричную переменную \ ([A] \).

rref ([A])

Используйте опцию MATH -> FRAC в калькуляторе, чтобы выразить матричные элементы в виде дробей.

Оценить

\ [\ begin {array} {cc} {\ left [\ begin {array} {ccc | c} 1 & 0 & 0 & -2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & \ dfrac {3} {2} \ end {array} \ right] \ rightarrow} & {\ begin {align *} x + 0y + 0z & = -2 \\ y + 0z & = 0 \\ z & = \ dfrac {3} {2} \ end {align *}} \ end {array} \]

Таким образом, решение, которое можно легко прочитать из правого столбца приведенной строковой формы матрицы, будет \ (\ left (-2, 0, \ dfrac {3} {2} \ right) \).

Пример \ (\ PageIndex {5} \): применение матриц \ (2 × 2 \) к финансам

Кэролайн инвестирует в общей сложности \ (12 000 долларов) в две муниципальные облигации, одна из которых выплачивает 10,5% годовых, а другая — 12%. Годовой процент, полученный по двум инвестициям в прошлом году, составил \ (1335 долларов). Сколько было вложено по каждой ставке?

Решение

У нас есть система двух уравнений с двумя переменными. Пусть \ (x = \) сумма, инвестированная под 10,5% годовых, а \ (y = \) сумма, инвестированная под 12%.

\ [\ begin {align *} x + y & = 12,000 \\ 0,105x + 0,12y & = 1,335 \ end {align *} \]

В качестве матрицы имеем

\ (\ left [\ begin {array} {cc | c} 1 & 1 & 12,000 \\ 0.105 & 0.12 & 1335 \ end {array} \ right] \)

Введите эту матрицу как матричную переменную \ ([A] \). Используйте функцию rref (, вызывающую матричную переменную \ ([A] \).

rref ([A])

\ (\ left [\ begin {array} {cc | c} 1 & 0 & 7000 \\ 0 & 1 & 5000 \ end {array} \ right] \)

Таким образом, \ ($ 7000 \) было инвестировано по ставке 10.5% годовых и \ (5000 долларов \) под 12% годовых.

Пример \ (\ PageIndex {6} \): применение матриц \ (3 × 3 \) к финансам

Ava инвестирует в общей сложности \ (10 ​​000 долларов США) в три счета, один из которых платит 5% годовых, другой — 8%, а третий — 9%. Годовой процент, полученный по трем инвестициям в прошлом году, составил \ (770 долларов). Сумма, вложенная под 9%, была вдвое больше, чем сумма, вложенная под 5%. Сколько было вложено по каждой ставке?

Решение

У нас есть система трех уравнений с тремя переменными.Пусть \ (x \) будет суммой, инвестированной под 5% годовых, пусть \ (y \) будет суммой, инвестированной под 8%, и пусть \ (z \) будет суммой, инвестированной под 9%. Таким образом,

\ [\ begin {align *} x + y + z & = 10,000 \\ 0,05x + 0,08y + 0,09z & = 770 \\ 2x-z & = 0 \ end {align *} \]

В качестве матрицы имеем

\ (\ left [\ begin {array} {ccc | c} 1 & 1 & 1 & 10,000 \\ 0,05 & 0,08 & 0,09 & 770 \\ 2 & 0 & -1 & 0 \ end {array} \ right] \)

Введите эту матрицу как матричную переменную \ ([A] \).Используйте функцию rref (, вызывающую матричную переменную \ ([A] \).

rref ([A])

\ (\ left [\ begin {array} {ccc | c} 1 & 0 & 0 & 3000 \\ 0 & 1 & 0 & 1000 \\ 0 & 0 & 1 & 6000 \ end {array} \ right] \)

Ответ: \ (3000 долларов \) вложены под 5%, \ (1000 долларов \) вложены под 8%, и \ (6000 долларов \) вложены под 9%.

Упражнение \ (\ PageIndex {4} \)

Небольшая обувная компания взяла ссуду в размере \ (1 500 000 долларов США) на расширение своих запасов.Часть денег была взята под 7%, часть — под 8%, часть — под 10%. Сумма займа под 10% в четыре раза превышала сумму займа под 7%, а годовая процентная ставка по всем трем займам составляла \ (130 500 долларов США). Используйте матрицы, чтобы найти сумму займа по каждой ставке.

Ответ

\ (150 000 долларов \) под 7%, \ (750 000 долларов \) под 8%, \ (600 000 долларов \) под 10%

Медиа

Получите доступ к этим онлайн-ресурсам, чтобы получить дополнительные инструкции и попрактиковаться в решении систем линейных уравнений с использованием исключения Гаусса.

Ключевые понятия

  • Расширенная матрица — это матрица, которая содержит коэффициенты и константы системы уравнений. См. Пример \ (\ PageIndex {1} \).
  • Матрица, дополненная постоянным столбцом, может быть представлена ​​как исходная система уравнений. См. Пример \ (\ PageIndex {2} \).
  • Мы можем использовать метод исключения Гаусса-Жордана для решения системы уравнений. См. Пример \ (\ PageIndex {4} \).
  • Многие реальные проблемы можно решить с помощью расширенных матриц.См. Пример \ (\ PageIndex {5} \) и Пример \ (\ PageIndex {6} \).

Авторы и авторство

.

Добавить комментарий

Ваш адрес email не будет опубликован.