Как решить систему уравнений методом гаусса: Онлайн калькулятор. Решение систем линейных уравнений. Метод Гаусса.

Содержание

в чем суть, решение системы уравнений, примеры с объяснением

Благодаря великим ученым было открыто множество эффективных теорем для работы со сложными математическими задачами. Один из таких примеров — метод Гаусса.

Метод Гаусса — что это такое

Метод Гаусса представляет собой методику эквивалентного преобразования исходной системы линейных уравнений в систему, решаемую существенно проще, чем исходный вариант.

Метод Гаусса используют для решения систем линейных алгебраических формул. Такой способ обладает рядом важных преимуществ:

  1. Нет необходимости сравнивать уравнения для оценки совместимости.
  2. Решение систем равенств, в которых число определителей совпадает или не совпадает с количеством неизвестных переменных.
  3. Поиск решений для уравнений с нулевым определителем.
  4. Сравнительно небольшое количество вычислительных операций для получения результата.

Основные определения и обозначения

Матрицы: определение и свойства

Такие системы являются наиболее удобным способом представления данных, с которыми впоследствии производят манипуляции. Матрица имеет вид прямоугольника для удобства расчетов. При использовании метода Гаусса работа осуществляется с треугольными матрицами, при записи которых применяется прямоугольник с нулями на тех местах, где числа отсутствуют. Часто нули не записывают, а только подразумевают.

Важным параметром матрицы является размер:

  • ширина — это количество строк, обозначают буквой m;
  • длину выражают числом столбцов, записывают буквой n.



Источник: bigpicture.ru

Размер матрицы будет записан в формате А m*n. В случае, когда m=n, матрица является квадратной, а m=n служит ее порядком. Номера строк и столбцов изменяются.

Определитель

Матрица обладает крайне важной характеристикой. Таким параметром является определитель. Данную величину рассчитывают с помощью диагонали. Для этого в матрице необходимо провести воображаемые диагональные линии. Затем следует найти произведение элементов, которые располагаются на этих диагоналях, а полученные значения суммировать таким образом:

  1. Если диагональ обладает наклоном в правую сторону, то знак «+».
  2. Для диагоналей, наклоненных влево, знак «–».



Источник: wp.com

Рассчитать определитель представляется возможным лишь в случае работы с квадратной матрицей.

Если необходимо определить данный параметр для прямоугольной матрицы, то следует выполнить следующие манипуляции:

  • из числа строк и числа столбцов выбрать наименьшее и обозначить его k;
  • отметить в матрице произвольным образом k столбцов и k строк.

Элементы, которые расположены на пересечении отмеченных столбцов и строк, образуют новую квадратную матрицу. В случае, когда определитель является числом, не равным нулю, то данный параметр будет обозначен как базисный минор первоначальной прямоугольной матрицы. Перед решением систем уравнений методом Гаусса полезно рассчитать определитель. Если данная характеристика равна нулю, то матрица имеет бесконечное множество решений либо не имеет их вовсе. В таком случае потребуется определить ранг матрицы.

Классификация систем

Ранг матрицы является распространенным понятием. Он обозначает максимальный порядок ее определителя, который не равен нулю. По-другому можно сказать, что ранг матрицы представляет собой порядок базисного минора. Исходя из данного критерия, СЛАУ классифицируют на несколько типов. В совместных системах, которые состоят лишь из коэффициентов, ранг основной матрицы совпадает с рангом расширенной. Для подобных систем характерно одно или множество решений. По этой причине совместные системы подразделяют на следующие типы:

  • определенные, обладающие одним решением, в которых наблюдается равенство ранга матрицы и количество неизвестных;
  • неопределенные;
  • обладающие бесконечным числом решений с рангом матрицы, который меньше количества неизвестных.

В несовместных системах ранги, характеризующие основную и расширенную матрицы, отличаются. С помощью метода Гаусса в процессе решения можно прийти либо к однозначному доказательству несовместности системы, либо к решению общего вида для системы, обладающей бесконечным количеством решений.



Источник: asiaplustj.info

Основные правила и разрешаемые преобразования при использовании метода Гаусса

Перед тем, как решать систему, необходимо ее упростить. На данном этапе выполняют элементарные преобразования, которые не влияют на конечный результат. Определенные манипуляции справедливы лишь в случае матриц, исходниками которых являются СЛАУ. Список элементарных преобразований:

  1. Перестановка строк. При перемене записей в системе местами ее решение не меняется. Можно менять место строк в матрице, учитывая столбец со свободными членами.
  2. Произведение всех элементов строк и некоторого коэффициента. Сокращаются большие числа в матрице, и исключаются нули. При этом множество решений сохраняется без изменений, а дальнейшие манипуляции существенно упрощаются. Важным условием является отличие от нуля коэффициента.
  3. Удаление строк, которые содержат пропорциональные коэффициенты. Данное преобразование следует из предыдущего пункта. При условии, что две или более строк в матрице обладают пропорциональными коэффициентами, то при произведении или делении одной из строк на коэффициент пропорциональности получают две или более абсолютно одинаковые строки. В этом случае лишние строки исключают, оставляя только одну.
  4. Удаление нулевой строки. Бывают случаи, когда в процессе манипуляций с уравнениями возникает строка, все элементы которой, в том числе свободный член, равны нулю. Нулевую строку допустимо исключать из матрицы.
  5. Суммирование элементов одной строки с элементами другой, умноженными на некоторый коэффициент, в соответствующих столбцах. Данное преобразование имеет наиболее важное значение из всех перечисленных.

Особенности использования метода Гаусса для решения СЛАУ

На первом этапе система уравнений записывается в определенном виде. Пример выглядит следующим образом:



Источник: wp.com

Коэффициенты необходимо представить в виде таблицы. С правой стороны в отдельном столбце записаны свободные члены. Данный блок отделен для удобства решения. Матрицу со столбцом со свободными членами называют расширенной.



Источник: wp.com

Затем основная матрица с коэффициентами приводится к верхней треугольной форме. Данное действие является ключевым моментом при решении системы уравнений с помощью метода Гаусса. По итогам преобразований матрица должна приобрести такой вид, чтобы слева внизу находились одни нули:



Источник: wp.com

При записи новой матрицы в виде системы уравнений можно отметить, что последняя строка уже содержит значение одного из корней, которое в дальнейшем подставляется в уравнение выше для нахождения следующего корня и так далее. Подобное описание позволяет разобраться в методе Гаусса в общих чертах.

Обратный и прямой ход метода Гаусса

В первом случае необходимо представить запись расширенной матрицы системы. При выполнении обратного метода Гаусса далее в главную матрицу добавляют столбец со свободными членами.



Источник: wp.com

Суть такого способа заключается в выполнении элементарных преобразований, по итогам которых данная матрица приводится к ступенчатому или треугольному виду. В этом случае над или под главной диагональю матрицы располагаются только нули.



Источник: wp.com

Варианты дальнейших действий:

  • перемена строк матрицы местами, при наличии одинаковых или пропорциональных строк их можно исключить, кроме одной;
  • деление либо умножение строки на любое число, не равное нулю;
  • удаление нулевых строк;
  • добавление строки, умноженной на число, не равное нулю, к другой строке.

Имея преобразованную систему с одной неизвестной Xn, которая становится известной, можно выполнить поиск в обратном порядке остальных неизвестных с помощью подстановки известных х в уравнения системы, вплоть до первого. Данный способ называют обратным методом Гаусса.

Примеры решений с объяснением

Пример 1

Требуется решить с помощью метода Гаусса систему линейных уравнений, которая выглядит следующим образом:



Источник: wp.com

Решение

Необходимо записать расширенную матрицу:



Источник: wp.com

Затем нужно выполнить преобразования. В результате матрица должна приобрести треугольный вид. Для этого следует умножить первую строку на (3) и умножить вторую строку на (-1). В результате суммирования второй и первой строк получается следующее:



Источник: wp.com

Далее следует умножить третью строку на (-1). После добавления третьей строки ко второй получаем следующие преобразования:



Источник: wp.com

После этого необходимо умножить первую строку на (6) и вторую строку на (13). Далее следует добавить вторую строку к первой:



Источник: wp.com

После того, как система преобразована, остается вычислить неизвестные:

\(x_{3}=\frac{98}{49}=2\)

\(x_{2}=\frac{14-7x_{3}}{6}=\frac{14-7*2}{6}=0\)

\(x_{3}=\frac{-9+5x_{2}+6x_{3}}{3}=\frac{-9+5*0+6*2}{3}=1\)

Данный пример демонстрирует единственное решение системы.



Источник: supertics.com

Пример 2

Необходимо решить систему уравнений, которая выглядит следующим образом:



Источник: wp.com

Решение

Необходимо составить матрицу:



Источник: wp.com

Согласно методу Гаусса уравнение первой строки по итогам преобразований не меняется. Удобнее, когда левый верхний элемент матрицы обладает наименьшим значением. В таком случае первые элементы остальных строк после преобразований будут равны нулю. Таким образом, составленная матрица будет решаться проще, если на место первой строки поставить вторую:

вторая строка:

\(k = (-a_{21} /a_{11}) = (-3/1) = -3\)

\(a»_{21} = a_{21} + k×a_{11} = 3 + (-3)×1 = 0\)

\(a» _{22} = a_{22} + k×a _{12} = -1 + (-3)×2 = -7\)

\(a»_{ 23} = a_{23} + k×a_{13} = 1 + (-3)×4 = -11\)

b» 2 = b 2 + k×b 1 = 12 + (-3)×12 = -24

третья строка: 

\(k = (-a_{31} /a_{11}) = (-5/1) = -5\)

\(a»_{31} = a_{31} + k×a_{11} = 5 + (-5)×1 = 0\)

\(a»_{32} = a_{32} + k×a_{12} = 1 + (-5)×2 = -9\)

\( a»_{33} = a_{33} + k×a_{13} = 2 + (-5)×4 = -18\)

\( b»_3 = b_3 + k×b_1 = 3 + (-5)×12 = -57\)

Матрица с промежуточными результатами манипуляций будет иметь следующий вид:



Источник: wp. com

Благодаря некоторым операциям можно придать матрице наиболее удобный вид. К примеру, вторую строку можно избавить от всех «минусов» путем умножения каждого элемента на «-1». Можно заметить, что для третьей строки характерны все элементы, кратные трем. В этом случае строка сокращается с помощью произведения каждого элемента на «-1/3». Минус позволит удалить отрицательные значения.



Источник: wp.com

Далее следует приступить к манипуляциям со второй и третьей строками. Необходимо суммировать третью и вторую строки. Вторая строка при этом умножается на такой коэффициент, при котором элемент а 32 будет равен нулю.

\(k = (-a_{32} /a_{22}) = (-3/7) = -3/7\)

В случае, когда некоторые преобразования приводят в результате к получению не целого числа, следует оставить его в этом виде. Таким образом, вычисления будут более точными. Затем при получении ответов можно определиться с его дальнейшем округлением или переводом в другую форму записи.

\(a»_{32} = a_{32} + k×a_{22} = 3 + (-3/7)×7 = 3 + (-3) = 0\)

\(a»_{33} = a_{33} + k×a_{23} = 6 + (-3/7)×11 = -9/7\)

\(b»_3 = b_3 + k×b_2 = 19 + (-3/7)×24 = -61/7\)

Преобразованная матрица будет иметь следующий вид:



 

 

Матрица обладает ступенчатым видом. Дальнейшие преобразования с помощью метода Гаусса нецелесообразны. В этом случае можно удалить из третьей строки общий коэффициент «-1/7».



Источник: wp.com

Затем необходимо представить запись матрицы в виде системы уравнений для вычисления корней.

x + 2y + 4z = 12 (1)

7y + 11z = 24 (2)

Найти корни можно обратным методом Гаусса. Уравнение (3) содержит значение z:

y = (24 — 11×(61/9))/7 = -65/9

С помощью первого уравнения можно определить х:

x = (12 — 4z — 2y)/1 = 12 — 4×(61/9) — 2×(-65/9) = -6/9 = -2/3

Подобная система является совместной и определенной, для которого характерно единственное решение. Ответ будет следующим:

x 1 = -2/3, y = -65/9, z = 61/9.

Метод Гаусса предполагает последовательное исключение неизвестных. Методика справедлива в случае решения квадратных систем линейных алгебраических уравнений. Несмотря на простоту метода, многие студенты сталкиваются с некоторыми трудностями в процессе поиска правильного решения. Это связано с наличием знаков «+» и «-». Поэтому для решения СЛАУ требуется проявить внимательность. А получить квалифицированную помощь можно на ресурсе Феникс.Хелп.

Решение уравнений методом Гаусса | matematicus.ru

С помощью метода Гаусса можно решить любую систему линейных уравнений с различным числом уравнений и неизвестных переменных. И именно этим свойством этот метод превосходит матричный метод и метод Крамера.

Суть метода состоит в приведении системы линейных уравнений к ступенчатому (треугольному) виду за счет последовательного исключения неизвестных. Затем её решения с помощью обратной подстановки.


Допустимые преобразования матрицы:

  1. Перестановка местами двух строк или двух столбцов;
  2. Умножение строки на число, которое не равно 0;
  3. Прибавление одной строки к другой.
  4. Исключение или добавление нулевой строки

Допустим, дана система линейных алгебраических уравнений с четырьмя уравнениями и четырьмя неизвестными.

Составим расширенную матрицу СЛАУ:

Затем первое уравнение СЛАУ делим на a11.  При этом a11≠0, если равно нуля, то переставляем две строки или два столбца местами так, чтобы избавится от нуля. После полученное уравнение умножаем на a21 и вычитаем из второго уравнения, дальше, умножаем на a31 и вычитаем из третьего уравнения и т.д.

Также поступаем и с оставшемся уравнениями, т.е. со вторым, третьем и четвёртым. В итоге должна получится матрица ступенчатого или треугольного вида.

Система уравнений примет вид

Такую систему элементарно решить обратным ходом, т.е. последовательным решением уравнений от нижнего к верхнему.

Рассмотрим наиболее подробно метод Гаусса при решении СЛАУ на практике.

Пример 1

Решить методом Гаусса систему уравнений

Решение

Составим расширенную матрицу системы уравнений:

Первую строку разделим на a11, но так как в этой строке a11=0, то необходимо поменять строку у которой первый элемент не равен нулю. Выберем по модулю наибольшей элемент, это a41=2 Поэтому поменяем первую и четвёртую строки местами.

Получаем:

Первую строку разделим на a11=2. Получим матрицу:

Умножаем элементы первой строки на -1 и прибавляем к элементам второй строк. Получим матрицу:

Умножаем элементы первой строки на -1 и прибавляем к элементам третьей строки.

Четвёртую строку оставляем без изменений, так как её первый элемент равен нулю.

Теперь первый столбец не трогаем.

Начинаем повторять действия, которые применяли ранее.

Второе уравнение разделим на a22=-1/2, тогда

Умножаем элементы второй строки на -1/2 и прибавляем к элементам третьей строки.

Умножаем элементы второй строки на -1 и прибавляем к элементам четвёртой строки.

Первый и второй столбец не трогаем.

Третьей столбец разделим на 2.

Умножаем элементы третьей строки на -1 и прибавляем к элементам четвёртой строки.

Получаем ступенчатую систему алгебраических уравнений:

Отсюда, решая систему снизу вверх, получаем корни системы уравнений


Приведём простой пример краткой записи решения СЛАУ методом Гаусса

Пример 2

Решить систему линейных уравнений с тремя неизвестными методом Гаусса.

Решение

Составим расширенную матрицу системы линейных уравнений .

Следовательно, искомая система может быть представлена в ступенчатом виде:

Решая последовательно уравнение, получаем:

Ответ: z = 3; y = 2; x = 1

Решение систем уравнений методом Гаусса | Проект по алгебре (8 класс) на тему:

МАОУ-лицей № 13 п. Краснообск, Рязанова М. «Решение систем уравнений методом Гаусса»

Муниципальное автономное общеобразовательное учреждение

        Новосибирского района Новосибирской области –

      лицей № 13 п. Краснообск

Решение систем уравнений

методом Гаусса

Работу выполнила:

Рязанова Мария

8Б класс

Руководитель:

учитель математики

Черемисина Галина Артуровна

                                                                                                                           

   

2018

Содержание:

  1. Введение…….…………………………………..…………….…..3
  2.      Немного из биографии Гаусса……………………………………4
  3. Понятие матрицы и  её преобразования ……………………….…5
  4. Решение двойной системы уравнений………………….……….7
  5. Решение тройной системы……………………………………….8
  6.  Заключение ………….…………………………….……………..9
  7. Используемые ресурсы……………………………………….…10

Введение

Одной из основных задач алгебры является решение систем линейных алгебраических уравнений. Большая  часть методов решения различных задач включает в себя решение систем линейных уравнений как один из шагов соответствующего алгоритма. Достаточно известным методом решения систем линейных уравнений является метод Гаусса. Это  метод также называют методом последовательного исключения неизвестных Гаусса, который является одним из наиболее универсальных и эффективных методов решения линейных систем уравнений,  известный в различных вариантах уже более 2000 лет.

Процесс решения по методу Гаусса состоит из двух этапов, называемых прямым и обратным ходом. На первом этапе система приводится к треугольному виду, а на втором (обратный ход) идет последовательное определение неизвестных из указанной треугольной системы.

Метод Гаусса — один из основных результатов линейной алгебры и аналитической геометрии, к нему сводятся множество других теорем и методов линейной алгебры. Поэтому поиск решения системы линейных уравнений методом Гаусса имеет не только важное значение, но и является частью алгоритма решения многих задач, что позволяет говорить об актуальности изучения метода Гаусса. В отличие от матричного метода и метода Крамера, метод Гаусса может быть применен к системам линейных уравнений с произвольным числом уравнений и неизвестных. 

Цели и задачи

Цели проекта: ознакомить и научить одноклассников решать системы уравнений методом Гаусса.

Задачи проекта:

  • подобрать информацию по данной теме;
  • изучить метод Гаусса;
  • научиться самостоятельно решать системы уравнений методом Гаусса;
  • рассказать историю появления метода Гаусса, о самом Гауссе и его научных трудах;
  • показать преобразования  матрицы одноклассникам;
  • подобрать и решить примеры систем уравнений этим методом;
  • применить метод Гаусса при решении систем уравнений вместе с одноклассниками.

Немного из биографии Гаусса

Иога́нн Карл Фри́дрих Га́усс (1777 — 1855) — немецкий математик, механик, физик, астроном и геодезист. Считается одним из величайших математиков всех времён, «королём математиков».

С именем Гаусса связаны фундаментальные исследования почти во всех основных областях математики: в алгебре, теории чисел, дифференциальной и неевклидовой геометрии,  теории вероятностей, а также в механике, астрономии, физике и геодезии.

Гаусс чрезвычайно строго относился к своим печатным трудам и никогда не публиковал даже выдающиеся результаты, если считал свою работу над этой темой незавершённой. Изучение архива Гаусса показало, что он медлил с публикацией ряда своих открытий, и в результате его опередили другие математики. Вот неполный перечень упущенных им трудов.

  • Неевклидова геометрия
  • Эллиптические функции
  • Метод наименьших квадратов
  • Закон распределения простых чисел

Метод Гаусса

Метод Гаусса — классический метод решения системы линейных алгебраических уравнений (СЛАУ). Назван в честь немецкого математика Карла Фридриха Гаусса. Это метод последовательного исключения переменных, при котором с помощью элементарных преобразований система уравнений приводится к равносильной системе треугольного вида.  Затем последовательно, начиная с последних (по номеру), находятся все переменные системы. Хотя в настоящее время данный метод повсеместно называется методом Гаусса, он был известен и до К.  Ф. Гаусса. Первое известное описание данного метода — в китайском трактате «Математика в девяти книгах».

Понятие матрицы, её преобразования

Матрица (математика) — прямоугольная таблица элементов.

         пример матрицы  

Со строками матрицы мы можем выполнять следующие операции: деление; умножение на число, отличное от нуля; сложение; вычитание.

Существуют следующие элементарные преобразования: 

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки: 

            

2) Если в матрице есть пропорциональные (или одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу.

В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них:  

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следует удалить. Нулевая строка – это строка, в которой одни нули.

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля. Рассмотрим, например, матрицу: 

Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2:

                                   

Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) К строке матрицы можно прибавить другую строку, умноженную на число, отличное от нуля.

Строка, которую ПРИБАВЛЯЛИ – не изменилась. Всегда меняется строка, К КОТОРОЙ  ПРИБАВЛЯЮТ.

Цель элементарных преобразований – привести матрицу к ступенчатому виду: 

Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид. 

Решение системы уравнений с двумя переменными    

      Решим данную систему методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы,

которая представляет из себя коэффициенты чисел:

  1. Умножаем первую строку на 2
  2. К первой строке прибавляем вторую
  3. Сокращаем первую строку на 5
  4. Умножаем первую строку на 3
  5. Из второй строки вычитаем первую
  6. Первую строку сокращаем на 3, а вторую на 4

                                                                                        

                                                                                                        

            

    Ответ:

Решение системы уравнений с тремя переменными    

  1. Вычитаем из первой строки вторую
  2. Вычитаем из первой строки первую строку, умноженную на 2. Из третьей строки вычитаем первую.

             

  1. Третью строку умножаем на -1.
  2. Ко второй строке прибавляем третью, умноженную на 7.
  1. Вторую строку делим на -30.
  2. Из первой строки вычитаем третью, умноженную на 3.
  1. Из первой строки вычитаем вторую, умноженную на 13.
  2. К третьей строке прибавляем вторую, умноженную на 7. 

                        — решение системы уравнений

       

    Ответ:

Заключение

Поработав с данным методом, я ощутила преимущество его применения по отношению к классическим приёмам решения систем уравнений. Надеюсь, знание этого метода мне поможет в будущем быстро решать системы уравнений с несколькими переменными, а также осуществлять проверку решений классическими способами.

Одной из целей моего проекта является научить одноклассников решать системы уравнений методом Гаусса, для чего на спецкурсе по математике я показала и рассказала им о своей работе и предложила совместно решить несколько систем, состоящих из двух строк, методом Гаусса. Ребят заинтересовал данный метод, они с интересом слушали меня, а потом совместно решали системы уравнений данным методом.  Далее предложены системы уравнений и фотографии с нашего занятия.

   Ответ:     Ответ:  

    Ответ:          Ответ:  

 Ответ:             Ответ:

   Ответ:

 

У меня получилось самой освоить данный метод и передать свои знания одноклассникам. Таким образом,  поставленные мною цели и задачи выполнены. И ещё метод Гаусса прост тем, как мне кажется, что для его освоения не требуется много знаний. А также для матриц ограниченного размера метод Гаусса менее трудоёмкий по сравнению с другими методами, поэтому в будущем я планирую его активно применять при решении систем уравнений.

Используемые ресурсы:

Решение систем линейных уравнений методом Гаусса


Теория

Классическим методом решения систем линейных алгебраических уравнений является метод Гаусса (метод исключений Гаусса).
Суть метода — это последовательное исключение неизвестных, т.е. когда с помощью элементарных
преобразований система уравнений приводится к равносильной системе ступенчатого
вида, из которой последовательно, начиная с последних переменных, находятся все остальные переменные.

Матрица, составленная из все ai,j, называется основной матрицей системы. Если
к этой матрице добавить вектор столбец, составленный из bi, то такая матрица называется расширенной
матрицей системы.

Теорема Кронекера-Капелли (условие совместности системы): системат совместна тогда и только тогда,
ранг ее основной матрицы равен рангу ее расширенной матрицы.

Алгоритм решения СЛАУ методом Гаусса подразделяется на два этапа:

  • На первом этапе (прямой ход) система приводится ступенчатой или треугольной форме. Вычтем из второго
    уравнения системы первое, умноженное на такое число, чтобы обнулился коэффициент при x1.
    Затем таким же образом вычтем первое уравнение из третьего, четвертого и т.д. Тогда исключаются все
    коэффициенты первого столбца, лежащие ниже главной диагонали. Затем при помощи второго уравнения
    исключим из третьего, четвертого и т.д. уравнений коэффициенты второго столбца. Последовательно
    продолжая этот процесс, исключим из матрицы все коэффициенты, лежащие ниже главной даигонали.
  • На втором этапе (обратный ход) выражаем все получившиеся базисные переменные через небазисные и
    построим фундаментальную систему решений. Если все переменные являются базисными, то получим
    единственное решение системы линейных уравнений. Эта процедура начинается с последнего уравнения,
    из которого выражают соответствующую базисную переменную (а она там всего одна) и подставляют
    в предыдущие уравнения, и так далее, поднимаясь по «ступенькам» наверх. Каждой строчке
    соответствует ровно одна базисная переменная, поэтому на каждом шаге, кроме последнего (самого верхнего),
    ситуация в точности повторяет случай последней строки.

Решение систем линейных уравнений методом Гаусса

1. Решение систем линейных уравнений методом Гаусса

2. Метод Гаусса – это метод последовательного исключения переменных

• Систему уравнений приводят к
эквивалентной ей системе с
треугольной матрицей. Это называется
прямым ходом.
• Из полученной треугольной системы
переменные находят с помощью
последовательных подстановок. Это
называется обратным ходом.

3. При выполнении прямого хода используют следующие преобразования:

1. Умножение или деление коэффициентов
свободных членов на одно и то же число;
2. Сложение и вычитание уравнений;
3. Перестановка уравнений системы;
4. Исключение из системы уравнений, в
которых все коэффициенты при
неизвестных и свободные члены равны
нулю.

4. Решить систему уравнений методом Гаусса

x y 5
2 x y 7
Нужно записать расширенную матрицу системы
1 1 5
2 1 7
Вертикальная черта внутри матрицы не несёт
никакого математического смысла – это
просто отчеркивание для удобства
оформления.
Матрица системы – это матрица,
составленная только из
коэффициентов при неизвестных.
Расширенная матрица системы – это
та же матрица системы плюс
столбец свободных членов, в
данном случае.

6. Решение. Умножим первую строку на (-2)

1 1 5
2 1 7
2 2 10
2 1 7

7. ко второй строке прибавим первую строку умноженную на -2

1 1 5
2 1 7
2 2 10
0 3 3
2 2 10
2 1 7

8. Разделим опять первую строку на (-2)

1 1 5
2 1 7
2 2 10
0 3 3
2 2 10
2 1 7
1 1 5
0 3 3
строка, которую ПРИБАВЛЯЛИ – не изменилась.
Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ.

9. Цель элементарных преобразований –

Цель элементарных преобразований

привести матрицу к ступенчатому виду.
Сам термин «ступенчатый вид» не
вполне теоретический, в научной и
учебной литературе он часто
называется трапециевидный
вид или треугольный

10. В результате элементарных преобразований получена эквивалентная исходной система уравнений

В результате элементарных преобразований
получена эквивалентная исходной система уравнений
x y 5
2 x y 7
x y 5
y 1
Выполняем обратный ход, т.е. подстановку в первое
уравнение вместо у,
х =-5+у
х=-5+1
х=-4
Ответ: (-4; 1)

11. Решить систему уравнений методом Гаусса

3 x 2 y z 4
2 x y 3z 9
x 2 y 2z 3
Решение.
Переставим третье уравнение на место первого и запишем расширенную
матрицу:
x 2 y 2z 3
3 x 2 y z 4
2 x y 3z 9
1 2 2 3
3 2 1 4
2 1 3 9

12. Чтобы в первом столбце получить а2=а3=0, умножим 1-ю строку сначала на 3, а затем на 2 и вычтем результаты из 2-й и 3-й строк

1 2 2 3
3 2 1 4
2 1 3 9
1 2 2 3
0 8 7 5
0 3 1 3

13. Разделим 2-ю строку на 8, полученные результаты умножим на 3 и вычтем из 3-й строки

1 2 2 3
3 2 1 4
2 1 3 9
1 2 2 3
0 1 7 5
8 8
0 3 1 3
1 2 2 3
0 8 7 5
0 3 1 3
1 2 2 3
0 3 21 15
8
8
0 3 1 3
1 2 2
3
21
15
0
3
8
8
39
0 0 13
8
8

14. i + ai2X2 H —— h alnxn = bi a22 x2 t ‘• * T a2n xn- » am2®2 + •• + ​​GmUn = bn • Где (t, j = 2, m) — новое значение коэффициента, Правильная часть получена после первого шага. Аналогичным образом исключают неизвестные X2 из всех уравнений системы, учитывая основной элемент <4UФ0, исключая первое и второе.

Примеры решения и задачи с методическими указаниями

Решение задач Лекции
Сборник и задачник Учебник
  • Продолжайте этот процесс как можно больше. Если процесс приведения системы (1) к постепенной форме показывает нулевые уравнения, то есть уравнения вида 0 = 0, они отбрасываются. Если отображается уравнение вида 0 = aΦ0>, это указывает на несовместимость системы. Второй шаг (обратный) — это решение ступенчатой ​​системы. В общем, существует множество решений системы градуированных уравнений. В последнем уравнении этой системы первое неизвестное xb представлено оставшимися неизвестными (£ fc + 1, …, xn). Затем подставьте значение Xk в предпоследнее уравнение системы и выразите Xk- \ через a: n).

Тогда найди Xk-2> … Примечания: 1. Если система ступеней представляет собой треугольник, то есть k = 7i, исходная система имеет единственное решение. Найти xn из последнего уравнения и из второго уравнения xn-1) из последнего далее в систему всех остальных неизвестных [xn — 2? ••• yXi). 2.

Прибавьте произвольные значения к свободным неизвестным …, xn), получите бесконечное число решений для системы.

Людмила Фирмаль

На практике удобнее выполнять все базовые преобразования для строк, используя матрицу расширения, а не систему (1). Удобно, если коэффициент aj равен 1 (переместить уравнение на место или отделить обе стороны уравнения все ф 1). Пример: 1) Решить систему, используя метод Гаусса. 2x \ -x-2 + 3×3-5 # 4 = 1, X \ -X2-bx3 = 2 3xi-2×2-2hz-5×4 = 3, 7xi-5×2-9hz-10×4 = 8.

♦ В результате базового преобразования в расширенную матрицу системы / 2-1 3 «-5 1 \ 1-1-5 0 2 3 -2 -2 -5 3 \ 7-5-9-10 8 / 1 -1 -5 0 2 \ 0 1 13 -5 -3 0 1 13 -5 -3 х0 2 26-10-6 / ^ 1 -1 -5 0 2 \ 2-13 -5 1 3 -2 -2 -5 3 ^ 7-5-9-10 8J -1 О 1 Ах ах \ 0 O -5 0 ‘2 л 13-5-3 LLC O O O y Оригинальная система была уменьшена до ступенчатой системы. xi-x2-5xs = 2 x2 + 13 Гц + 5×4 = -3. Итак, общее решение системы: x2 = -5×4-13x-X \ = -5×4-8×3-1. 1, x2 = x3 = 0, x4 = 0. 2) Решить систему, используя метод Гаусса. — = О, -3, ♦ X1 + x2 + x3 = 3, 2xi + 3×2 + 3×3 = 7, 3X] + X2 + x3 = 5, 5xi-x2-. Xs = 3. ♦ Выполнять базовые преобразования в строках расширенной матрицы системы.

/ 11 1 3 \ / 11 1 3 \ / 1 1 1 3 \ / 1 1 1 3 \ 2337 010 1 0101 0101 31 15 ~ 0-2—2-4 ~ 0112 ~ 0011 \ 5 -1 -1 3 / \ 0 -b -6 -12 / \ 0 I 1 2 / \ 0 0 0 0 / Полученная матрица соответствует системе + X-2 + xs = 3, X-2 = 1 Xb = 1. Выполнение обратного хода приводит к £ 3 = 1, x2-1, Xj = 1.

Решение системы линейных уравнений методом Гаусса в MS Excel

На днях понадобилось найти корни системы линейных уравнений методом Гаусса в Microsoft Excel. Готовый алгоритм решения можно найти в книге Гарнаева «Использование Excel и VBA в экономике и финансах», но объяснение там очень скудное и не совсем понятное. Постараюсь описать подробней для тех, кому может понадобиться этот алгоритм.

Лирическое отступление: в тексте будет предлагаться ввести в диапазон ячеек формулу вида: {=A1:B3+$C$2:$C$3} и т.п., это так-называемые «формулы массива» (формула, выполняющая несколько вычислений над одним или несколькими наборами значений, а затем возвращающая один или несколько результатов. Формулы массива заключены в фигурные скобки { }). Microsoft Excel автоматически заключает ее в фигурные скобки ( { } ). Для введения такого типа формул необходимо выделить весь диапазон, куда нужно вставить формулу, в первой ячейке ввести формулу без фигурных скобок (для примера выше — =A1:B3+$C$2:$C$3) и нажать Ctrl+Shift+Enter.

Пускай имеем систему линейных уравнений:

1. Запишем коэффициенты системы уравнений в ячейки A1:D4 а столбец свободных членов в ячейки E1:E4. Если в ячейке A1 находится 0, необходимо поменять строки местами так, чтоб в этой ячейке было отличное от ноля значение. Для большей наглядности можно добавить заливку ячеек, в которых находятся свободные члены.

2. Необходимо коэффициент при x1 во всех уравнениях кроме первого привести к 0. Для начала сделаем это для второго уравнения. Скопируем первую строку в ячейки A6:E6 без изменений, в ячейки A7:E7 необходимо ввести формулу: {=A2:E2-$A$1:$E$1*(A2/$A$1)}. Таким образом мы от второй строки отнимаем первую, умноженную на A2/$A$1, т.е. отношение первых коэффициентов второго и первого уравнения. Для удобства заполнения строк 8 и 9 ссылки на ячейки первой строки необходимо использовать абсолютные (используем символ $).

3. Копируем введенную формулу формулу в строки 8 и 9, таким образом избавляемся от коэффициентов перед x1 во всех уравнениях кроме первого.

4. Теперь приведем коэффициенты перед x2 в третьем и четвертом уравнении к 0. Для этого скопируем полученные 6-ю и 7-ю строки (только значения) в строки 11 и 12, а в ячейки A13:E13 введем формулу {=A8:E8-$A$7:$E$7*(B8/$B$7)}, которую затем скопируем в ячейки A14:E14. Таким образом реализуется разность строк 8 и 7, умноженных на коэффициент B8/$B$7. Не забываем проводить перестановку строк, чтоб избавиться от 0 в знаменателе дроби.

5. Осталось привести коэффициент при x3 в четвертом уравнении к 0, для этого вновь проделаем аналогичные действия: скопируем полученные 11, 12 и 13-ю строки (только значения) в строки 16-18, а в ячейки A19:E19 введем формулу {=A14:E14-$A$13:$E$13*(C14/$C$13)}. Таким образом реализуется разность строк 14 и 13, умноженных на коэффициент C14/$C$13. Не забываем проводить перестановку строк, чтоб избавиться от 0 в знаменателе дроби.

6. Прямая прогонка методом Гаусса завершена. Обратную прогонку начнем с последней строки полученной матрицы. Необходимо все элементы последней строки разделить на коэффициент при x4. Для этого в строку 24 введем формулу {=A19:E19/D19}.

7. Приведем все строки к подобному виду, для этого заполним строки 23, 22, 21 следующими формулами:
23: {=(A18:E18-A24:E24*D18)/C18} — отнимаем от третьей строки четвертую умноженную на коэффициент при x4 третьей строки.
22: {=(A17:E17-A23:E23*C17-A24:E24*D17)/B17} — от второй строки отнимаем третью и четвертую, умноженные на соответствующие коэффициенты.
21: {=(A16:E16-A22:E22*B16-A23:E23*C16-A24:E24*D16)/A16} — от первой строки отнимаем вторую, третью и четвертую, умноженные на соответствующие коэффициенты.
Результат (корни уравнения) вычислены в ячейках E21:E24.

UPDATE от 25 апреля 2012 г. Выкладываю xls-файл с решением линейных уравнений методом Гаусса в Microsoft Excel:

Решающих систем с исключением Гаусса — College Algebra

Цели обучения

В этом разделе вы:

  • Запишите расширенную матрицу системы уравнений.
  • Напишите систему уравнений из расширенной матрицы.
  • Выполняет операции со строками в матрице.
  • Решите систему линейных уравнений с помощью матриц.

Немецкий математик Карл Фридрих Гаусс (1777–1855).

Карл Фридрих Гаусс жил в конце 18 — начале 19 века, но до сих пор считается одним из самых плодовитых математиков в истории.Его вклад в математику и физику охватывает такие области, как алгебра, теория чисел, анализ, дифференциальная геометрия, астрономия и оптика. Его открытия в области теории матриц изменили способ работы математиков за последние два столетия.

Мы впервые столкнулись с методом исключения Гаусса в системах линейных уравнений: две переменные. В этом разделе мы еще раз вернемся к этой технике решения систем, на этот раз с использованием матриц.

Написание расширенной матрицы системы уравнений

Матрица может служить средством представления и решения системы уравнений.Чтобы выразить систему в матричной форме, мы извлекаем коэффициенты переменных и констант, и они становятся элементами матрицы. Мы используем вертикальную линию, чтобы отделить записи коэффициентов от констант, по сути заменяя знаки равенства. Когда система написана в такой форме, мы называем ее расширенной матрицей.

Например, рассмотрим следующую систему уравнений.

Мы можем записать эту систему в виде расширенной матрицы:

Мы также можем написать матрицу, содержащую только коэффициенты.Это называется матрицей коэффициентов.

Система уравнений три на три, например

имеет матрицу коэффициентов

и представлена ​​расширенной матрицей

Обратите внимание, что матрица написана так, что переменные выстраиваются в свои собственные столбцы: члены x идут в первый столбец, y -термы во втором столбце и z -термы в третьем столбце. Очень важно, чтобы каждое уравнение было написано в стандартной форме, чтобы переменные совпадали.Если в уравнении отсутствует член переменной, коэффициент равен 0.

Для данной системы уравнений напишите расширенную матрицу.

  1. Запишите коэффициенты членов x как числа в первом столбце.
  2. Запишите коэффициенты членов y в виде чисел во втором столбце.
  3. Если есть z -термин, запишите коэффициенты в виде чисел в третьем столбце.
  4. Нарисуйте вертикальную линию и напишите константы справа от нее.

Написание расширенной матрицы для системы уравнений

Напишите расширенную матрицу для данной системы уравнений.

Расширенная матрица отображает коэффициенты переменных и дополнительный столбец для констант.

Запишите расширенную матрицу данной системы уравнений.

Написание системы уравнений из расширенной матрицы

Мы можем использовать расширенные матрицы, чтобы помочь нам решать системы уравнений, потому что они упрощают операции, когда системы не обременены переменными.Однако важно понимать, как переключаться между форматами, чтобы поиск решений был более плавным и интуитивно понятным. Здесь мы будем использовать информацию в расширенной матрице, чтобы записать систему уравнений в стандартной форме.

Напишите систему уравнений из расширенной матрицы.

Выполнение операций со строками в матрице

Теперь, когда мы можем писать системы уравнений в форме расширенной матрицы, мы рассмотрим различные операции со строками, которые могут выполняться с матрицей, такие как сложение, умножение на константу и перестановка строк.

Выполнение строковых операций над матрицей — это метод, который мы используем для решения системы уравнений. Чтобы решить систему уравнений, мы хотим преобразовать матрицу в форму строки-эшелона, в которой есть единицы вниз по главной диагонали от верхнего левого угла до нижнего правого угла и нули в каждой позиции ниже главной диагонали. как показано.

Мы используем операции со строками, соответствующие операциям с уравнениями, чтобы получить новую матрицу, эквивалентную строкам в более простой форме.Вот рекомендации по получению формы рядного эшелона.

  1. В любой ненулевой строке первым ненулевым числом является 1. Оно называется ведущим 1.
  2. Любые нулевые строки помещаются внизу матрицы.
  3. Любая ведущая 1 находится ниже и правее предыдущей ведущей 1.
  4. Любой столбец, в котором в начале стоит 1, имеет нули во всех остальных позициях в столбце.

Чтобы решить систему уравнений, мы можем выполнить следующие операции со строками, чтобы преобразовать матрицу коэффициентов в форму ряда строк и выполнить обратную подстановку, чтобы найти решение.

  1. Поменяйте местами ряды. (Обозначение 🙂
  2. Умножить строку на константу. (Обозначение 🙂
  3. Добавить произведение одной строки на константу к другой строке. (Замечание:

Каждая из строковых операций соответствует операциям, которые мы уже научились решать системы уравнений с тремя переменными. С помощью этих операций есть несколько ключевых шагов, которые быстро достигнут цели написания матрицы в виде эшелона строк. Чтобы получить матрицу в виде эшелона строк для поиска решений, мы используем метод исключения Гаусса, который использует операции со строками для получения 1 в качестве первой записи, чтобы строку 1 можно было использовать для преобразования оставшихся строк.

Исключение по Гауссу

Метод исключения Гаусса относится к стратегии, используемой для получения матрицы в виде строки-эшелона. Цель состоит в том, чтобы записать матрицу с номером 1 в качестве записи по главной диагонали и иметь все нули внизу.

Первый шаг стратегии Гаусса включает получение 1 в качестве первой записи, так что строка 1 может использоваться для изменения строк ниже.

Учитывая расширенную матрицу, выполните операции со строками для получения формы «строка-эшелон».

  1. Первое уравнение должно иметь старший коэффициент 1. Поменяйте местами строки или умножьте на константу, если необходимо.
  2. Используйте операции со строками, чтобы получить нули в первом столбце под первой записью 1.
  3. Используйте операции со строками, чтобы получить 1 в строке 2, столбец 2.
  4. Используйте операции со строками, чтобы получить нули в нижнем столбце 2, под записью 1.
  5. Используйте операции со строками, чтобы получить 1 в строке 3, столбец 3.
  6. Продолжайте этот процесс для всех строк, пока в каждой записи по главной диагонали не будет 1, а внизу будут только нули.
  7. Если какие-либо строки содержат все нули, поместите их внизу.

Решение системы методом исключения Гаусса

Решите данную систему методом исключения Гаусса.

Решите данную систему методом исключения Гаусса.

Использование исключения Гаусса для решения системы уравнений

Используйте метод исключения Гаусса для решения данной системы уравнений.

Решение зависимой системы

Решите систему уравнений.

Выполнение операций со строками в расширенной матрице 3 × 3 для получения формы Row-Echelon

Выполняет строковые операции с заданной матрицей для получения формы «строка-эшелон».

Запишите систему уравнений в виде ряда.

Решение системы линейных уравнений с использованием матриц

Мы увидели, как написать систему уравнений с расширенной матрицей, а затем как использовать строковые операции и обратную подстановку для получения строчно-эшелонированной формы.Теперь мы перейдем на шаг дальше от строковой формы, чтобы решить систему линейных уравнений 3 на 3. Общая идея состоит в том, чтобы исключить все переменные, кроме одной, с помощью операций со строками, а затем выполнить обратную замену для поиска других переменных.

Решение системы линейных уравнений с использованием матриц

Решите систему линейных уравнений с помощью матриц.

Решение зависимой системы линейных уравнений с использованием матриц

Решите следующую систему линейных уравнений, используя матрицы.

Решите систему, используя матрицы.

Можно ли решить любую систему линейных уравнений методом исключения Гаусса?

Да, система линейных уравнений любого размера может быть решена методом исключения Гаусса.

Дана система уравнений, решите с помощью матриц с помощью калькулятора.

  1. Сохранить расширенную матрицу как матричную переменную
  2. Используйте функцию ref ( в калькуляторе, вызывая каждую матричную переменную по мере необходимости.

Решение систем уравнений с матрицами с помощью калькулятора

Решите систему уравнений.

Применение матриц 2 × 2 к финансам

Кэролайн инвестирует в общей сложности 12 000 фунтов стерлингов в две муниципальные облигации, одна из которых выплачивает 10,5% годовых, а другая — 12%. Годовой процент, полученный по двум инвестициям в прошлом году, составил 1335 фунтов стерлингов. Сколько было вложено по каждой ставке?

Применение матриц 3 × 3 к финансам

Ava инвестирует в общей сложности 10 000 фунтов стерлингов в три счета, один из которых платит 5% годовых, другой — 8%, а третий — 9%.Годовой процент, полученный по трем инвестициям в прошлом году, составил 770 фунтов стерлингов. Сумма, вложенная под 9%, была вдвое больше, чем сумма, вложенная под 5%. Сколько было вложено по каждой ставке?

У нас есть система трех уравнений с тремя переменными. Пусть будет сумма, вложенная под 5%, пусть будет сумма, вложенная под 8%, пусть будет сумма, вложенная под 9%. Таким образом,

В качестве матрицы имеем

Теперь мы выполняем исключение Гаусса, чтобы получить форму строки-эшелон.

Третья строка сообщает usthus

Вторая строка говорит нам, что подставляя мы получаем

Первая строка говорит нам о замене и получаем

Ответ: 3000 евро вложено под 5%, 1000 евро вложено под 8% и 6000 евро вложено под 9%.

Небольшая обувная компания взяла ссуду в размере 1 500 000 фунтов стерлингов для расширения своих запасов. Часть денег была взята под 7%, часть — под 8%, часть — под 10%. Сумма займа под 10% в четыре раза превышала сумму займа под 7%, а годовая процентная ставка по всем трем займам составляла 130 500 фунтов стерлингов. Используйте матрицы, чтобы найти сумму займа по каждой ставке.

? 150 000 при 7%, 750 000 фунтов стерлингов при 8%, 600 000 фунтов стерлингов при 10%

Ключевые концепции

  • Расширенная матрица — это матрица, которая содержит коэффициенты и константы системы уравнений.См. (Рисунок).
  • Матрица, дополненная постоянным столбцом, может быть представлена ​​как исходная система уравнений. См. (Рисунок).
  • Операции со строками включают в себя умножение строки на константу, добавление одной строки к другой строке и замену строк местами.
  • Мы можем использовать метод исключения Гаусса для решения системы уравнений. См. (Рисунок), (Рисунок) и (Рисунок).
  • Операции со строками выполняются над матрицами для получения формы «строка-эшелон». См. (Рисунок).
  • Чтобы решить систему уравнений, запишите ее в форме расширенной матрицы.Выполните операции со строками, чтобы получить форму эшелона строк. Обратно-заменитель, чтобы найти решения. См. (Рисунок) и (Рисунок).
  • Калькулятор можно использовать для решения систем уравнений с использованием матриц. См. (Рисунок).
  • Многие реальные проблемы можно решить с помощью расширенных матриц. См. (Рисунок) и (Рисунок).

Упражнения по разделам

Словесный

Можно ли записать любую систему линейных уравнений в виде расширенной матрицы? Объясните, почему да или почему нет. Объясните, как написать эту расширенную матрицу.

Да. Для каждой строки коэффициенты переменных записываются поперек соответствующей строки и помещается вертикальная черта; затем константы помещаются справа от вертикальной полосы.

Можно ли записать любую матрицу в виде системы линейных уравнений? Объясните, почему да или почему нет. Объясните, как написать эту систему уравнений.

Есть только один правильный метод использования операций со строками в матрице? Попытайтесь объяснить две различные операции со строками, которые можно выполнить для расширенной матрицы

.

Нет, существует множество правильных методов использования строковых операций над матрицей.Есть два возможных способа: (1) Поменять местами строки 1 и 2. Затем (2) Разделить строку 1 на 9.

Можно ли решить матрицу с нулевым элементом на диагонали? Объясните, почему да или почему нет. Что бы вы сделали, чтобы исправить ситуацию?

Может ли матрица с 0 элементами для всей строки иметь одно решение? Объясните, почему да или почему нет.

Нет. Матрица с 0 элементами для всей строки будет иметь либо ноль, либо бесконечно много решений.

Алгебраические

Для следующих упражнений напишите расширенную матрицу линейной системы.

Для следующих упражнений запишите линейную систему из расширенной матрицы.

Для следующих упражнений решите систему методом исключения Гаусса.

Расширения

Для следующих упражнений используйте метод исключения Гаусса для решения системы.

Реальные приложения

Для следующих упражнений настройте расширенную матрицу, описывающую ситуацию, и найдите желаемое решение.

Ежедневно в магазине кексов продается 5 000 кексов со вкусом шоколада и ванили. Если вкус шоколада в 3 раза популярнее, чем аромат ванили, сколько кексов продается в день?

В конкурирующем магазине кексов ежедневно продаются кексы на сумму 4520 фунтов стерлингов.Шоколадные кексы стоят 2,25 евро, а кексы из красного бархата — 1,75 евро. Если общее количество кексов, проданных в день, составляет 2200, сколько штук каждого вкуса продается каждый день?

860 красный бархат, 1340 шоколад

Вы вложили 10 000 евро в два счета: один с простой процентной ставкой 3%, а другой — с процентной ставкой 2,5%. Если ваша общая сумма процентов по истечении одного года составила 283,50 фунтов стерлингов, какая сумма была на каждом счете по истечении года?

Вы вложили 2300 евро на счет 1 и 2700 евро на счет 2.Если общая сумма процентов по истечении одного года составляет 254 евро, а на счете 2 процентная ставка в 1,5 раза выше, чем на счете 1, каковы процентные ставки? Предположим простые процентные ставки.

4% на счет 1, 6% на счет 2

Bikes’R’Us производит велосипеды по 250 фунтов стерлингов. Это стоит производителю 180 фунтов стерлингов за велосипед, плюс стартовый взнос в размере 3500 фунтов стерлингов. Через сколько проданных велосипедов производитель выйдет на уровень безубыточности?

Крупный магазин бытовой техники рассматривает возможность приобретения пылесосов у небольшого производителя.Магазин сможет приобрести пылесосы по цене 86 фунтов стерлингов каждый, с оплатой доставки в размере 9 200 фунтов стерлингов, независимо от того, сколько пылесосов будет продано. Если магазин должен начать получать прибыль после продажи 230 единиц, сколько они должны взимать за пылесосы?

Три самых популярных вкуса мороженого — это шоколад, клубника и ваниль, составляющие 83% вкусов, продаваемых в магазине мороженого. Если ваниль продается на 1% больше, чем в два раза больше клубники, а шоколад продается на 11% больше, чем ваниль, сколько в общем потреблении мороженого приходится на ароматы ванили, шоколада и клубники?

В магазине мороженого растет спрос на три вкуса.В прошлом году банановое, тыквенное и мороженое с каменистой дорогой составили 12% от общего объема продаж мороженого. В этом году на те же три вида мороженого пришлось 16,9% продаж мороженого. Продажи по каменистой дороге выросли вдвое, продажи бананов увеличились на 50%, а продажи тыквы — на 20%. Если у мороженого по каменистой дороге было на один процент меньше продаж, чем у бананового мороженого, узнайте, какой процент продаж мороженого было произведено каждым отдельным мороженым в прошлом году.

Банан — 3%, тыква — 7%, а каменистая дорога — 2%

Пакет с ореховой смесью содержит кешью, фисташки и миндаль.Всего в сумке 1000 орехов, а миндаля на 100 меньше, чем фисташек. Кешью весит 3 г, фисташки — 4 г, миндаль — 5 г. Если мешок весит 3,7 кг, узнайте, сколько орехов каждого вида в нем.

Пакет с ореховой смесью содержит кешью, фисташки и миндаль. Изначально в сумке было 900 орехов. Было съедено 30% миндаля, 20% кешью и 10% фисташек, и теперь в сумке осталось 770 орехов. Изначально кешью было на 100 штук больше, чем миндаля.Для начала выясните, сколько орехов каждого типа было в пакете.

100 миндальных орехов, 200 кешью, 600 фисташек

Глоссарий

дополненная матрица
матрица коэффициентов, примыкающая к столбцу констант, разделенному вертикальной линией в скобках матрицы
матрица коэффициентов
матрица, содержащая только коэффициенты из системы уравнений
Гауссово исключение
с использованием элементарных операций со строками для получения матрицы в виде строки-эшелона
главная диагональ
записей из левого верхнего угла по диагонали в правый нижний угол квадратной матрицы
рядная форма
после выполнения операций со строками матричная форма, которая содержит единицы по главной диагонали и нули в каждом пробеле ниже диагонали
эквивалент ряда
две матрицы и эквивалентны строкам, если одна может быть получена из другой путем выполнения основных операций со строками
строковые операции
: добавление одной строки к другой строке, умножение строки на константу, перестановка строк и т. Д. С целью получения формы «строка-эшелон»

Как использовать метод исключения Гаусса для решения системы уравнений?

ПРИМЕР:

Используйте метод исключения Гаусса для решения следующей системы уравнений.

# x + 2y + 3z = -7 #
# 2x-3y-5z = 9 #
# -6z-8y + z = -22 #

Решение:

Настроить расширенную матрицу формы.

# ((1,2,3, |, -7), (2,3, -5, |, 9), (- 6, -8,1, |, 22)) #

Цель 1. Получите 1 в верхнем левом углу.

Уже сделано.

Цель 2a: Получите ноль под 1 в первом столбце.

Умножьте строку 1 на # -2 #, чтобы получить

# ((- 2, -4, -6, |, 14)) #

Добавьте результат в строку 2 и поместите результат в строку 2.

Обозначим операции как # -2R_2 + R_1 → R_2 #.

# ((1,2,3, |, -7), (2,3, -5, |, 9), (- 6, -8,1, |, 22)) stackrel (-2R_1 + R_2 → R_2) (→) ((1,2,3, |, -7), (0, -7, -11, |, 23), (- 6, -8,1, |, 22)) #

Цель 2b: Получите еще один ноль в первом столбце.

Для этого нам понадобится операция # 6R_1 + R_3 → R_3 #.

# ((1,2,3, |, -7), (0, -7, -11, |, 23), (- 6, -8,1, |, 22)) stackrel (6R_2 + R_3 → R_3) (→) ((1,2,3, |, -7), (0, -7, -11, |, 23), (0,4,19, |, -64)) #

Цель 2c. Получите оставшийся ноль.

Умножьте строку 2 на # -1 / 7 #.

# ((1,2,3, |, -7), (0, -7, -11, |, 23), (0,4,19, |, -64)) stackrel (- (1/7 ) R_2 → R_2) (→) ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,4,19, |, -64 )) #

Теперь используйте операцию # -4R_2 + R_3 → R_3 #.

# ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,4,19, |, -64)) stackrel (-4R_2 + R_3 → R_3) (→) ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,0,89 / 7, |, -356/7)) #

Умножьте третью строку на # 7/89 #.

# ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,0,89 / 7, |, -356 / 7)) stackrel (7 / 89R_3 → R_3) (→) ((1,2,3, |, -7), (0,1,11 / 7, |, -23 / 7), (0,0,1, | , -4)) #

Цель 3. Используйте обратную подстановку, чтобы получить значения # x #, # y # и # z #.

Цель 3а. Рассчитайте # z #.

#z = -4 #

Цель 3b. Вычислить # y #.

# y + 11 / 7z = -23 / 7 #
# y-44/7 = -23 / 7 #
# y = 44 / 7-23 / 7 = 21/7 #

# у = 3 #

Цель 3c. Вычислить x.

# x + 2y + 3z = -7 #
# x + 6-12 = -7 #
# x-6 = -7 #

# х = 1 #

Решение: # x = 1, y = 3, z = -4 #

Матрицы

и исключение Гаусса

Назад Замена

Напомним, что линейная система уравнений состоит из двух или более линейных уравнений с одинаковыми переменными.Линейная система, состоящая из трех уравнений стандартной формы, расположенных таким образом, что переменная x не появляется ни в одном уравнении после первого, а переменная y не появляется ни в одном уравнении после второго, называется верхнетреугольной формой. линейная система, состоящая из уравнений с тремя переменными в стандартной форме, расположенная так, что переменная x не появляется после первого уравнения, а переменная y не появляется после второго уравнения.. Например,

Обратите внимание, что система образует треугольник, в котором каждое последующее уравнение содержит на одну переменную меньше. В целом

Линейные системы в верхней треугольной форме {a1x + b1y = c1b2y = c2 {a1x + b1y + c1z = d1b2y + c2z = d2c3z = d3

Если линейная система находится в этой форме, мы можем легко найти одну из переменных, а затем произвести обратную замену, чтобы найти оставшиеся переменные.

Пример 1

Решить: {3x − y = 72y = −2.

Решение:

Напомним, что решения линейных систем с двумя переменными, если они существуют, представляют собой упорядоченные пары ( x , y ). Мы можем легко определить значение y , используя второе уравнение.

2у = −2у = −1

Затем используйте первое уравнение 3x − y = 7 и тот факт, что y = −1, чтобы найти x .

3x − y = 73x — (- 1) = 73x + 1 = 73x = 6x = 2

Ответ: (2, −1)

Пример 2

Решите: {x − 6y + 2z = 163y − 9z = 5z = −1.

Решение:

Напомним, что решения линейных систем с тремя переменными, если они существуют, являются упорядоченными тройками ( x , y , z ). Воспользуйтесь вторым уравнением 3y − 9z = 5 и тем фактом, что z = −1, чтобы найти y .

3y − 9z = 53y − 9 (−1) = 53y + 9 = 53y = −4y = −43

Затем подставьте y и z в первое уравнение.

x − 6y + 2z = 16x − 6 (−43) +2 (−1) = 16x + 8−2 = 16x + 6 = 16x = 10

Ответ: (10, −43, −1)

Попробуй! Решите: {4x − y + 3z = 12y − 9z = −23z = 2.

Ответ: (14, 2, 23)

Матрицы и исключение Гаусса

Цель этого раздела — разработать метод, упрощающий процесс решения линейных систем. Мы начинаем с определения матрицы — прямоугольного массива чисел, состоящего из строк и столбцов., Который представляет собой прямоугольный массив чисел, состоящий из строк и столбцов. Для данной линейной системы в стандартной форме мы создаем матрицу коэффициентов Матрицу коэффициентов линейной системы в стандартной форме, записанную так, как они выглядят выстроенной, без переменных или операций.записывая коэффициенты в том виде, в каком они кажутся выстроенными, без переменных или операций, как показано ниже.

Матрица коэффициентов линейной системы {a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d3 ⇒ [a1b1c1a2b2c2a3b3c3]

Строки представляют коэффициенты в уравнениях, а столбцы представляют коэффициенты каждой переменной. Кроме того, если мы включим столбец, представляющий константы, мы получим так называемую расширенную матрицу — матрицу коэффициентов с включенным столбцом констант.. Для линейной системы с двумя переменными

Расширенная матрица линейной системы {a1x + b1y = c1a2x + b2y = c2 ⇔ [a1b1 | c1a2b2 | c2]

А для линейной системы с тремя переменными имеем

Расширенная матрица линейной системы {a1x + b1y + c1z = d1a2x + b2y + c2z = d2a3x + b3y + c3z = d3 ⇔ [a1b1c1 | d1a2b2c2 | d2a3b3c3 | d3]

Примечание : Пунктирная вертикальная линия обеспечивает визуальное разделение между матрицей коэффициентов и столбцом констант.В других ресурсах по алгебре, с которыми вы можете столкнуться, это иногда опускается.

Пример 3

Постройте расширенную матрицу, которая соответствует: {9x − 6y = 0 − x + 2y = 1.

Решение:

Эта система состоит из двух линейных уравнений стандартной формы; следовательно, коэффициенты в матрице отображаются так же, как и в системе.

{9x − 6y = 0 − x + 2y = 1 ⇔ [9−6 | 0−12 | 1]

Пример 4

Постройте расширенную матрицу, которая соответствует: {x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13.

Решение:

Поскольку уравнения представлены в стандартной форме, коэффициенты появляются в матрице так же, как и в системе.

{x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13 ⇔ [12−4 | 521−6 | 84−1−12 | 13]

Матрица имеет верхнюю треугольную форму, если все элементы ниже ведущего ненулевого элемента в каждой последующей строке равны нулю. Например,

Обратите внимание, что элементы ниже главной диагонали равны нулю, а коэффициенты выше образуют треугольную форму.В целом

Верхняя треугольная форма [a1b10b2] [a1b1c10b2c200c3]

Это важно, потому что в этом разделе мы очерчиваем процесс, с помощью которого можно выполнить определенные операции для создания эквивалентной линейной системы в верхней треугольной форме, чтобы ее можно было решить с помощью обратной подстановки. Обзор процесса представлен ниже:

Когда система принимает форму верхнего треугольника, мы можем использовать обратную замену, чтобы легко ее решить.Важно отметить, что представленные здесь расширенные матрицы представляют собой линейные системы уравнений в стандартной форме.

Следующие элементарные операции со строками Операции, которые могут быть выполнены для получения эквивалентных линейных систем. приводят к расширенным матрицам, которые представляют эквивалентные линейные системы:

  1. Любые две строки можно поменять местами.
  2. Каждый элемент в строке можно умножить на ненулевую константу.
  3. Любая строка может быть заменена суммой этой строки и кратной другой.

Примечание: Эти операции соответствуют свойствам, используемым в методе исключения.

Чтобы эффективно решить систему линейных уравнений, сначала постройте расширенную матрицу. Затем примените соответствующие элементарные операции со строками, чтобы получить расширенную матрицу в форме верхнего треугольника. В этой форме эквивалентная линейная система может быть легко решена с помощью обратной подстановки. Этот процесс называется гауссовским устранением. Шаги, используемые для получения эквивалентной линейной системы в верхней треугольной форме, чтобы ее можно было решить с помощью обратной подстановки., названный в честь Карла Фридриха Гаусса (1777–1855).

Рисунок 3.1

Карл Фридрих Гаусс (Википедия)

Шаги для решения линейного уравнения с двумя переменными с использованием исключения Гаусса перечислены в следующем примере.

Пример 5

Решить, используя матрицы и метод исключения Гаусса: {9x − 6y = 0 − x + 2y = 1.

Решение:

Перед началом этого процесса убедитесь, что уравнения в системе имеют стандартную форму.

Шаг 1 : Постройте соответствующую расширенную матрицу.

{9x − 6y = 0 − x + 2y = 1 ⇔ [9−6 | 0−12 | 1]

Шаг 2 : Примените операции элементарной строки, чтобы получить верхнюю треугольную форму. В этом случае нам нужно только удалить первый элемент второй строки, −1. Для этого умножьте вторую строку на 9 и прибавьте ее к первой строке.

Теперь используйте это, чтобы заменить вторую строку.

[9−6 | 0012 | 9]

В результате получается расширенная матрица в форме верхнего треугольника.

Шаг 3 : Преобразуйте обратно к линейной системе и решите, используя обратную подстановку. В этом примере у нас

[9−6 | 0012 | 9] ⇒ {9x − 6y = 012y = 9

Решите второе уравнение относительно y ,

12y = 9y = 912y = 34

Подставьте это значение вместо y в первое уравнение, чтобы найти x ,

9x − 6y = 09x − 6 (34) = 09x − 92 = 09x = 92x = 12

Ответ: (12, 34)

Шаги по использованию исключения Гаусса для решения линейного уравнения с тремя переменными перечислены в следующем примере.

Пример 6

Решить, используя матрицы и метод исключения Гаусса: {x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13.

Решение:

Перед началом этого процесса убедитесь, что уравнения в системе имеют стандартную форму.

Шаг 1 : Постройте соответствующую расширенную матрицу.

{x + 2y − 4z = 52x + y − 6z = 84x − y − 12z = 13 ⇒ [12−4 | 521−6 | 84−1−12 | 13]

Шаг 2 : Примените операции элементарной строки, чтобы получить верхнюю треугольную форму.Начнем с исключения первого элемента второй строки, в данном случае 2. Для этого умножьте первую строку на −2, а затем добавьте ее во вторую строку.

[12−4 | 521−6 | 84−1−12 | 13] ⇒ × (−2) −2−48−10 + 21−680−32−2

Используйте это, чтобы заменить вторую строку.

[12−4 | 50−32 | −24−1−12 | 13]

Затем удалите первый элемент третьей строки, в данном случае 4, умножив первую строку на −4 и прибавив ее к третьей строке.

[12−4 | 50−32 | −24−1−12 | 13] ⇒ × (−4) −4−816−20 + 4−1−12130−94−7

Используйте это, чтобы заменить третью строку.

[12−4 | 50−32 | −20−94 | −7]

Это приводит к расширенной матрице, в которой элементы под первым элементом первой строки равны нулю. Затем удалите второй элемент в третьей строке, в данном случае −9. Умножьте вторую строку на −3 и прибавьте ее к третьей строке.

Используйте это, чтобы заменить третью строку, и мы видим, что мы получили матрицу в форме верхнего треугольника.

[12−4 | 50−32 | −200−2 | −1]

Шаг 3 : Преобразуйте обратно к линейной системе и решите, используя обратную подстановку. В этом примере у нас

[12−4 | 50−32 | −200−2 | −1] ⇒ {x + 2y − 4z = 5−3y + 2z = −2−2z = −1

Ответ: Читателю остается убедиться, что решение (5,1,12).

Примечание: Обычно работа по замене строки путем умножения и сложения выполняется сбоку с использованием бумаги для заметок.

Пример 7

Решить, используя матрицы и метод исключения Гаусса: {2x − 9y + 3z = −18x − 2y − 3z = −8−4x + 23y + 12z = 47.

Решение:

Начнем с преобразования системы в расширенную матрицу коэффициентов.

{2x − 9y + 3z = −18x − 2y − 3z = −8−4x + 23y + 12z = 47 ⇒ [2−93 | −181−2−3 | −8−42312 | 47]

Элементарные операции со строками упрощаются, если ведущий ненулевой элемент в строке равен 1.По этой причине начните с замены первого и второго ряда местами.

Заменить строку два суммой −2, умноженной на первую и вторую строку.

Заменить третью строку суммой четырех строк первой и третьей.

Далее разделите 3-ю строку на 15.

Поменяйте местами третий ряд со вторым.

Затем замените строку 3 суммой, умноженной на 5 строк второй и третьей.

В результате получается матрица в форме верхнего треугольника. Матрица находится в виде эшелона строк Матрица в треугольной форме, где ведущий ненулевой элемент каждой строки равен 1., если она находится в верхней треугольной форме, где ведущий ненулевой элемент каждой строки равен 1. Мы можем получить эту форму, заменив третью строку на результат деления на 9.

Преобразуйте в систему линейных уравнений и решите обратной подстановкой.

[1−2−3 | −8010 | 1001 | 13] ⇒ {x − 2y − 3z = −8y = 1z = 13

Здесь y = 1 и z = 13. Подставляем в первое уравнение, чтобы найти x .

x − 2y − 3y = −8x − 2 (1) −3 (13) = — 8x − 2−1 = −8x − 3 = −8x = −5

Ответ: Следовательно, решение (−5, 1, 13).

Технологическое примечание : Многие современные калькуляторы и системы компьютерной алгебры могут выполнять метод исключения Гаусса. Сначала вам нужно узнать, как войти в матрицу.Затем используйте функции калькулятора, чтобы найти форму эшелона строки. Предлагаем вам провести исследование по этой теме для вашей конкретной модели калькулятора.

Попробуй! Решить, используя исключение Гаусса: {x − 3y + 2z = 164x − 11y − z = 692x − 5y − 4z = 36.

Ответ: (6, −4, −1)

Напомним, что некоторые непротиворечивые линейные системы зависимы, то есть у них бесконечно много решений.А некоторые линейные системы не имеют одновременного решения; это несовместимые системы.

Пример 8

Решить, используя матрицы и метод исключения Гаусса: {x − 2y + z = 42x − 3y + 4z = 74x − 7y + 6z = 15.

Решение:

Начнем с преобразования системы в расширенную матрицу коэффициентов.

{x − 2y + z = 42x − 3y + 4z = 74x − 7y + 6z = 15 ⇒ [1−21 | 42−34 | 74−76 | 15]

Заменить вторую строку на −2 (строка 1) + (строка 2) и заменить строку три на −4 (строка 1) + (строка 3).

[1−21 | 4012 | −1012 | −1]

Заменить третью строку на −1 (строка 2) + (строка 3).

[1-21 | 4012 | -1000 | 0]

Последняя строка указывает, что это зависимая система, потому что преобразование расширенной матрицы обратно в уравнения, которые у нас есть,

{x − 2y + z = 4y + 2z = −10x + 0y + 0z = 0

Обратите внимание, что ряд нулей соответствует следующему тождеству,

0x + 0y + 0z = 00 = 0 ✓

В этом случае мы можем выразить бесконечное множество решений через z .Из второго ряда имеем:

y + 2z = −1y = −2z − 1

И из первого уравнения,

x − 2y + z = 4x − 2 (−2z − 1) + z = 4x + 5z + 2 = 4x = −5z + 2

Решения имеют вид (x, y, z) = (- 5z + 2, −2z − 1, z), где z — любое действительное число.

Ответ: (−5z + 2, −2z − 1, z)

Зависимые и несовместимые системы могут быть идентифицированы в расширенной матрице коэффициентов, когда все коэффициенты в одной строке равны нулю.

Если строка нулей имеет соответствующую константу, равную нулю, тогда матрица представляет зависимую систему. Если константа отлична от нуля, матрица представляет собой несовместимую систему.

Попробуй! Решить, используя матрицы и метод исключения Гаусса: {5x − 2y + z = −310x − y + 3z = 0−15x + 9y − 2z = 17.

Ответ: Ø

Ключевые выводы

  • Линейная система в верхней треугольной форме может быть легко решена с помощью обратной подстановки.
  • Расширенная матрица коэффициентов и метод исключения Гаусса могут использоваться для упрощения процесса решения линейных систем.
  • Чтобы решить систему с использованием матриц и исключения Гаусса, сначала используйте коэффициенты для создания расширенной матрицы. Примените операции с элементарными строками как средство для получения матрицы в форме верхнего треугольника. Преобразуйте матрицу обратно в эквивалентную линейную систему и решите ее, используя обратную подстановку.

Тематические упражнения

    Часть A: Назад Замена

      Решите, используя обратную замену.

    1. {5x − 3y = 2y = −1

    2. {3x + 2y = 1y = 3

    3. {x − 4y = 12y = −3

    4. {x − 5y = 310y = −6

    5. {4x − 3y = −167y = 0

    6. {3x − 5y = −104y = 8

    7. {2x + 3y = −13y = 2

    8. {6x − y = −34y = 3

    9. {х-у = 02у = 0

    10. {2x + y = 23y = 0

    11. {x + 3y − 4z = 1y − 3z = −2z = 3

    12. {x − 5y + 4z = −1y − 7z = 10z = −2

    13. {x − 6y + 8z = 23y − 4z = −42z = −1

    14. {2x − y + 3z = −92y + 6z = −23z = 2

    15. {10x − 3y + z = 1311y − 3z = 92z = −6

    16. {3x − 2y + 5z = −244y + 5z = 34z = −12

    17. {x − y + 2z = 12y + z = 13z = −1

    18. {x + 2y − z = 2y − 3z = 16z = 1

    19. {x − 9y + 5z = −32y = 103z = 27

    20. {4x — z = 33y − 2z = −12z = −8

    Часть B: Матрицы и исключение Гаусса

      Построить соответствующую расширенную матрицу (не решать).

    1. {х + 2у = 34х + 5у = ​​6

    2. {6x + 5y = 43x + 2y = 1

    3. {x − 2y = 12x − y = 1

    4. {х-у = 2-х + у = -1

    5. {−x + 8y = 32y = 2

    6. {3x − 2y = 4 − y = 5

    7. {3x − 2y + 7z = 84x − 5y − 10z = 6 − x − 3y + 2z = −1

    8. {x − y − z = 02x − y + 3z = −1 − x + 4y − 3z = −2

    9. {x − 9y + 5z = −32y = 103z = 27

    10. {4x − z = 33y − 2z = −12z = −8

    11. {8x + 2y = −13−2y + z = 112x − 5z = −18

    12. {x − 3z = 2y + 6z = 42x + 3y = 12

      Решите, используя матрицы и метод исключения Гаусса.

    1. {x − 5y = 22x − y = 1

    2. {x − 2y = −1x + y = 1

    3. {10x − 7y = 15−2x + 3y = −3

    4. {9x − 10y = 23x + 5y = −1

    5. {3x + 5y = 82x − 3y = 18

    6. {5x − 3y = −147x + 2y = −1

    7. {9x + 15y = 53x + 5y = 7

    8. {6x − 8y = 1−3x + 4y = −1

    9. {х + у = 0х-у = 0

    10. {7x − 3y = 03x − 7y = 0

    11. {2x − 3y = 4−10x + 15y = −20

    12. {6x − 10y = 20−3x + 5y = −10

    13. {x + y − 2z = −1 − x + 2y − z = 1x − y + z = 2

    14. {x − y + z = −2x + 2y − z = 6 − x + y − 2z = 3

    15. {2x − y + z = 2x − y + z = 2−2x + 2y − z = −1

    16. {3x − y + 2z = 7 − x + 2y + z = 6x + 3y − 2z = 1

    17. {x − 3y + z = 6 − x − y + 2z = 42x + y + z = 3

    18. {4x − y + 2z = 12x − 3y + 2z = 7−2x + 3y + 4z = −16

    19. {2x − 4y + 6z = −43x − 2y + 5z = −25x − y + 2z = 1

    20. {3x + 6y + 9z = 62x − 2y + 3z = 0−3x + 18y − 12z = 5

    21. {−x + y − z = −23x − 2y + 5z = 13x − 5y − z = 3

    22. {x + 2y + 3z = 43x + 8y + 13z = 212x + 5y + 8z = 16

    23. {2x − 4y − 5z = 3 − x + y + z = 13x − 4y − 5z = −4

    24. {5x − 3y − 2z = 43x − 6y + 4z = −6 − x + 2y − z = 2

    25. {−2x − 3y + 12z = 44x − 5y − 10z = −1 − x − 3y + 2z = 0

    26. {3x − 2y + 5z = 104x + 3y − 3z = −6x + y + z = 2

    27. {x + 2y + z = −3x + 6y + 3z = 7x + 4y + 2z = 2

    28. {2x − y + z = 14x − y + 3z = 52x + y + 3z = 7

    29. {2x + 3y − 4z = 03x − 5y + 3z = −105x − 2y + 5z = −4

    30. {3x − 2y + 9z = 2−2x − 5y − 4z = 35x − 3y + 3z = 15

    31. {8x + 2y = −13−2y + z = 112x − 5z = −18

    32. {x − 3z = 2y + 6z = 42x + 3y = 12

    33. {9x + 3y − 11z = 62x + y − 3z = 17x + 2y − 8z = 3

    34. {3x − y − z = 4−5x + y + 2z = −36x − 2y − 2z = 8

    35. {2x − 4y + 3z = 153x − 5y + 2z = 185x + 2y − 6z = 0

    36. {3x − 4y − 3z = −144x + 2y + 5z = 12−5x + 8y − 4z = −3

    Часть C: Обсуждение

    1. Изучите и обсудите историю метода исключения Гаусса.Кто первым разработал этот процесс? Опубликуйте что-нибудь, что вам показалось интересным в связи с этой историей.

    2. Изучите и обсудите историю современной матричной записи. Кому засчитывается разработка? В каких сферах они используются сегодня? Разместите свои выводы на доске обсуждений.

ответов

  1. (-15, -1)

  2. (-5, -32)

  3. (-32,23)

  4. (−6, −2, −12)

  5. (85,0, −3)

  6. (73,23, −13)

  1. [12 | 345 | 6]

  2. [1-2 | 12-1 | 1]

  3. [−18 | 302 | 2]

  4. [3−27 | 84−5−10 | 6−1−32 | −1]

  5. [1−95 | −3020 | 10003 | 27]

  6. [820 | −130−21 | 1120−5 | −18]

  7. (13, −13)

  8. (32,0)

  9. (х, 23x − 43)

  10. (12,12, −12)

  11. (1,0,12)

  12. (−8, −12z + 52, z)

  13. (-32, -12, 0)

Гаусс Джордан Устранение — Объяснение и примеры

Метод исключения Гаусса-Джордана — это алгоритм решения линейной системы уравнений.Мы также можем использовать его, чтобы найти обратную матрицу. Давайте сначала посмотрим на определение:

Исключение Гаусса Джордана или Гаусса исключение — это алгоритм для решения системы линейных уравнений, представляющий ее в виде расширенной матрицы, сокращая ее с помощью операций со строками и выражая систему в сокращенной строке. -эшелонированная форма для нахождения значений переменных.

В этом уроке мы увидим детали метода исключения Гаусса и того, как решить систему линейных уравнений с помощью метода исключения Гаусса-Жордана.Примеры и практические вопросы будут приведены ниже.

Что такое метод исключения Гаусса?

Метод исключения Гаусса — это структурированный метод решения системы линейных уравнений. Таким образом, это алгоритм, и его можно легко запрограммировать для решения системы линейных уравнений. Основная цель исключения Гаусса-Джордана:

  • для представления системы линейных уравнений в форме расширенной матрицы
  • с последующим выполнением над ней строковых операций по $ 3 до тех пор, пока не будет получена сокращенная форма эшелона строк (RREF) достигнуто
  • Наконец, мы можем легко распознать решения из RREF

Давайте посмотрим, что такое расширенная матричная форма, операции со строками по $ 3 $, которые мы можем делать с матрицей, и сокращенная форма эшелона строк матрицы.

Расширенная матрица

Система линейных уравнений показана ниже:

$ \ begin {align *} 2x + 3y & = \, 7 \\ x — y & = 4 \ end {align *} $

We запишет расширенную матрицу этой системы, используя коэффициенты уравнений и запишет ее в стиле , показанном ниже:

$ \ left [\ begin {array} {rr | r} 2 & 3 & 7 \\ 1 & -1 & 4 \ end {array} \ right] $

Пример использования одновременных уравнений $ 3 $ показан ниже:

$ \ begin {align *} 2x + y + z & = \, 10 \\ x + 2y + 3z & = 1 \\ — x — y — z & = 2 \ end {align *} $

Представление этой системы в виде расширенной матрицы:

$ \ left [\ begin {array} {rrr | r} 2 & 1 & 1 & 10 \\ 1 & 2 & 3 & 1 \\ — 1 & — 1 & — 1 & 2 \ end {array} \ right] $

Операции со строками в матрице

Есть $ 3 $ элементарная операция со строками , которую мы можем выполнять с матрицами.Это не изменит решения системы. Это:

  1. Обмен $ 2 $ строк
  2. Умножение строки на ненулевой ($ \ neq 0 $) скаляр
  3. Складывание или вычитание скалярного кратного одной строки из другой строки.

Форма сокращенного эшелона строк

Основная цель исключения Гаусса Джордана — использовать операции элементарной строки стоимостью 3 доллара в расширенной матрице, чтобы преобразовать ее в форму сокращенного эшелона строк (RREF). Считается, что матрица находится в сокращенном эшелоне строк формы , также известной как каноническая форма строк , если выполняются следующие условия $ 4 $:

  1. строк с нулевыми записями (все элементы этой строки равны $ 0 $). s) находятся внизу матрицы.
  2. Начальная запись (первая ненулевая запись в строке) каждой ненулевой строки соответствует справа ведущей записи строки непосредственно над ней.
  3. Начальная запись в любой ненулевой строке — 1 доллар.
  4. Все записи в столбце, содержащем начальную запись ($ 1 $), нулевые.

Как выполнить исключение Гаусса-Джордана

В методе исключения Гаусса-Джордана нет каких-либо определенных шагов, но алгоритм ниже описывает шаги, которые мы выполняем, чтобы прийти к сокращенной форме эшелона строк расширенной матрицы.

  1. Поменяйте местами строки так, чтобы все строки с нулевыми записями находились внизу матрицы.
  2. Поменяйте местами строки так, чтобы строка с самой большой левой цифрой находилась наверху матрицы.
  3. Умножьте верхнюю строку на скаляр, который преобразует ведущую запись верхней строки в $ 1 $ (если ведущей записью верхней строки является $ a $, умножьте ее на $ \ frac {1} {a} $, чтобы получить $ 1 $).
  4. Добавьте или вычтите значения, кратные верхней строке, из других строк, чтобы все записи в столбце ведущей записи верхней строки были нулями.
  5. Выполните шаги $ 2 — 4 $ для следующей крайней левой ненулевой записи до тех пор, пока все ведущие записи каждой строки не будут равны 1 $.
  6. Поменяйте местами строки так, чтобы ведущая запись каждой ненулевой строки находилась справа от ведущей записи строки непосредственно над ней.

На первый взгляд, запомнить / запомнить шаги не так просто. Это вопрос решения нескольких проблем, пока вы не освоитесь с процессом. Существует также фактор интуиции , который играет B-I-G роль в выполнении исключения Гаусса Джордана.

Давайте рассмотрим несколько примеров, чтобы пояснить процесс решения системы линейных уравнений с помощью метода исключения Гаусса-Джордана .

Пример 1

Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

$ \ begin {align *} {- x} + 2y & = \, {- 6} \\ { 3x} — 4y & = {14} \ end {align *} $

Решение

Первый шаг — написать расширенную матрицу системы.Мы показываем это ниже:

$ \ left [\ begin {array} {r r | r} — 1 & 2 & — 6 \\ 3 & -4 & 14 \ end {array} \ right] $

Теперь наша задача состоит в том, чтобы преобразовать матрицу в сокращенную форму эшелона строк (RREF), выполнив команду $ 3 $ элементарные операции со строками.

У нас есть расширенная матрица:

$ \ left [\ begin {array} {r r | r} — 1 & 2 & — 6 \\ 3 & — 4 & 14 \ end {array} \ right] $

Шаг 1:

Мы можем умножить первую строку на $ — 1 $, чтобы получить ведущий вход $ 1 $.Показано ниже:

$ \ left [\ begin {array} {r r | r} 1 & — 2 & 6 \\ 3 & — 4 & 14 \ end {array} \ right] $

Шаг 2:

Теперь мы можем умножить первую строку на $ 3 $ и вычесть ее из второй ряд. Показано ниже:

$ \ left [\ begin {array} {r r | r} 1 & -2 & 6 \\ {3 — (1 \ times 3)} & {-4 — (-2 \ times 3)} & {14 — (6 \ times 3)} \ end {array} \ справа] $

$ = \ left [\ begin {array} {rr | r} 1 & — 2 & 6 \\ 0 & 2 & — 4 \ end {array} \ right] $

У нас есть $ 0 $ как первая запись второй строки.

Шаг 3:

Чтобы сделать вторую запись второй строки $ 1 $, мы можем умножить вторую строку на $ \ frac {1} {2} $. Показано ниже:

$ \ left [\ begin {array} {r r | r} 1 & — 2 & 6 \\ {\ frac {1} {2} \ times 0} & {\ frac {1} {2} \ times 2} & {\ frac {1} {2} \ times — 4} \ end {array} \ right] $

$ = \ left [\ begin {array} {rr | r} 1 & — 2 & 6 \\ 0 & 1 & — 2 \ end {array} \ right] $

Шаг 4:

Мы почти у цели!

Вторая запись первой строки должна быть $ 0 $.Для этого мы умножаем вторую строку на $ 2 $ и добавляем ее к первой строке. Показано ниже:

$ \ left [\ begin {array} {r r | r} {1 + (0 \ times 2)} & {- 2 + (1 \ times 2)} & {6 + (- 2 \ times 2)} \\ 0 & 1 & — 2 \ end {array} \ справа] $

$ = \ left [\ begin {array} {rr | r} 1 & 0 & 2 \\ 0 & 1 & — 2 \ end {array} \ right] $

Это сокращенный ряд строк из . Из расширенной матрицы мы можем написать два уравнения (решения):

$ \ begin {align *} x + 0y & = \, 2 \\ 0x + y & = -2 \ end {align *} $

$ \ begin {align *} x & = \, 2 \\ y & = — 2 \ end {align *} $

Таким образом, решение системы уравнений: $ x = 2 $ и $ y = — 2 $.

Пример 2

Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

$ \ begin {align *} x + 2y & = \, 4 \\ x — 2y & = 6 \ end { align *} $

Решение

Запишем расширенную матрицу системы уравнений:

$ \ left [\ begin {array} {rr | r} 1 & 2 & 4 \\ 1 & — 2 & 6 \ end {array} \ right] $

Теперь мы выполняем элементарные операции со строками над этой матрицей, пока не получим сокращенную форму эшелона строк.

Шаг 1:

Умножаем первую строку на $ 1 $, а затем вычитаем ее из второй строки. Это в основном вычитание первой строки из второй:

$ \ left [\ begin {array} {r r | r} 1 & 2 & 4 \\ 1 — 1 & — 2 — 2 & 6 — 4 \ end {array} \ right] $

$ = \ left [\ begin {array} {r r | r} 1 & 2 & 4 \\ 0 & — 4 & 2 \ end {array} \ right] $

Шаг 2:

Мы умножаем вторую строку на $ — \ frac {1} {4} $, чтобы получить вторая запись строки, $ 1 $:

$ \ left [\ begin {array} {rr | r} 1 и 2 и 4 \\ 0 \ times — \ frac {1} {4} & — 4 \ times — \ frac {1} {4} & 2 \ times — \ frac {1} {4} \ end {массив} \ right] $

$ = \ left [\ begin {array} {rr | r} 1 & 2 & 4 \\ 0 & 1 & — \ frac {1} {2} \ end {array} \ right] $

Шаг 3:

Наконец, мы умножаем вторую строку на $ — 2 $ и добавьте его в первую строку, чтобы получить уменьшенную форму эшелона строк этой матрицы:

$ \ left [\ begin {array} {rr | r} 1 + (- 2 \ times 0) & 2+ (- 2 \ times 1) & 4 + (- 2 \ times — \ frac {1} {2}) \\ 0 & 1 & — \ frac {1 } {2} \ end {array} \ right] $

$ = \ left [\ begin {array} {rr | r} 1 & 0 & 5 \\ 0 & 1 & — \ frac {1} {2} \ end {array} \ right] $

Это сокращенный ряд строк от .Из расширенной матрицы мы можем написать два уравнения (решения):

$ \ begin {align *} x + 0y & = \, 5 \\ 0x + y & = — \ frac {1} {2} \ end {align *} $

$ \ begin {align *} x & = \, 5 \\ y & = — \ frac {1} {2} \ end {align *} $

Таким образом, решение системы уравнений составляет $ x = 5 $ и $ y = — \ frac {1} {2} $.

Практические вопросы

  1. Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

    $ \ begin {align *} 2x + y & = \, — 3 \\ — x — y & = 2 \ end {align *} $

  2. Решите систему, показанную ниже, используя метод исключения Гаусса Джордана:

    $ \ begin {align *} x + 5y & = \, 15 \\ — x + 5y & = 25 \ end {align *} $

Ответы

  1. Начнем с написания расширенной матрицы системы уравнений:

    $ \ left [\ begin {array} {rr | r} 2 & 1 & — 3 \\ — 1 & — 1 & 2 \ end {array} \ right] $

    Теперь мы выполняем элементарные операции со строками, чтобы прийти к нашему решению.

    Первый,
    Инвертируем знаки второй строки и меняем строки местами. Итак, имеем:
    $ \ left [\ begin {array} {r r | r} 1 & 1 & — 2 \\ 2 & 1 & — 3 \ end {array} \ right] $
    Во-вторых,
    Мы дважды вычитаем первую строку из второй строки:
    $ \ left [\ begin {array} { rr | r} 1 & 1 & — 2 \\ 2 — (2 \ times 1) & 1 — (2 \ times 1) & — 3 — (2 \ times — 2) \ end {array} \ right] $
    $ = \ left [\ begin {array} {rr | r} 1 & 1 & — 2 \\ 0 & — 1 & 1 \ end {array} \ right] $
    В-третьих,
    Мы инвертируем вторую строку, чтобы получить:
    $ = \ left [\ begin {array} {rr | r} 1 & 1 & — 2 \\ 0 & 1 & — 1 \ end {array} \ right] $
    Наконец,
    Мы вычитаем вторую строку из первой и получаем:
    $ = \ left [\ begin { массив} {rr | r} 1 & 0 & — 1 \\ 0 & 1 & — 1 \ end {array} \ right] $

    Из этой расширенной матрицы мы можем написать два уравнения (решения):

    $ \ begin {align *} x + 0y & = \, — 1 \\ 0x + y & = — 1 \ end {align *} $

    $ \ begin {align *} x & = \, — 1 \\ y & = — 1 \ end {align *} $

    Таким образом, решение системы уравнений: $ x = — 1 $ и $ y = — 1 $.

  2. Расширенная матрица системы:
    $ \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ — 1 & 5 & 25 \ end {array} \ right] $
    Давайте приведите эту матрицу к приведенной форме эшелона строк и найдите решение системы.

    Сначала
    Отмените первую строку, затем вычтите ее из второй строки, чтобы получить:
    $ \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ — 1 — (- 1) & 5 — (- 5) & 25 — (- 15) \ end {array} \ right] $
    $ = \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ 0 & 10 & 40 \ end {array} \ right] $
    Во-вторых,
    Разделите вторую строку на $ 10 $, чтобы получить:
    $ \ left [\ begin {array} {rr | r} 1 & 5 & 15 \\ 0 & 1 & 4 \ end {array} \ right] $
    Затем
    Умножьте вторую строку на $ 5 $ и вычтите ее из первой строки, чтобы получить окончательное решение:
    $ \ left [\ begin {array} {rr | r} 1 — (5 \ times 0) & 5 — (5 \ times 1) & 15 — (5 \ times 4) \\ 0 & 1 & 4 \ end {array} \ right] $
    $ = \ left [ \ begin {array} {rr | r} 1 & 0 & — 5 \\ 0 & 1 & 4 \ end {array} \ right] $
    Это сокращенная форма эшелона строк (RREF).Из этой расширенной матрицы мы можем написать два уравнения (решения):

    $ \ begin {align *} x & = \, — 5 \\ y & = 4 \ end {align *} $

    Таким образом, решение системы уравнений составляет $ x = — 5 $ и $ y = 4 $.

Предыдущий урок | Главная страница | Следующий урок

Системы линейных уравнений: исключение Гаусса

Системы линейных уравнений: исключение Гаусса

Решать нелинейные системы уравнений довольно сложно, а линейные системы довольно легко изучать.Существуют численные методы, которые помогают аппроксимировать нелинейные системы линейными в надежде, что решения линейных систем достаточно близки к решениям нелинейных систем. Мы не будем здесь обсуждать это. Вместо этого мы сосредоточим наше внимание на линейных системах.

Для простоты мы ограничимся тремя, максимум четырьмя неизвестными. Читатель, интересующийся случаем большего количества неизвестных, может легко развить следующие идеи.

Определение. Уравнение

a x + b y + c z + d w = h



где a , b , c , d и h — известные числа, а x , y , z и w — неизвестные числа.
называется линейным уравнением . Если h = 0, линейное уравнение называется однородным . Линейная система представляет собой набор линейных уравнений, а однородная линейная система представляет собой набор однородных линейных уравнений.

Например,



а также



линейные системы, а



является нелинейной системой (из-за y 2 ). Система



является однородной линейной системой.

Матричное представление линейной системы

Матрицы помогают переписать линейную систему в очень простой форме. Затем для решения систем можно использовать алгебраические свойства матриц. Сначала рассмотрим линейную систему



Установите матрицы



Используя матричное умножение, мы можем переписать линейную систему выше как матричное уравнение



Как видите, это намного лучше, чем уравнения.Но иногда стоит решить систему напрямую, минуя матричную форму. Матрица A называется матричным коэффициентом линейной системы. Матрица C называется неоднородным членом . Когда

,
линейная система однородна. Матрица X — это неизвестная матрица. Его записи являются неизвестными линейной системы. Расширенная матрица , связанная с системой, является матрицей [ A | С ], где

В общем, если линейная система имеет n уравнений с m неизвестными, то матричный коэффициент будет матрицей nxm, а расширенная матрица — матрицей nx (m + 1).Теперь обратим внимание на решения системы.

Определение. Две линейные системы с n неизвестными называются эквивалентными тогда и только тогда, когда они имеют одинаковый набор решений.

Это определение важно, поскольку идея решения системы состоит в том, чтобы найти эквивалентную систему, которую легко решить. Вы можете спросить, как мы сможем создать такую ​​систему? Легко, мы делаем это с помощью элементарных операций . Действительно, ясно, что если мы поменяем местами два уравнения, новая система все равно будет эквивалентна старой.Если мы умножим уравнение на ненулевое число, мы получим новую систему, по-прежнему эквивалентную старой. И, наконец, заменив одно уравнение суммой двух уравнений, мы снова получим эквивалентную систему. Эти операции называются элементарными операциями в системах. Посмотрим, как это работает в конкретном случае.

Пример. Рассмотрим линейную систему

Идея состоит в том, чтобы сохранить первое уравнение и поработать над двумя последними. При этом мы попытаемся убить одного из неизвестных и решить два других.Например, если мы сохраним первое и второе уравнение и вычтем первое из последнего, мы получим эквивалентную систему



Затем мы сохраняем первое и последнее уравнение и вычитаем первое из второго. Получаем эквивалентную систему



Теперь мы сосредоточимся на втором и третьем уравнениях. Повторяем ту же процедуру. Попробуйте убить одного из двух неизвестных ( y или z ). Действительно, мы сохраняем первое и второе уравнение и добавляем второе к третьему, умножив его на 3.Мы получили



Это, очевидно, означает z = -2. Из второго уравнения мы получаем y = -2, и, наконец, из первого уравнения получаем x = 4. Следовательно, линейная система имеет одно решение.



Переход от последнего уравнения к первому при решении неизвестных называется обратным решением .

Имейте в виду, что линейные системы, для которых матричный коэффициент является верхнетреугольным, легко решить. Это особенно верно, если матрица имеет эшелонированную форму.Таким образом, фокус состоит в том, чтобы выполнить элементарные операции по преобразованию исходной линейной системы в другую, для которой матрица коэффициентов имеет эшелонированную форму.
Используя наши знания о матрицах, можем ли мы в любом случае переписать то, что мы сделали выше, в матричной форме, которая упростит нашу нотацию (или представление)? Действительно, рассмотрим расширенную матрицу



Выполним над этой матрицей несколько элементарных операций со строками. Действительно, если мы сохраним первую и вторую строки и вычтем первую из последней, мы получим



Затем мы сохраняем первую и последнюю строки и вычитаем первую из второй.Мы получили



Затем мы сохраняем первую и вторую строки и добавляем вторую к третьей, умножив ее на 3, чтобы получить



Это треугольная матрица, не имеющая эшелонированной формы. Линейная система, для которой эта матрица является расширенной, есть



Как видите, мы получили ту же систему, что и раньше. Фактически мы следовали тем же элементарным операциям, что и выше. На каждом этапе новая матрица была в точности расширенной матрицей, связанной с новой системой.Это показывает, что вместо того, чтобы писать системы снова и снова, легко поиграться с элементарными операциями со строками, и как только мы получим треугольную матрицу, напишем связанную линейную систему, а затем решим ее. Это известно как Гаусса исключения . Подведем итоги процедуры:

Исключение Гаусса. Рассмотрим линейную систему.

1.
Построить расширенную матрицу для системы;
2.
Используйте элементарные операции со строками, чтобы преобразовать расширенную матрицу в треугольную;
3.
Запишите новую линейную систему, для которой треугольная матрица является связанной с ней расширенной матрицей;
4.
Решите новую систему. Вам может потребоваться присвоить некоторые параметрические значения некоторым неизвестным, а затем применить метод обратной подстановки для решения новой системы.

Пример. Решите следующую систему методом исключения Гаусса.



Расширенная матрица



Мы используем элементарные операции со строками, чтобы преобразовать эту матрицу в треугольную.Мы сохраняем первую строку и используем ее для получения всех нулей в любом месте первого столбца. У нас есть



Далее мы сохраняем первую и вторую строки и стараемся, чтобы во втором столбце были нули. Мы получили



Далее сохраняем первые три ряда. Добавляем последний к третьему, чтобы получить



Это треугольная матрица. Связанная с ним система



Очевидно, что v = 1. Положим z = s и w = t , тогда получим



Из первого уравнения следует

Используя алгебраические манипуляции, получаем

x = — — с т .

Собрав все вместе, у нас есть

Пример. Используйте метод исключения Гаусса для решения линейной системы



Соответствующая расширенная матрица



Сохраняем первую строку и вычитаем первую строку, умноженную на 2, из второй строки. Мы получили



Это треугольная матрица. Связанная система



Ясно, что второе уравнение означает, что эта система не имеет решения. Следовательно, эта линейная система не имеет решения.

Определение. Линейная система называется непоследовательной или переопределенной , если у нее нет решения. Другими словами, набор решений пуст. В противном случае линейная система называется непротиворечивой .

Следуя приведенному выше примеру, мы видим, что если мы выполним элементарные операции со строками над расширенной матрицей системы и получим матрицу с одной из строк, равной

,
где ,
тогда система несовместима.

[Назад]
[Следующий]

[Геометрия]
[Алгебра]
[Тригонометрия]

[Исчисление]
[Дифференциальные уравнения]
[Матричная алгебра]

С.O.S MATH: Домашняя страница

Вам нужна дополнительная помощь? Пожалуйста, разместите свой вопрос на нашем

S.O.S. Математика CyberBoard.

Автор : М.А.Хамси

Авторские права 1999-2021 MathMedics, LLC. Все права защищены.

Свяжитесь с нами

Math Medics, LLC. — П.О. Box 12395 — El Paso TX 79913 — США

пользователя онлайн за последний час

Методы исключения Гаусса и матричные методы

Методы исключения Гаусса и матричные методы

Система линейных уравнений может
быть помещены в матричную форму.Каждый
уравнение становится строкой, и каждое
переменная становится столбцом. An
добавлен дополнительный столбец для
справа. Система
показаны линейные уравнения и результирующая матрица.

Система линейных уравнений …

 3x + 2y - 4z = 3
2х + 3у + 3z = 15
5x - 3y + z = 14 

становится расширенной матрицей …

х год г справа
3 2 -4 3
2 3 3 15
5 -3 1 14

Цель при решении системы уравнений состоит в том, чтобы по возможности преобразовать расширенную матрицу в сокращенную форму строки-эшелона.

Есть три элементарных операции со строками, которые вы можете использовать для размещения матрицы в
уменьшенная строчно-эшелонированная форма.

Каждое из требований сокращенной матрицы строка-эшелон может быть удовлетворено с использованием элементарной строки
операции.

  • Если есть строка со всеми нулями, то она находится внизу матрицы.
    Поменяйте местами две строки матрицы, чтобы переместить строку со всеми нулями вниз.
  • Первый ненулевой элемент любой строки — это единица.Этот элемент называется ведущим.
    Умножьте (разделите) строку на ненулевую константу, чтобы превратить первый ненулевой элемент в
    один.
  • Первая строка любой строки располагается справа от первой строки предыдущей строки.
    Умножьте строку на ненулевую константу и добавьте ее в другую строку, заменив эту строку. В
    Смысл этой элементарной операции со строками состоит в том, чтобы преобразовать числа в нули. Сделав
    числа под ведущими в ноль, это заставляет первый ненулевой элемент любой строки быть
    справа от ведущей предыдущей строки.
  • Все элементы выше и ниже ведущего равны нулю.
    Умножьте строку на ненулевую константу и добавьте ее в другую строку, заменив эту строку. В
    Смысл этой элементарной операции со строками состоит в том, чтобы преобразовать числа в ноль. Разница здесь в
    что вы очищаете (обнуляете) элементы выше ведущего, а не чуть ниже
    ведущий.

Что такое поворот?

Цель поворота — сделать элемент выше или ниже ведущего.
в ноль.

«Поворотный элемент» или «сводный элемент» — это элемент в левой части матрицы.
что вы хотите
элементы сверху и снизу равны нулю.

Обычно это единица. Если вы найдете книгу, в которой упоминается поворот, они обычно
сказать вам, что вы должны повернуться на один. Если ограничиться тремя элементарными рядами
операций, то это верное утверждение.

Однако, если вы хотите объединить вторую и третью элементарные операции со строками, вы
придумать другую строковую операцию (не элементарную, но все еще действующую).

  • Вы можете умножить строку на ненулевую константу и добавить ее к ненулевому кратному другому.
    row, заменив эту строку.

И что? Если вам нужно повернуться на одном, то вам иногда придется использовать второй.
элементарная операция со строкой и разделите строку на ведущий элемент, чтобы превратить ее в единицу.
Деление приводит к дробям. Хотя дроби — ваши друзья, у вас меньше шансов ошибиться
если вы их не используете.

В чем прикол? Если вы не остановитесь на одном, вы, вероятно, столкнетесь с большими числами. Большинство
люди готовы работать с большими числами, чтобы избежать дробей.

Процесс поворота

Pivoting работает, потому что общее кратное (не обязательно наименьшее
общее кратное) двух чисел всегда можно найти, умножив
два числа вместе. Давайте возьмем предыдущий пример и
очистить первый столбец.

х год г справа
3 2 -4 3
2 3 3 15
5 -3 1 14

Полезные советы

  • Хотя вам не нужно поворачиваться на единицу, это очень желательно.Переход на единицу означает, что вы умножаете на 1 (что легко сделать).
  • Поворот по главной диагонали — это хорошо, но не обязательно.
    Некоторым людям нравится начинать с левого верхнего угла и продвигаться вниз к
    Нижний правый.
  • Пока вы выполняете поворот только один раз для каждой строки и столбца, столбцы, которые
    были очищены, останутся очищенными.
  • Поскольку целью поворота является очистка столбца вращения, выбор
    столбец, в котором уже есть нули, экономит время, потому что у вас нет
    чтобы изменить строку, содержащую ноль.

Выбор оси

  • Выберите столбец с наибольшим количеством нулей.
  • Использовать строку или столбец только один раз
  • Если возможно, установите единицу
  • Поворот по главной диагонали
  • Никогда не поворачивайтесь на ноль
  • Никогда не поворачивайте вправо

Так как в первом ряду никого нет, у нас есть два варианта: либо мы
первую строку делим на три и работаем дробями, либо делаем поворот на
три и получите большие числа.Это вариант, который я собираюсь использовать. Я поверну
на тройку в R 1 C 1 . Обведите его как стержневой элемент. В зависимости от вашего браузера вы
элементы поворота могут быть обведены красным кружком или просто отмечены знаком * перед ним.

х год г справа
* 3 2 -4 3
2 3 3 15
5 -3 1 14

Идея состоит в том, чтобы превратить числа в рамке (желтые) в ноль.Использование комбинированного
рядная операция
(это не элементарная операция), это может сделать 3R 2
2R 1 → R 2 и
3R 3 — 5R 1 → R 3 .

Единственная строка, которая не изменяется, — это строка, содержащая элемент поворота (
3). Весь смысл процесса поворота состоит в том, чтобы обнулить значения в рамке.

Перепишите сводную строку и очистите (сделайте ноль) сводный столбец.

х год г справа
* 3 2 -4 3
0
0

Для замены значений в строке 2 каждый новый элемент получается путем умножения
элемент, заменяемый во второй строке на 3 и вычитающий в 2 раза элемент в первой
строка из того же столбца, что и заменяемый элемент.

Чтобы выполнить поворот, приложите один палец к оси поворота (обведено кружком).
номер) и один палец на заменяемом элементе.
Умножьте эти два числа вместе. Теперь поместите один палец
на номере в рамке в той же строке, что и элемент, который вы
заменяя и другой палец в поворотном ряду и такой же
столбец как номер, который вы заменяете. Умножьте эти два
числа вместе. Возьмите продукт за шарнир и
вычесть произведение без оси.

х год г справа
* 3 2 -4 3
2 3 3 15
5 -3 1 14

Чтобы заменить 3 в R 2 C 2 , вы должны взять 3 (3) — 2 (2) = 9-4 = 5.

Чтобы заменить 3 в R 2 C 3 , вы должны взять 3 (3) — 2 (-4) = 9 +8 = 17.

Чтобы заменить 15 в R 2 C 4 , вы должны взять 3 (15) — 2 (3) = 45 — 6 = 39.

Чтобы заменить -3 в R 3 C 2 , вы должны взять 3 (-3) — 5 (2) = -9-10 = -19.

Чтобы заменить 1 в R 3 C 3 , вы должны взять 3 (1) — 5 (-4) = 3 + 20 = 23

Чтобы заменить 14 в R 3 C 4 , вы должны взять 3 (14) — 5 (3) = 42-15 = 27.

Вот как выглядит процесс.

х год г справа
поворотный ряд, копия
3
поворотный ряд, копия
2
поворотный ряд, копия
-4
поворотный ряд, копия
3
поворотная стойка, прозрачная
0
3 (3) — 2 (2)
5
3 (3) — 2 (-4)
17
3 (15) — 2 (3)
39
поворотная стойка, прозрачная
0
3 (-3) — 5 (2)
-19
3 (1) — 5 (-4)
23
3 (14) — 5 (3)
27

Или, если убрать комментарии, матрица после первого поворота выглядит так.

х год г справа
3 2 -4 3
0 5 17 39
0 -19 23 27

Пришло время
повторить весь процесс.Мы проходим и выбираем другое место для поворота. Мы
хотел бы, чтобы он был на главной диагонали, с единицей или с нулями в столбце.
К сожалению, у нас не может быть ничего из этого. Но так как мы должны все умножить
другие числа у оси, мы хотим, чтобы она была маленькой, поэтому мы перейдем к
5 дюймов R 2 C 2 и очистите 2 и -19.

х год г справа
3 2 -4 3
0 * 5 17 39
0 -19 23 27

Начните с копирования вниз сводной строки (2-я строка) и очистки сводного столбца (2-я строка).
столбец).Ранее очищенные столбцы останутся очищенными.

х год г справа
0
0 * 5 17 39
0 0

Вот вычисления, чтобы найти следующее взаимодействие.Обратите особое внимание
в 3-ю строку, где мы вычитаем значение -19 раз. Поскольку мы вычитаем
отрицательный, я записал его как плюс 19.

х год г справа
5 (3) — 2 (0)
15
поворотная стойка, прозрачная
0
5 (-4) — 2 (17)
-54
5 (3) — 2 (39)
-63
поворотный ряд, копия
0
поворотный ряд, копия
5
поворотный ряд, копия
17
поворотный ряд, копия
39
ранее погашено
0
поворотная стойка, прозрачная
0
5 (23) + 19 (17)
438
5 (27) + 19 (39)
876

И получившаяся матрица.

х год г справа
15 0 -54 -63
0 5 17 39
0 0 438 876

Обратите внимание, что все элементы в первой строке кратны 3 и все
элементы в последней строке кратны 438.Разделим, чтобы сократить ряды.

х год г справа
5 0 -18 -21
0 5 17 39
0 0 1 2

Это имело дополнительное преимущество, давая нам 1, именно там, где мы хотим, чтобы он был
вращаться.Итак, мы развернемся на 1 в R 3 C 3 и очистим -18 и 17. Обведите свою точку поворота и заключите в рамку другие числа.
этот столбец очистить.

х год г справа
5 0 -18 -21
0 5 17 39
0 0 * 1 2

Скопируйте сводную строку и очистите сводный столбец.Ранее очищенные столбцы
останется очищенным до тех пор, пока вы не повернете строку или столбец дважды.

х год г справа
0 0
0 0
0 0 * 1 2

Обратите внимание, что каждый раз приходится выполнять меньше вычислений.Вот
расчеты для этой оси. Опять же, поскольку значение в сводном столбце в
первая строка -18 и мы вычитаем, я записал это как + 18.

х год г справа
1 (5) +18 (0)
5
ранее погашено
0
поворотная стойка, прозрачная
0
1 (-21) + 18 (2)
15
ранее погашено
0
1 (5) — 17 (0)
5
поворотная стойка, прозрачная
0
1 (39) — 17 (2)
5
поворотный ряд, копия
0
поворотный ряд, копия
0
поворотный ряд, копия
1
поворотный ряд, копия
2

И получившаяся матрица.

х год г справа
5 0 0 15
0 5 0 5
0 0 1 2

Обратите внимание, что первая и вторая строки кратны 5, поэтому мы можем уменьшить их
ряды.

х год г справа
1 0 0 3
0 1 0 1
0 0 1 2

И окончательный ответ: x = 3, y = 1 и z = 2.Вы также можете написать это как
упорядоченный триплет {(3,1,2)}.

Надеюсь, вы заметили, что когда я работал с этим примером, я не следовал подсказкам
Я дал. Это потому, что я хотел, чтобы вы увидели, что произойдет, если вы не повернетесь
на один. В исходной матрице был один на главной диагонали, и
Лучше было бы начать с этого.

Сводка

  • Выбирайте поворотный элемент с умом.
  • Выбор столбца с нулями означает меньший поворот.
  • Выбор единицы в качестве точки поворота уменьшает числа, упрощает умножение и оставляет
    ненулевые элементы в очищенном столбце такие же (без поворота)
  • Поворот по главной диагонали означает, что вам не придется переключать строки, чтобы поместить матрицу в
    уменьшенная строчно-эшелонированная форма.
  • Не поворачивайтесь на ноль.
  • Не поворачивайте вправо.
  • Используйте строку или столбец только один раз
  • Возьмите продукт с шарниром за вычетом продукта без шарнира

Особые случаи

Если вы получите строку из всех нулей, кроме правой части, значит, у системы нет решения.

Если вы получаете строку со всеми нулями, а количество ненулевых строк меньше, чем количество
переменных, то система зависима, у вас будет много ответов, и вам нужно написать свой
ответ в параметрической форме.


Содержание: Примечания по алгебре колледжа


Сайт Расс Фрит

Часть 6: Исключение по Гауссу. Исключение Гаусса — это алгоритм… | Авниш | Линейная алгебра

Метод исключения Гаусса — это алгоритм решения системы линейных уравнений.Он назван в честь немецкого математика Карла Фридриха Гаусса.

Карл Фридрих Гаусс

Он аналогичен методу исключения, описанному ранее.

Для выполнения исключения Гаусса:

  1. Создаем расширенную матрицу коэффициентов и констант данной системы линейных уравнений.
  2. Выбираем нашу pivot (это первый элемент по диагонали). Затем мы пытаемся уменьшить все элементы под ним (до «0»), используя pivot.

Мы делаем это, выполняя два вида операций:

a) Умножение сводной строки (строки сводного элемента) на скалярную величину и вычитание или добавление ее строк под ней.

b) Перестановка строк (например, строка 2 заменяется строкой 3)

Затем мы выбираем следующую точку поворота (следующий элемент по диагонали) и уменьшаем элементы под ней.

3. Разбиваем расширенную матрицу обратно на строковое изображение и выполняем умножение с переменной матрицей. Получаем новые редуцированные уравнения.

Мы решаем эти уравнения, чтобы получить значения неизвестных (переменных).

Предполагая, что мы должны найти решение (я) следующей системы уравнений:

4x + y = 9 → (1)

2x-y = 3 → (2)

5x-3y = 7 → ( 3)

(пример «Одно уникальное решение» из Части 5)

Шаг 1 (Создание расширенной матрицы):

Для выполнения исключения Гаусса мы берем изображение строки (1), (2) и (3) .Это будет выглядеть следующим образом:

Затем мы создаем расширенную матрицу для матрицы коэффициентов и постоянной матрицы.

Единая матрица со значениями коэффициентов и констант, разделенных пунктирной линией

Шаг 2 (Исключение):

Шаг 2A:

Принимая элемент в верхнем левом углу (первый элемент по диагонали) в качестве стержня, мы стремимся исключить ( уменьшить до «0») все элементы под ним. Другими словами, мы должны преобразовать каждый элемент в столбце 1 в «0», кроме pivot.

Элемент поворота будет выделен красным цветом, а элементы, которые необходимо исключить, — синим.

Итак, мы умножаем первую строку на скаляр 1/2 и вычитаем ее из второй строки.

Элемент в строке 2 и столбце 1 исключается.

Затем мы умножаем первую строку на скаляр 5/4 и вычитаем из третьей строки.

Элемент в строке 3 и столбце 1 исключен.

Теперь все элементы в первом столбце равны «0», кроме точки поворота.

Шаг 2B:

Теперь следующий элемент по диагонали (второй столбец второй строки) установлен как опорный, и мы стремимся удалить все элементы под ним.

Pivot выделен красным.

Итак, мы умножаем вторую строку на скаляр 17/6 и вычитаем ее из третьей строки.

Элемент в строке 3 и столбце 2 исключен.

Результат — верхняя треугольная матрица.

Текущее состояние расширенной матрицы называется эшелоном строк формы .

Шаг 3 (обратная подстановка):

Теперь мы конвертируем форму эшелона строки обратно в изображение строки.

У нас было подобное уравнение на этапе 1

При умножении мы получаем:

Мы составляем уравнения из этих

4x + y = 9 → (4)

-3y / 2 = -3/2 → (5)

Решая (5) относительно «y», получаем:

y = 1

Теперь подставляем y = 1 в (4):

4x + 1 = 9

4x = 8

x = 2

Итак, мы получаем x = 2 и y = 1, именно то, что мы получили, когда решали через изображение строки и изображение столбца в Части 5.

Теперь применим тот же алгоритм еще в двух случаях (бесконечно много решений и нет решения).

Бесконечно много решений

Возьмем тот же пример, что и в Части 5. То есть:

x + 2y = 4 → (6)

2x + 4y = 8 → (7)

Шаг 1 (Создание дополненного матрица):

Изображение строки (6) и (7). Расширенная матрица изображения строки выше

Шаг 2 (Исключение):

Первый элемент диагонален («1») как точка поворота.

Pivot выделен красным, и мы должны удалить все элементы под ним (синим). Чтобы исключить «2», мы дважды вычитаем строку 1 из строки 2 Теперь последняя строка полностью заполнена 0

Мы больше не делаем поворота. так как исключать нечего.

Шаг 3 (обратная подстановка):

Мы преобразуем форму эшелона строк обратно в изображение строки:

После этого мы умножаем ее и получаем новые уравнения

x + 2y = 4 → (8)

Уравнение (6) и уравнения (8) такие же, и у нас есть только одно уравнение после исключения, но два неизвестных («x» и «y»).

Существует множество значений, которыми можно заменить x и y, чтобы удовлетворить (8).

Нравится, x = 0 и y = 2. Подставляя в уравнение (8), получаем:

0 + 2 (2) = 4

4 = 4

Или x = 1 и y = 1.5. Подставляя в уравнение (8), получаем:

1 + 2 (1.5) = 4

1 + 3 = 4

4 = 4

Таким образом, система уравнений (6) и (7) имеет бесконечно много решений.

Нет решения

Рассмотрим систему линейных уравнений следующим образом:

x + y = 4 → (9)

x + y = 8 → (10)

xy = 0 → (11)

Применение гауссовского Устранение.

Шаг 1 (Создание расширенной матрицы):

Изображение строки (9), (10) и (11) Расширенная матрица коэффициентов и констант

Шаг 2 (Исключение):

Принятие первого диагонального элемента в качестве точки поворота

Мы выполняем следующие две операции:

и получаем матрицу:

У нас все еще нет формы эшелона строк (верхняя треугольная матрица).

Итак, мы выполняем обмен строк (который также является вариантом на этапе исключения в методе исключения по Гауссу):

Замена строки 3 на строку 2 Форма эшелона строки

Шаг 3 (обратная подстановка):

Форма эшелона строки преобразована обратно в изображение строки

Уравнения, которые мы получаем после умножения матриц выше:

x + y = 4 → (12)

-2y = -4 → (13)

Решая уравнение (13) относительно «y», получаем:

y = 2

Подставляя y = 2 в уравнение (12), мы получаем:

x + 2 = 4

x = 2

Чтобы подтвердить, что x = 2 и y = 2 — решение, мы подставляем их в систему уравнений i.е. (9), (10) и (11).

Подставляя в (9), получаем:

2 + 2 = 4

4 = 4

x = 2 и y = 2, удовлетворяет (9).

Подставляя в (10), получаем:

2 + 2 = 8

4 ≠ 8, это не удовлетворяет (10).

Следовательно, x = 2 и y = 2 не является решением (9), (10) и (11), и не существует решения этой системы линейных уравнений, как мы видели в прошлой статье.

Одно решение

Когда количество неизвестных (переменных) равно количеству уравнения в системе линейных уравнений.

На примере (1), (2) и (3):

4x + y = 9 → (1)

2x-y = 3 → (2)

5x-3y = 7 → (3)

Имеется 2 неизвестных («x» и «y») и 3 уравнения ((1), (2) и (3)).

Двух уравнений было бы достаточно для двух неизвестных.

Бесконечно много решений

Когда количество неизвестных превышает количество уравнений.

В качестве примера (6) и (7):

x + 2y = 4 → (6)

2x + 4y = 8 → (7)

Есть 2 неизвестных («x» и «y») и 2 уравнения ((6) и (7)).

Добавить комментарий

Ваш адрес email не будет опубликован.