Сложные задачи по математике 5 класс с ответами и решениями: Сложные задачи по математике для 5 класса

Содержание

Олимпиадные задачи по математкие 5-6 класс — Колпаков Александр Николаевич

В последнее время увеличился поток писем от посетителей сайта с просьбами о помощи в решении олимпиадных задач для самых маленьких (5 — 6 класс). Это приятно, ибо работать с талантливыми и целеустремленными детьми одно удовольствие. Кто обычно пишет репетитору по математике? Как правило, это родители учеников, решающих сложные задачи для собственного удовлетворения и развития. Чуть меньше писем от самих участников математических олимпиад и конкурсов «Кенгуру». Последние присылают задачи, оказавшиеся им не по зубам на школьном или на районном туре. Репетитор по математике он-лайн в таких случаях является хорошим источником проверки правильности решения, а иногда и единственной надеждой узнать его вообще. Не каждому родителю удается справиться с олимпиадной задачей (и тем более объяснить ее в 5 классе),  а возможности придти после олимпиады домой и посмотреть решение задачи в учебнике нет. Именно для таких посетителей я решил открыть новую узкоспециализированную страницу: олимпиадные задачи по математике для 5 — 6 класса.

К сожалению, не всегда удается найти время на полное оформление задач в том объеме, в котором ни приходят ко мне по e-mail. Не забывайте, что я реальный репетитор по математике, а не виртуальный. Поэтому заранее прошу прощения, если в силу своей занятости не смогу ответить Вам оперативно. Оформление каждого решения (особенно если нужны рисунки и схемы) отнимает много времени и отвлекает репетитора от самого главного — от реальных занятий.  Но мне интересно развитие сайта, интересно расширение базы занимательных задач (дефицит которых испытывает каждый репетитор по математике), поэтому в свободное время с удовольствием работаю с Вашими письмами. Пишите, присылайте интересные и сложные задачки (для 5 класса, для 6 класса !!!), присылайте все что Вам показалось занимательным и необычным, сложным, тонким или противоречивым.

Олимпиадные задачи для 5 — 6 класса. Ответы на Ваши вопросы.

Вопрос репетитору по математике от Валентины
Часы Юры отстают на 8 минут, но он считает, что часы спешат на 2 минуты. Часы Коли спешат на 2 минуты, однако он думает, что они отстают на 8 минут. Друзья договорились, что встретиться в 5 часов вечера. Кто раньше окажется у места встречи и на сколько минут?

Решение репетитора (Колпаков А.Н.)
Отметим, что мальчики приходят в точку встречи по своему «внутреннему» таймеру (который рассчитывают), а не по реальному. Поэтому надо узнать, каково реальное время в момент прихода каждого. Найдем разницу между реальным временем и тем временем, которое представляет себе Юра. Пусть точное время x минут, тогда на часах Юры x-8 минут. Так как он думает, что они спешат, значит считает, что сейчас x-8-2 минут. Поэтому значение реального времени больше того, которое представляет себе Юра на 10 минут. Это означает, что к моменту прихода Юры в точку встречи реальное время составит 17 ч 10 мин.

Аналогично рассуждая можно получить расклад по Коле. Пусть y (мин) — реальное время. Тогда часы Коли в этот момент показывают y+2 (мин). Так как он думает, что часы отстают на 8 минут, значит считает, что в этот момент y+2+8 минут.

Поэтому значение реального времени меньше представляемого Колей на 10 минут. Это значит, что к моменту прихода Коли реально 16 ч 50 мин. Поэтому Коля пришел раньше Юры на 20 минут.

Задача репетитору по математике от Катерины.
Доброе утро, ребёнку в школе задали решить задачу с олимпиады, ну ни как не получается! Задача: Петя в трамвае заметил Васю, который поравнялся с трамваем следуя вдоль трамвайных путей в противоположном направлении. Через минуту Петя вышел и побежал вдогонку за Васей вдвое быстрее его, но в 4 раза медленнее трамвая. Через какое время Петя догонит Васю? Помогите.

Решение (А.Н.Колпаков) Прежде всего, нужно понять, что означает «в два раза быстрее». Это значит, что скорость больше в два раза. А поэтому в два раза больше будет пройденное расстояние (не важно, за какое время). Тогда, если Петя идет в два раза быстрее Васи и в 4 раза медленнее трамвая, то Вася проходит за минуту в раз меньшее расстояние, чем трамвай.

Поэтому если за одну минуту Вася проходит какой-то отрезок пути, то трамвай проезжает 8 таких отрезков. Поэтому расстояние между мальчиками в момент выхода Пети составляет 9 отрезков. За ту же минуту Петя проходит 2 отрезка (раз его скорость в 2 раза больше). Введем единицу измерения длины, равную этому же отрезку. Тогда мы имеем стандартные начальные данные для самой обычной задачи на скорость сближения. Скорости мальчиков известны – это 1 (отрезок/мин) и 2 (отрезка/мин), а расстояние для сближения составляет 9 отрезков.

За каждую минуту оно сокращается на 2-1=1 отрезок (это и есть скорость сближения). А нам надо узнать, за какое время расстояние в 9 отрезков сократится до нуля, то есть надо узнать время сближения. Его можно найти, разделив путь сближения на скорость сближения. Поэтому 9 делим на 1 и получаем 9 минут. Ответ: 9 мин.

Вопрос репетитору по математике от Ибрагилава.
Как решить задачу? Свете втрое больше лет, чем было Максиму тогда, когда она была в его нынешнем возрасте. Когда Максим будет в возрасте Светы, то им вместе будет 28 лет. Сколько сейчас лет Максиму и сколько сейчас лет Свете?

Решение  (Колпаков А.Н.)
Запутанные (олимпиадные) задачи на возраст удобно показывать на временной оси, на которой возраста представляются точками. Если у нас 2 человека и их возраста меняются, то изображающие их точки будут просто двигаться по оси. При этом расстояние между ними (разница в возрасте) будет сохраняться. Покажем нынешний возраст Светы и Максима точками С и М (верхний ряд букв на рисунке). В нижнем ряду поставим буквы С и М для того момента, когда «Света была в нынешнем возрасте Максима». Получим равные отрезки, концы которых (нижняя М и верхняя С) согласно условию «в 3 раза» можно обозначить как х и 3х. Тогда нынешний возраст Максима (середина отрезка) будет иметь координату 2х, а значит разница в возрасте составит ровно х (лет). Теперь покажем, какими будут координаты возрастов в тот момент, когда Максим окажется в возрасте Светы. Эти буквы стоят в ряду «будущее». Длина их отрезка тоже равна х (лет) и поэтому возраст Светы в этот момент окажется равным 4х (лет). Так как в будущем им вместе будет 28 лет, то 3х+4х=28, откуда получаем, что х=4. Поэтому Максиму сейчас лет, а Свете сейчас лет.

Вопрос репетитору по математике от Миши
Здравствуйте! Помогите решить олимпиадную задачку за 5 — 6 класс. Вася написал в тетради 4 числа. Сложил их по два всеми возможными способами получил шесть таких сумм: 2, 4, 9, 9, 14, 16. Какие числа записал Вася?

Решение (Колпаков А.Н.)
Пусть a, b, с, d – искомые числа, расположенные в порядке возрастания. Составим последовательность их суммы также в порядке возрастания используя неравенство a < b < c < d. Получим такой ряд:
1) a+b=2
2) a+c=4
3,4) b+c и a+d
5) b+d=14
6) c+d=16
Первые две суммы явно наименьшие и поэтому равны 2 и 4. Две последние явно наибольшие и равны соответственно 14 и 16. Осталось выяснить судьбу двух оставшихся: b+с и a+d. Но так на них приходятся две девятки, то каждая из них равна 9. По первым двум суммам делаем вывод, что с на 2 больше чем b. Поэтому c=b+2. Подставляя выражение для числа с в равенство b+c=9 получим, что b+b+2=9. Поэтому b=3,5 и значит c=3,5+2=5,5. Из первого равенства вытекает, что a=2-3,5=-1,5, а из последнего, что d=16-5,5=10,5
В итоге ответ оказывается таким: -1,5; 3,5; 5,5 и 10,5

Задача репетитору от Эльдара. Помогите решить: Всего 5555 человек, на 10 солдат приходится 1 капрал, на 5 капралов 1 офицер, на 9 офицеров 1 генерал. Решение: сколько всего было солдат?

Репетитор по математике Ермакова Диана
Для начала определим, сколько человек в одном таком «наборе», состоящем из генерала, капралов, офицеров и солдат.
Один генерал и девять офицеров у нас уже есть. Так как на каждого офицера приходится 5 капралов, то на 9 офицеров приходится капралов.
Так как на каждого капрала приходится 10 солдат, то на 45 капралов приходится солдат.
Всего человек в «наборе»
Так как всего в армии 5555 человек, то количество «наборов» равно
. В одном «наборе» солдат, поэтому в 11 «наборах» будет солдат.
Ответ: солдат.

Иногда мне помогают оформлять решения другие репетиторы по математике. Я рассылаю условия тем, кто дал свое согласие на участие в виртуальной работе. Для репетитора по математике такая активность — хороший шанс обратить на себя внимание будущих учеников. Поэтому, если Вы регистрируетесь у меня на сайте как репетитор по математике — укажите при заполнении анкеты (в поле дополнительной информации) готовы ли Вы к такому сотрудничеству. Тот репетитор по математике, кто будет присылать решения для публикации регулярно, скорее всего, может рассчитывать на размещение еще и в рекомендованном списке репетиторов.

Pages: 1 2

Олимпиадные задания по математике 5 класс

                Вар-т 1
           Вар-т 2
           Вар-т 3

Задание 1.

Расставьте в записи 7 х 9 + 12 : 3 — 2 скобки так,
чтобы значение получившегося выражения было равно 23.

Ответ:(7 х 9 + 2) : 3 — 2 = 23.

Задание 2.

В один сосуд входит 3 л, а в другой — 5л.
Как с помощью этих сосудов налить в кувшин 4л воды из водопроводного крана.

Ответ: Наполняем сосуд в 5л и отливаем в трехлитровый сосуд.
Оставшиеся 2 литра переливаем в кувшин.
Повторяя эту операцию, наливаем в кувшин 4 л воды.

Задание 3.

В оранжерее были срезаны гвоздики:
белых и розовых — 400 штук, розовых и красных — 300, белых и красных — 440.
Сколько гвоздик каждого цвета было срезано в оранжерее?

Ответ: Белых — 270, розовых — 130, красных — 170.
Сложить все данные числа и разделить результат на два;
получим количество гвоздик всех трех цветов,срезанных в оранжерее.

Задание 4.

Когда отцу было 27 лет, то сыну было только 3 года,
а сейчас сыну в три раза меньше лет, чем отцу. Сколько лет сейчас каждому из них?

Ответ: Пусть сейчас сыну — х лет, тогда отцу — 3х лет.
Поскольку разность возрастов отца и сына постоянна и равна по условию 24 годам,
то имеем уравнение: 3х — х = 24, откуда х = 12; 3х = 36.

Задание 5.

Принесли 5 чемоданов и 5 ключей от этих чемоданов, но неизвестно, какой ключ от какого чемодана.
Сколько проб придется сделать в самом худшем случае, чтобы подобрать к каждому чемодану свой ключ.

Ответ: Первым из ключей, которые мы будем подбирать к чемодану, в самом худшем случае придется сделать 4 пробы. (Если ключ не подошел к 4 чемоданам из 5, значит, он соответствует пятому).
Вторым ключом в самом худшем случае сделаем 3 пробы и т д.
Всего потребуется 10 проб (4 + 3 + 2 + 1 = 10

Задание 6.

Рыбак поймал рыбу. Когда у него спросили, колько весит пойманная рыба,
он сказал: «Я думаю, что ее хвост весит 1 кг, голова весит столько, сколько хвост и половина туловища,
а туловище — сколько голова и хвост вместе. «
Сколько же весит рыба?

Ответ: По условию туловище рыбы весит 1 кг ( вес хвоста) плюс вес головы,
а так как вес головы равен 1 кг (вес хвоста) и половине туловища,
то получается, что туловище рыбы весит 2 кг плюс половина туловища, т.е. туловище весит 4 кг.
Тогда голова весит 3 кг (сколько хвост и половина туловища), а вся рыба — 8 кг ( 3 + 4 + 1 = 8 ).

Олимпиадные задачи по математике 5 класс с ответами

Задача 1.

В корзине лежат яблоки, груши и персики – всего 37 плодов.
Яблок в корзине в два раза больше, чем персиков, и на 3 штуки больше, чем груш.
Сколько в корзине яблок, груш, персиков?

Задача 2.

Запишите все делители числа 24.
Запишите все числа, меньшие двухсот, которые кратны этому числу.

Задача 3.

Из двух городов, расстояние между которыми 100 км, одновременно выехали навстречу друг другу два велосипедиста,
скорости которых 12 км/ч и 14 км/ч.
Каким будет расстояние между велосипедистами через 3 часа после начала их движения?

Задача 4.

Начертите угол, который на 15 гр. меньше прямого угла.
Начертите угол, который на 65 гр. меньше развёрнутого угла.
На сколько градусов первый угол меньше второго?

Задача 5.

На стол положили ложки, вилки и ножи – всего 37 приборов.
При этом вилок положили в два раза больше, чем ножей и на 2 меньше, чем ложек.
Сколько положили на стол ложек, вилок, ножей?

Ответы:

1.
Яблок – 16, груш – 13, персиков – 8.
2.
Делители: 1, 2, 3, 4, 6, 8, 12, 24. Кратные: 24, 48, 72, 96, 120, 144, 168, 192.
3.
Искомое расстояние равно: 100 — (12 + 14) • 3 = 22 (км).
4.
Нужно начертить углы величиной в 75 гр. и 115 гр.. На 40 гр..
5.
Вилок – 14, ножей – 7, ложек – 16.

Олимпиадные задания по математике 5 класс с ответами

1. В выражении 4 + 32 : 8 + 4 • 3 расставьте скобки так, чтобы получилось число 28.

         Ответ: 4 + (32 : 8 + 4) • 3.

2. Подберите корни уравнения: 15 : х = 16 — х

         Ответ: 15, 1.

3. Необходимо получить число 16 с помощью четырех пятерок,
соединяя их знаками арифметических действий. Как это сделать?

         Ответ: 55 : 5 + 5.

4. Чему равно значение выражения: 101101 • 999 — 101 • 999999?

         Ответ: 0.

5. В семье трое братьев, каждый следующий брат вдвое младше предыдущего.
Сколько лет старшему, если всем им вместе 28 лет?

         Ответ: 16.

6. Для нумерации страниц учебника потребовалось 324 цифры. Сколько страниц в этой книге?

         Ответ: 144.

7. Напишите самое маленькое четырехзначное число, которое при делении на 6 дает в остатке 5.

         Ответ: 1001.

8. У щенят и утят 42 ноги и 12 голов. Сколько щенят и сколько утят?

         Ответ: 9 щенят, 3 утенка.

9. Напишите цифрами число, состоящее из 11 тысяч, 11 сотен и 11 единиц.

         Ответ: 12111.

10. Сумма и произведение четырех натуральных чисел равны 8. Что это за числа?

         Ответ: 1, 1, 4, 2.

11. Двумя прямыми линиями разделите циферблат часов на 3 части так,
чтобы после сложения чисел в каждой части получились 3 равные суммы.

         Ответ: 1-ая сумма: 11, 12, 1, 2;    2-ая сумма: 10, 9, 3, 4;    3-я сумма: 8, 7, 6, 5.

                     Вар-т 1
           Вар-т 2
           Вар-т 3

Задачи на пропорции по математике — примеры с ответами

Понятие пропорции

Чтобы решать задачи на тему пропорции, вспомним главное определение.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин.

Главное свойство пропорции:

Произведение крайних членов равно произведению средних.

a : b = c : d,

где a, b, c, d — члены пропорции, a, d — крайние члены, b, c — средние члены.

Вывод из главного свойства пропорции:

  • Крайний член равен произведению средних, которые разделены на другой крайний. То есть для пропорции a/b = c/d:
  • Средний член равен произведению крайних, которые разделены на другой средний. То есть для пропорции a/b = c/d:

Решить пропорцию — значит найти неизвестный член. Свойство пропорции — главный помощник в решении.

Запомним!

Равенство двух отношений называют пропорцией.

Рассмотрим легкие и сложные задачи, которые можно решить с помощью пропорции. 5, 6, 7, 8 класс — неважно, всем школьникам полезно проанализировать занимательные задачки.

Задачи на пропорции с решением и ответами

Свойства пропорции придумали не просто так! С их помощью можно найти любой из членов пропорции, если он неизвестен. Решим 10 задач на пропорцию.

Задание 1. Найти неизвестный член пропорции: x/2 = 3/1

Как решаем:

В этом примере неизвестны крайние члены, поэтому умножим средние члены и разделим полученный результат на известный крайний член:

x = (2 * 3)/1 = 6

Ответ: x = 6.

Задание 2. Найти неизвестный член: 1/3 = 5/y

Как решаем:

y = (3 * 5)/1 = 15

Ответ: y = 15.

Задача 3. Решить пропорцию: 30/x = 5/8

Как решаем:

x = (30 * 8)/5 = 48

Ответ: x = 48.

Задание 4. Решить: 7/5 = y/10

Как решаем:

y = (7 * 10)/5 = 14

Ответ: y = 14.

Задание 5. Известно, что 21x = 14y. Найти отношение x — к y

Как решаем:

  • Сначала сократим обе части равенства на общий множитель 7: 21x/7 = 14y/7.

    Получим: 3x = 2y.

  • Теперь разделим обе части на 3y, чтобы в левой части убрать множитель 3, а в правой части избавиться от y: 3x/3y = 2y/3y.
  • После сокращения отношений получилось: x/y = 2/3.

Ответ: 2 к 3.

На следующем примере мы узнаем как составить пропорцию по задаче💡

Задание 6. Из 300 подписчиков в инстаграм 108 человек — поставили лайк под постом. Какой процент всех подписчиков составляют те, кому понравился пост и они поставили лайк?

Как решаем:

  • Примем всех подписчиков за 100% и запишем условие задачи кратко:

    300 — 100%

    108 — ?%

  • Составим пропорцию: 300/108 = 100/x.
  • Найдем х: (108 * 100) : 300 = 36.

Ответ: 36% всех подписчиков поставили лайк под постом.

Задание 7. Подруга Гарри Поттера при варке оборотного зелья использовала водоросли и пиявки в отношении 5 к 2. Сколько нужно водорослей, если есть только 450 грамм пиявок?

Как решаем:

  • Составим пропорцию: 5/2 = x/450.
  • Найдем х: (5 * 450) : 2 = 1125.

Ответ: на 450 грамм пиявок нужно взять 1125 гр водорослей.

Задание 8. Известно, что арбуз состоит на 98% из воды. Сколько воды в 5 кг арбуза?

Как решаем:

Вес арбуза (5 кг) составляет 100%. Вода — 98% или х кг.

Составим пропорцию:

5 : 100 = х : 98

х = (5 * 98) : 100

х = 4,9

Ответ: в 5 кг арбуза содержится 4,9 кг воды.

Перейдем к примерам посложнее. Рассмотрим задачу на пропорции из учебника по алгебре за 8 класс.

Задание 9. Папин автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?

Как рассуждаем:

Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.

Обозначим:

  • v1 = 75 км/ч
  • v2 = 52 км/ч
  • t1 = 13 ч
  • t2 = х

Как решаем:

  1. Составим пропорцию: v1/v2 = t2/t1.

    Соотношения равны, но перевернуты относительно друг друга.

  2. Подставим известные значения: 75/52 = t2/13

    t2 = (75 * 13)/52 = 75/4 = 18 3/4 = 18 ч 45 мин

Ответ: 18 часов 45 минут.

Задание 10. 24 человека за 5 дней раскрутили канал в телеграм. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?

Как рассуждаем:

1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

2. Чем больше людей, тем меньше времени нужно для выполнения определенной работы (раскрутки канала). Значит, это обратно пропорциональная зависимость.

3. Поэтому направим вторую стрелку в противоположную сторону. Обратная пропорция выглядит так:

Как решаем:

  1. Пусть за х дней могут раскрутить канал 30 человек. Составляем пропорцию:

    30 : 24 = 5 : х

  2. Чтобы найти неизвестный член пропорции, нужно произведение средних членов разделить на известный крайний член:

    х = 24 * 5 : 30

    х = 4

  3. Значит, 30 человек раскрутят канал за 4 дня.

Ответ: за 4 дня.

Математика: уроки, тесты, задания.

Математика: уроки, тесты, задания.





    1. Сравнение предметов





    2. Точка, прямая линия, кривая и отрезок





    3. Особенности многоугольников





    4. Пространственные и временные представления





    5. Объединение предметов в группы и пары





    6. Сравнение (больше, меньше, столько же)





    7. Знаки сравнения и знаки действий






    1. Нумерация.

      Сколько? От 1 до 5





    2. Примеры на сложение и вычитание от 1 до 5





    3. Сравнение чисел от 1 до 5





    4. Текстовые задачи (от 1 до 5)





    5. Задачи на смекалку (от 1 до 5)






    1. Примеры на сумму





    2. Текстовые задачи (сумма)




  1. Переместительный закон сложения





    1. Примеры на разность





    2. Текстовые задачи (разность)




  2. Таблица сложения.

    Числа от 1 до 9





    1. Нумерация. Сколько? От 0 до 10





    2. Примеры от 0 до 10





    3. Сравнение чисел от 0 до 10 и выражений





    4. Текстовые задачи (от 0 до 10)





    5. Задачи на смекалку (от 0 до 10)




  3. Увеличить/уменьшить на…





    1. Мера длины — сантиметр





    2. Мера длины — дециметр




  4. На сколько больше? На сколько меньше?





    1. Счёт десятками





    2. Счёт круглых чисел






    1. Нумерация.

      Сколько? От 11 до 20





    2. Примеры от 11 до 20





    3. Сравнения чисел от 11 до 20





    4. Текстовые задачи (от 11 до 20)





    5. Задачи на смекалку (от 11 до 20)




  1. Числа от 20 до 100.

    Нумерация. Числа и цифры





    1. Сочетательный закон сложения. Скобки





    2. Таблица сложения. Числа от 0 до 18





    3. Вычитаем сумму из числа





    4. Правила сложения и вычитания чисел в пределах 20 с переходом через десяток





    5. Сложение и вычитание чисел в пределах 100 без перехода через десяток





    6. Правила сложения и вычитания чисел в пределах 100 с переходом через десяток





    7. Правила сложения и вычитания чисел в пределах 100






    1. Находим периметр





    2. Решение задач в два действия






    1. Мера длины — метр





    2. Килограмм





    3. Литр






    1. Уравнение (сумма)





    2. Уравнение (разность)






    1. Понятие умножения





    2. Переместительный закон умножения





    3. Умножение на 2 (таблица)





    4. Умножение на 3 (таблица)





    5. Умножение на 4 (таблица)





    6. Умножение на 5 (таблица)




  2. Деление



  3. Чётные и нечётные числа





    1. Выражения без скобок





    2. Выражения со скобками






    1. Узнаём о луче





    2. Фигура угол и его характеристики





    3. Характеристики прямого, тупого и острого углов






    1. Увеличить на.

      .. Увеличить в… Уменьшить на… Уменьшить в…





    2. Больше на… Больше в… Меньше на… Меньше в…






    1. Умножение на 6 (таблица)





    2. Умножение на 7 (таблица)





    3. Умножение на 8 (таблица)





    4. Умножение на 9 (таблица)






    1. Нахождение неизвестного множителя





    2. Нахождение неизвестного делимого





    3. Нахождение неизвестного делителя






    1. Свойства ломаной линии





    2. Треугольники.

      Виды треугольников






    1. Умножение и деление на 0, 1, 10. Деление числа на само себя





    2. Выполняем умножение и деление круглого числа на однозначное число





    3. Правила деления круглого числа на круглое число






    1. Умножаем сумму на число





    2. Умножаем двузначное число на однозначное число






    1. Правила деления суммы на число





    2. Правила деления двузначного числа на однозначное





    3. Правила деления двузначного числа на двузначное





    4. Правила деления с остатком






    1. Находим долю от числа





    2. Сравниваем доли





    3. Находим число по доле






    1. Трёхзначные числа.

      Нумерация





    2. Сложение и вычитание трёхзначных чисел





    3. Выполняем умножение и деление трёхзначного числа на однозначное число





    4. Связь между величинами




  1. Календарь





    1. Нумерация





    2. Правила сложения и вычитания многозначных чисел





    3. Правила сочетательного закона умножения





    4. Умножаем и делим числа на 10, 100, 1000





    5. Круглые числа (умножение и деление)






    1. Единицы измерения времени (час, минута, сутки)





    2. Миллиметр





    3. Километр






    1. Нахождение площади фигуры, прямоугольника





    2. Единицы измерения площади






    1. Умножение на однозначное число.

      Распределительный закон умножения относительно сложения





    2. Умножаем круглое число на однозначное число





    3. Выполняем умножение на круглое число





    4. Выполняем умножение круглых чисел





    5. Выполняем умножение на двузначное число





    6. Выполняем умножение на трёхзначное число






    1. Деление многозначного числа на однозначное число





    2. Деление круглого многозначного числа на однозначное





    3. Деление многозначного числа на 10, 100, 1000 с остатком





    4. Деление многозначного числа с остатком на однозначное число





    5. Выполняем деление трёхзначного числа на двузначное число





    6. Деление с остатком трёхзначного числа на двузначное число





    7. Деление многозначного числа на двузначное число





    8. Деление с остатком на двузначное число





    9. Выполняем деление на трёхзначное число





    10. Деление с остатком на трёхзначное число





    11. Деление круглого многозначного числа на круглое число






    1. Единицы времени.

      Минута. Секунда





    2. Единицы массы и площади. Гектар. Центнер. Тонна






    1. Понятие дроби





    2. Сравниваем дроби





    3. Дроби.

      Нахождение части числа





    4. Дроби. Нахождение числа по его части






    1. Решение задач на нахождение скорости, времени, расстояния





    2. Решение задач на нахождение работы, времени, производительности





    3. Решение задач на нахождение цены, количества, стоимости






    1. Десятичная система счисления.

      Римская нумерация





    2. Числовые и буквенные выражения





    3. Начальные геометрические понятия: прямая, отрезок, луч, ломаная, прямоугольник





    4. Определение координатного луча





    5. Округление чисел.

      Прикидка и оценка результатов вычислений





    6. Законы арифметических действий. Вычисления с многозначными числами





    7. Решение текстовых задач арифметическим способом





    8. Формулы. Уравнения. Упрощение выражений





    9. Математический язык и математическая модель






    1. Деление с остатком.

      Понятие обыкновенной дроби





    2. Основное свойство дроби. Сокращение и расширение дробей





    3. Правильные и неправильные дроби. Смешанные числа. Понятие, запись и чтение





    4. Сравнение обыкновенных дробей





    5. Сложение и вычитание обыкновенных дробей и смешанных чисел





    6. Умножение и деление обыкновенной дроби на натуральное число





    7. Нахождение части от целого и числа по его части





    8. Геометрические понятия: окружность и круг






    1. Угол.

      Измерение углов





    2. Биссектриса угла. Свойство биссектрисы угла





    3. Треугольник. Площадь треугольника





    4. Свойство углов треугольника. Размеры объектов окружающего мира (масштаб)





    5. Расстояния между двумя точками.

      Масштаб. Виды масштаба





    6. Перпендикулярность прямых. Расстояние от точки до прямой. Серединный перпендикуляр






    1. Понятие десятичной дроби. Представление десятичной дроби в виде обыкновенной дроби и наоборот





    2. Десятичные дроби.

      Сравнение





    3. Десятичные дроби. Сложение и вычитание





    4. Десятичные дроби. Умножение





    5. Степень с натуральным показателем





    6. Десятичные дроби.

      Среднее арифметическое, деление на натуральное число





    7. Десятичные дроби. Деление на десятичную дробь





    8. Проценты. Задачи на проценты: нахождение процента от величины и величины по её проценту






    1. Прямоугольный параллелепипед.

      Определение, свойства





    2. Прямоугольный параллелепипед. Развёртка





    3. Прямоугольный параллелепипед. Объём






    1. Делимость натуральных чисел





    2. Признаки делимости на 2, 3, 5, 9, 10





    3. Простые и составные числа.

      Разложение натурального числа на простые множители





    4. Наибольший общий делитель и наименьшее общее кратное






    1. Положительные и отрицательные числа. Определение координатной прямой





    2. Противоположные числа.

      Модуль числа. Целые и рациональные числа





    3. Сравнение рациональных чисел





    4. Сложение рациональных чисел с помощью координатной прямой





    5. Алгебраическая сумма. Свойства





    6. Алгебраическая сумма рациональных чисел с одинаковыми знаками





    7. Алгебраическая сумма рациональных чисел с разными знаками





    8. Умножение и деление рациональных чисел





    9. Умножение и деление обыкновенных дробей





    10. Дробные выражения





    11. Координаты.

      Координатная плоскость, координаты точки






    1. Отношение двух чисел





    2. Пропорция. Основное свойство пропорции





    3. Прямая и обратная пропорциональность





    4. Решение задач с помощью пропорций





    5. Разные задачи






    1. Упрощение выражений, раскрытие скобок





    2. Решение линейных уравнений





    3. Этапы решения линейных уравнений






    1. Начальные понятия и факты курса геометрии





    2. Параллельность прямых





    3. Центральная и осевая симметрия





    4. Окружность и круг.

      Число Пи. Длина окружности. Площадь круга





    5. Наглядные представления о шаре, сфере. Формулы площади поверхности сферы и объёма шара




  1. Коллекция интерактивных моделей




примеры и способы решения математических задач для родителей

На протяжении всего обучения школьникам приходится решать задачи — в начальной школе по математике, а затем по алгебре, геометрии, физике и химии. И хотя условия задач в разных науках отличаются, способы решения основаны на одних и тех же логических принципах. Понимание того, как устроена простая задача по математике, поможет ребёнку разработать алгоритмы для решения задач из других областей науки. Поэтому учить ребёнка решать задачи необходимо уже с первого класса. 

Нередки случаи, когда точные науки вызывают у детей сопротивление. Видя это, учителя и родители записывают таких детей в «гуманитарии», из-за чего они только укрепляются во мнении, что точные науки — это не для них. Преподаватель математики Анна Эккерман уверена, что проблемы с математикой часто имеют исключительно психологический характер:

Детям вбивают в голову, что математика — это сложно. К длинным нудным параграфам в учебнике сложно подступиться. Учитель ставит на ребёнке клеймо «троечника» или «двоечника». Если не внушать детям, что они глупые и у них ничего не получится, у них получится ровно всё.

Чтобы ребёнку было интересно учить математику, он должен понимать, как эти знания пригодятся ему, даже если он не собирается становиться программистом или инженером.

Математика ежедневно помогает нам считать деньги, без умения вычислять периметр и площадь невозможно сделать ремонт, а навык составления пропорций незаменим в кулинарии — используйте это. Превращайте ежедневные бытовые вопросы в математические задачи для ребёнка: пусть польза математики станет для него очевидна. 

Конечно, найти в быту применение иррациональным числам или квадратным уравнениям не так просто. И если польза этих знаний вызывает у подростка вопросы, объясните ему, что с их помощью мы тренируем память, развиваем логическое мышление и остроту ума — навыки, в равной степени необходимые как «технарям», так и «гуманитариям». 

Как правильно научить ребёнка решать задачи

Если ребёнок только начинает осваивать навык решения задач, приучите его придерживаться определённого алгоритма.   

1. Внимательно читаем условия  

Лучше вслух и несколько раз. После того как ребёнок прочитал задачу, задайте ему вопросы по тексту и убедитесь, что ему понятно, что вычислять нужно количество грибов, а не огурцов. Старайтесь не нервничать, если ребёнок упустил что-то из вида. Дайте ему разобраться самостоятельно. Если в условиях упоминаются неизвестные ребёнку реалии — объясните, о чём идёт речь.

Особую сложность представляют задачи с косвенным вопросом, например:

«Один динозавр съел 16 деревьев, это на 3 меньше, чем съел второй динозавр. Сколько деревьев съел второй динозавр?». Невнимательно прочитав условия, ребёнок посчитает 16−3, и получит неправильный ответ, ведь эта задача на самом деле требует не вычитания, а сложения.        

2. Делаем описание задачи

В решении некоторых задач поможет представление данных в виде схемы, графика или рисунка. Чем ярче сложится образ, тем проще будет его осмыслить. Наглядная запись позволит ребёнку не только быстро разобраться в условиях задачи, но и поможет увидеть связь между ними. Часто план решения возникает уже на этом этапе. 

Ребёнок должен чётко понимать значения словесных формул и знать, какие математические действия им соответствуют.   

Формы краткой записи условий задач / shkola4nm.ru

3. Выбор способа решения

Наглядно записанное условие должно подтолкнуть ребёнка к нахождению решения. Если этого не произошло, попробуйте задать наводящие вопросы, проиллюстрировать задачу при помощи окружающих предметов или разыграть сценку. Если один из способов объяснения не сработал — придумайте другой. Многократное повторение одного и того же вопроса неэффективно. 

Все, даже самые сложные, математические задачи сводятся к принципу «из двух известных получаем неизвестное». Но для нахождения этой пары чисел часто требуется выполнить несколько действий, то есть разложить задачу на несколько более простых. 

Ребёнок должен знать способы получения неизвестных данных из двух известных:

  • слагаемое = сумма − слагаемое
  • вычитаемое = уменьшаемое − разность
  • уменьшаемое = вычитаемое + разность
  • множитель = произведение ÷ множитель
  • делитель = делимое ÷ частное
  • делимое = делитель × частное

После того как план действий найден, подробно запишите решение. Оно должно отражать всю последовательность действий — так ребёнок сможет запомнить принцип и пользоваться им в дальнейшем. 

4. Формулировка ответа

Ответ должен быть полным и точным. Это не просто формальность: обдумывая ответ, ребёнок привыкает серьёзно относиться к результатам своего труда. А главное — из описания должна быть понятна логика решения.

Задание из базового курса алгебры домашней онлайн-школы «Фоксфорда», 7 класс

Одна из самых распространённых ошибок — представление в ответе не тех данных, о которых спрашивалось изначально. Если такая проблема возникает, нужно вернуться к первому пункту.   

5. Закрепление результата

Не стоит думать, что выполнив задание один раз, ребёнок сразу научится решать задачи. Полученный результат нужно зафиксировать. Для этого подумайте над решённой задачей ещё немного: предложите ребёнку поискать другой способ решения или спросите, как изменится ответ при изменении того или иного параметра в условии.

Важно, чтобы у ребёнка сложился чёткий алгоритм рассуждений и действий в каждом из вариантов.  

В нашей онлайн-школе, помимо уроков, ученики могут закреплять  свои знания на консультациях в формате открытых часов, где учителя разбирают темы, вызвавшие затруднения, показывают необычные задачи и различные способы их решения. 

Что поможет ребёнку решать задачи  

В заключение расскажем о том, как сделать процесс решения задач проще и интереснее:

  • Для того чтобы решать задачи, необходимо уметь считать. Следует выучить с ребёнком таблицу умножения, освоить примеры с дробями и простые уравнения.
  • Чтобы решение задач не превратилось для ребёнка в рутину, проявите фантазию. Меняйте текст задания в соответствии с интересами ребёнка. Например, решать задачи на движение будет куда интереснее, если заменить банальные поезда трансформерами, летящими навстречу друг другу в эпической схватке. 
  • Дети с развитой логикой учатся решать задачи быстрее. Советуем разбавлять чисто математические задания логическими. Задачи «с подвохом» избавят ребёнка от шаблонного мышления, а задания с большим количеством лишних данных научат выделять главное из большого количества условий.    

<<Блок перелинковки>>

После того как ребёнок решит достаточно задач одного типа, предложите ему самому придумать задачу. Это позволит ему не только закрепить материал, но и проявить творческие способности.

50, 51. Задачи на части

 Купили 2700 г сухофруктов. Яблоки составляют 4 части, чернослив — 3 части и курага — 2 части массы сухофруктов. Сколько граммов яблок, чернослива и кураги в отдельности купили?

Решение:
1) 4+3+2=9(ч.) — всего
2) 2700 : 9 = 300 (г) — на одну часть
3) 300 * 4 = 1200 (г) — яблок
4) 300 * 3 = 900 (г) — чернослива
5) 300 * 2 = 600 (г) — кураги
Ответ: 1200г, 900г, 600г.

2. Известно количество частей некоторых элементов и разность этих элементов.

Тетрадей в клетку купили на 60 больше, чем тетрадей в линейку. Тетрадей в клетку было в 3 раза больше, чем тетрадей в линейку. Сколько купили тетрадей?

Решение:
Пусть тетради в линейку составляют одну часть, тогда тетради в клетку составляют 3 части.
1) 3-1=2 (ч.) — это 60 тетрадей
2) 60 : 2 = 30 (т.) — на одну часть
2) 3 + 1 = 4 (ч.) — всего
3) 30 * 4 = 120 (т.) — купили
Ответ: 120 тетрадей.

3. Известно количество частей некоторых элементов и значение одного элемента

Для компота взяли 6 частей яблок, 5 частей чернослива и 3 части кураги. Оказалось, что чернослива и кураги вместе взяли 2 кг 400 г. Определите массу взятых яблок; массу всех фруктов.

Решение:
1) 5 + 3 = 8 (ч.) — чернослива и кураги
2) 2400 : 8 = 300 (г) — на одну часть
3) 300 * 6=1800 (г) — яблок
4) 1800 + 2400 = 4200 (г) — фруктов
Ответ: 1 кг 800 г; 4 кг 200 г.


Домашнее задание

К уроку 50 (на 17.11)
п. 3.14
№ 3.212, 3.213

Дополнительное задание


Для приготовления абрикосового джема берут 5 частей абрикосов, 3 части сахара и 1 часть воды. Сколько килограммов абрикосового варенья получится, если сахара потребовалось на 2 кг 400 г меньше, чем абрикосов.


К уроку 51 (на 18.11)
Подготовиться к контрольной работе
п. 3.14
№ 3.214(2), 3.215

Дополнительное задание

Для приготовления яблочного повидла на 5 частей массы яблочного пюре берут 3 части массы сахара. Сколько яблочного пюре и сколько сахара потребуется, чтобы подготовит 6 кг смеси?

Как решать Задачи по Математике 5 класс (2017) + Примеры, Таблицы

Editor choice

СохранитьSavedRemoved 33

Существует много причин, по которым ребёнок не может решить задачу по математике 5 класс. В большинстве из них он не виноват, поэтому стоит ему помочь разобраться с проблемой. Задачи не такие трудные, но в связи с появлением дробей и уравнений иногда сложно определить способ и верный путь их решения.

Содержание статьи:

Почему инструкция лучше решебника

В этой инструкции вы сможете найти типовые задачи, которые встречаются в курсах математики за 5 класс и разобранное, подробное, пошаговое решение. Это значительно полезнее книг, так как в них собраны далеко не все задачи, а те решения, которые есть, сжаты до минимума. Поэтому пользоваться решебником — порой не самый лучший выход.

Решебник по математике не всегда может дать исчерпывающую информацию

Как правило, при составлении ответов на свои задачи авторы не расписывают подробности и дают решения не ко всем номерам. Возможно, в расчёт идёт тот факт, что ученик способен справиться самостоятельно. Но вдруг ребёнок пропустил тему, что же тогда делать?

Лучший вариант — посмотреть решение типовых задач с пояснениями каждого действия. В этой инструкции собраны самые распространённые примеры, которые вызывают трудности у детей при решении, а также родителей при попытке объяснить задачу.

вернуться к меню ↑ вернуться к меню ↑

Почему важно уметь решать задачи по математике

Математика — точная дисциплина, связанная с вычислениями. Но её часто называют царицей всех наук. Это не просто так. Основное, чему учатся дети — решение конкретно поставленных задач. Это самое важное для развития любого человека.

Для построения правильного ответа на задачу нужно выделить:

  • главную мысль;
  • заданное условие;
  • что требуется найти;
  • связь между искомым и данным.

Математика — один из самых важных предметов в школьной программе

На основе этого строится логичное решение с использованием условий для получения требуемого результата. Вместе с этим развивается познавательная активность, логические мышление.

вернуться к меню ↑ вернуться к меню ↑

Какие бывают задачи по математике в 5-ом классе

В 5-ом классе по математике встречается несколько разновидностей задач. Этот год самый важный для ученика, потому что здесь собраны все базовые условия, которые углублённо решаются в следующие годы обучения. Здесь представлен список самых распространённых задач:

  • на базовые арифметические действия;
  • на скорость, время и расстояние;
  • на движение;
  • решаемые алгебраическим способом — проценты, дроби, уравнения;
  • решаемые геометрическим способом — площадь, длина.

Существует немало различных задач и путей их решения

Для грамотного решения всех типов задач можно составить единый алгоритм:

  • Прочитайте вдумчиво, не торопясь полный текст задачи;
  • Определите к какому типу она относится;
  • На основе этого составьте краткое условие или таблицу;
  • Начните читать каждое предложение отдельно, заполняя таблицу или краткое условие;
  • Определите вопросом то, что нужно найти;
  • Выберите вариант решения и составьте выражение, в результате которого получится ответ;
  • Проверьте правильность и соответствие условию;
  • Запишите полученный ответ.

Этот алгоритм можно применять ко всем типам задач. В разных заданиях отличаться будут только числа и способ решения.

Далее представлены все типы задач, которые могут встретить пятиклассники в учебниках и задачниках по математике. Все они будут разобраны на двух примерах с подробным разъяснением.

вернуться к меню ↑ вернуться к меню ↑

Задачи на сложение, вычитание, умножение и деление

вернуться к меню ↑

Пример 1

На кухне лежит пакет, в котором 3000 грамм муки. Повар для выпечки из него брал 4 раза муку. В первый раз 250 грамм, во второй 320 грамм, в третий 140 грамм, в четвёртый 690 грамм. Найдите сколько муки осталось в пакете.

Решение

  • Для начала запишем краткое условие в виде таблицы. Повар брал муку четыре раза, значит для каждого раза делаем по одной строчке.
  • Всего у нас было 3000 грамм. Это ещё одна строка.
  • От нас требуют найти остаток, значит — это последняя строка.
  • Заполняем таблицу. Какой она получится, смотрите ниже.

Таблица 1 — Краткое условие

Условие Количество
Было 3000
Первый раз 250
Второй раз 320
Третий раз 140
Четвёртый раз 690
Осталось ?
  • Сделанная таблица наглядно показывает, что для расчёта остатка нужно из 3000 вычесть количество, которое повар забрал всего;
  • Для этого сложим количество муки, которое повар израсходовал за четыре раза. Получается такое выражение: 250+320+140+690=1400 грамм;
  • Теперь найдём остаток. Для этого из того, что было, вычтем полученное значение — 1400. Получим выражение: 3000-1400=1600 грамм. Это то, что от нас требовалось — найти сколько осталось муки;
  • Записываем это в ответ к задаче.

вернуться к меню ↑

Пример 2

В пассажирском поезде 12 вагонов. В каждом из них по 40 мест. Сколько осталось свободных мест, при условии, что в поездку отправились 352 пассажира?

Решение

  • Составляем краткое условие. Нагляднее всего будет снова использовать таблицу;
  • У нас есть количество вагонов — первая строчка. Количество свободных мест в каждом вагоне — вторая строка. Места, которые заняли пассажиры — третья. Сколько осталось мест — четвёртая;
  • Далее заполняем таблицу числами из условия. Что получилось, смотрите ниже;

Таблица 2 — Условие задачи

Места в вагоне Количество
Кол-во вагонов 12
Кол-во мест в вагоне 40
Кол-во пассажиров 352
Осталось мест ?
  • Теперь приступаем к вычислениям. Для начала нам нужно узнать сколько всего свободных мест было в вагонах. Для этого умножим количество вагоном на количество свободных мест в каждом. Получается выражение: 40×12=480;
  • Для того, чтобы найти сколько осталось свободных мест нужно, из полученного значения вычесть занятые места. Получим выражение: 480-352=128;
  • Полученное число — это ответ на вопрос из условия задачи. Записываем его.

Эти задачи самые простые и встречаются в начале учебного года. Используют их авторы учебников для того, чтобы ученик мог вспомнить алгоритм решения и базовые правила.

вернуться к меню ↑ вернуться к меню ↑

Задачи на скорость, время, расстояние

вернуться к меню ↑

Пример 1

За 7 часов теплоход проделал путь в 210 км. Поезд за 4 часа преодолел 420 км. Во сколько раз скорость поезда больше скорости теплохода?

Решение

  • Записываем краткое условие. В этом типе задач оно немного отличается от стандартного;
  • У нас есть два объекта — теплоход и поезд. Это значит, что в таблице будет две строки;
  • Для каждого объекта есть три значения, соответственно, и столбцов будет три;
  • Заполняем числами таблицу. Что должно получится смотрите ниже;

Таблица 3 — Краткое условие

Скорость Время Расстояние
Теплоход ? 7 210
Поезд ? 3 360
  • Приступим к поиску неизвестных. Нам нужно узнать скорость у теплохода и поезда. Для этого используется формула — скорость равна результату деления расстояния на время. Математически записывается так — V=S:T;
  • Подставив числа из условия, получаем выражение для скорости теплохода. 210:7=30 км/ч;
  • Также поступаем и для расчёта скорости поезда. 360:3=120 км/ч;
  • Мы нашли все неизвестные и теперь возвращаемся к главному вопросу задачи. Нам нужно определить во сколько раз скорость поезда превышает скорость теплохода;
  • Для этого делим большее значение на меньшее. Получается: 120:30=4;
  • В ответ пишем, что скорость теплохода и поезда отличается в 4 раза.

вернуться к меню ↑

Пример 2

Автомобилист за 4 часа проехал 320 километров. Какой путь проделает автомобиль за 8 часов с той же скоростью?

Решение

  • Записываем краткое условие. Объект один, значит строка будет одна. Столбцов стандартно три;
  • Заполняем числа из условия в таблицу. Что получится смотрите ниже;

Таблица 4 — краткое условие

Скорость Время Расстояние
Автомобиль ? 4 320
  • Ищем неизвестные. В нашем случае нужно найти скорость. Для этого воспользуемся формулой V=S:T. Подставляем числа и получаем: 320:4=80 км/ч;
  • После того, как стали известны все значения, переходим к главному вопросу задачи — сколько проедет автобус за 8 часов с той же скоростью;
  • Для расчёта используем формулу S=VT. Подставляем числа и получаем: 80×8=640 км;
  • Записываем полученное значение в ответ к задаче.

Решение этих задач требует знать основную формулу S=VT. Расшифровывается она так: расстояние равно произведению скорости на время. Из неё вытекают все решения для нахождения неизвестных. Также для упрощения задачи можно рисовать схему.

вернуться к меню ↑ вернуться к меню ↑

Задачи на движение

вернуться к меню ↑

Пример 1

Расстояние между двумя городами 125 километров. В одно и то же время выезжают два велосипедиста навстречу. Скорость первого велосипедиста 10 км/ч. Второй едет со скоростью 15 км/ч. Через какое время они встретятся?

Решение

  • Начинаем с составления краткого условия. Лучше всего оформить в качестве таблицы;
  • Велосипедиста два— значит нужны 2 строки. Столбцов стандартно 3. Но в этом типе задач у нас будут общие показатели. То есть, расстояние и время всегда одно сразу для всех строк;
  • Заполняем таблицу числами. Что должно получится смотрите в ниже;

Таблица 5 — краткое условие

Скорость Время Расстояние
1 велосипедист 10 ? 125
2 велосипедист 15 ? 125
  • Теперь переходим к расчётам. Логично, что для встречи велосипедисты должны проехать в сумме весь путь. Необязательно одинаковое расстояние, так как оно зависит от скорости каждого из них;
  • Нам нужно посчитать какое расстояние они преодолевают в час. Для этого сложим скорости первого и второго. Получаем выражение: 10+15=25 км/ч;
  • Для расчёта времени через которое они встретятся нужно воспользоваться формулой T=S:V. Подставляем числа и получаем выражение: 125:25=5 ч;
  • Соответственно, велосипедисты пересекутся между собой через 5 часов. Записываем это в ответ.

вернуться к меню ↑

Пример 2

Расстояние, на котором между собой находятся два города — 600 км. Из них одновременно на встречу друг другу выехали два автомобиля. В пути они встретились через 5 часов. Найдите скорость первого автомобиля, если известно, что второй ехал со скоростью 80 км/ч.

Решение

  • Составим таблицу, в которой ситуация из условия будет наглядно представлена;
  • Два автомобиля — две строки. Стандартное количество столбцов — три;
  • Заполняем числами из условия. Что должно получится, смотрите ниже;

Таблица 6 — краткое условие

Скорость Время Расстояние
1 автомобиль ? 5 600
2 автомобиль 80 5 600
  • Переходим к расчётам. Для нахождения скорости первого автомобиля нам нужно знать, сколько километров он проехал. Найти это можно, вычтя из общего пути расстояние, которое проехал второй до их встречи;
  • Используем формулу S=VT. Подставляем числа из таблицы, получаем выражение: 80×5=400 км. Это расстояние прошёл второй автомобиль до встречи с первым. Значит, первый проехал всего: 600-400=200 км;
  • Теперь можно найти скорость первого автомобиля. Используем формулу V=S:T. Подставляем числа: 200:5=40 км/ч;
  • Полученное значение — ответ на главный вопрос задачи. Записываем его.

Если вас смущает время, которое написано один раз для всех объектов, то можно поступить следующим образом. Записывайте его отдельно к каждой строке и рядом нарисуйте отрезок, который снизу отмечен расстоянием, а сверху подписан временем.

вернуться к меню ↑ вернуться к меню ↑

Задачи, решаемые алгебраическим способом

вернуться к меню ↑

Пример 1

Из цистерны отлили 80 литров молока, в нем осталось на 240 литров больше, чем отлили. Сколько литров молока было в цистерне с самого начала?

Решение

  • Начинаем с составления краткого условия в виде таблицы. В подобных типовых задачах нужно обозначать неизвестное за «x»;
  • Потребуются три строки: сколько молока было, сколько его отлили и сколько осталось;
  • Заполняем числами таблицу;

Таблица 7 — краткое условие задачи

Было Х
Отлили 80
Осталось 240+80
  • Приступаем к расчётам. Нам нужно узнать, сколько было молока изначально. Для этого составляем уравнение. От начального количества вычитаем отлитое и получаем остаток;
  • Математически получаем такую запись: x-80=240+80;
  • Начинаем решение с того, что считаем всё, что можно посчитать. В данном случае складываем правую часть уравнения. 240+80=320. Теперь уравнение имеет вид: x-80=320;
  • Теперь находим «x». Используем базовое правило математики и получаем следующее: x=320+80. Считаем правую часть и получаем: x=400;
  • Возвращаемся к началу и смотрим, что мы обозначили за «x». В этом примере за икс мы взяли объём молока, который был изначально. То есть, изначально было 400 литров молока;
  • Записываем полученное значение в ответ.

вернуться к меню ↑

Пример 2

Первое слагаемое на 52 больше второго слагаемого, а второе слагаемое на 14 меньше третьего слагаемого. Сумма трех слагаемых равна 327. Найдите каждое слагаемое.

Решение

  • Записываем краткое условие в виде таблицы;
  • Потребуется четыре строки, так как нам дали три слагаемых и их сумму;
  • Заполняем таблицу числами, обозначив за икс последнее слагаемое. Выбираем третье, потому что от него зависят все остальные;

Таблица 8 — краткое условие задачи

1 слагаемое (x-14)+52
2 слагаемое x-14
3 слагаемое x
Сумма 327
  • Приступаем к расчётам. Для нахождения слагаемых нужно решить уравнение, после чего число подставить в выражения из таблицы.
  • Уравнение составляется исходя из условия – три слагаемых и сумма – складываем значения из второго столбца таблицы и приравниваем это к сумме.
  • Получится такое выражение: (x-14)+52+(x-14)+x=327.
  • Открываем скобки и упрощаем выражение: 3x+24=327.
  • Переносим числа в правую часть: 3x=303
  • Считаем икс: 303:3=101.
  • Теперь подставляем число 101 в таблицу вместо икса.
  • Получается третье слагаемое равно 101; второе: 101-14=87; первое: 87+52=139.
  • Эти числа записываем в ответ. Легко проверить правильность решения просто сложив эти значения. Если пример получается правильный, то и решено всё верно.

Для правильного решения этих типовых задач необходимо ничего не напутать с иксом. Лучше потратить больше времени и сразу всё проверить, чем переделывать задание сначала. Неправильное обозначение повлечёт за собой ошибку на протяжении всего решения

вернуться к меню ↑ вернуться к меню ↑

Задачи, решаемые геометрическим способом

вернуться к меню ↑

Пример 1

В доме 4 двери. Ширина каждой 1 метр, высота — 2 метра. Сколько нужно белил, чтобы покрасить их с обеих сторон, при условии, что на 1 квадратный метр поверхности требуется 100 грамм белил? Ответ дайте в граммах.

Решение

  • Для решения нужно вычислить площадь каждой двери, которую нужно покрасить. Для этого используем формулу площади прямоугольника – S=ab, где a и b – длины сторон. Подставляем числа из условия и получаем: S=2×1=2 м2;
  • Далее умножаем площадь на 2, потому что каждую дверь нужно окрасить с двух сторон. Получаем 2×2=4 м2. То есть, покрасочная площадь каждой двери равна 4 квадратным метрам;
  • Посчитаем общую площадь для всех дверей. Для этого умножаем площадь одной на их количество: 4×4=16 м2;
  • Главный вопрос задачи — сколько потребуется белил для всех дверей? Чтобы посчитать умножаем количество, требующееся на 1 квадратный метр на всю площадь: 100×16=1600 грамм;
  • Записываем это значение в ответ.

вернуться к меню ↑

Пример 2

Площадь прямоугольника 192 квадратных сантиметра, длина одной из сторон — 16 см. Найдите периметр прямоугольника.

Решение

  • Для начала нужно посчитать другую сторону прямоугольника. Делается это с помощью формулы площади: S=ab, где a и b — длины сторон. Подставляем числа и получаем: 192=16*a. Отсюда получается, что вторая сторона — 12 см;
  • Для нахождения периметра воспользуемся формулой P=2(a+b). Подставляем числа и получаем: P=2(16+12)=2×28=56 см;
  • Найденное значение записываем в ответ.

Для решения геометрических задач нужно знать наизусть все формулы площадей и периметров. Без этого не получится даже приступить к решению задания.

вернуться к меню ↑ вернуться к меню ↑

Нужен ли ребёнку репетитор по математике в пятом классе?

После перехода в средний этап школы у ребёнка может упасть успеваемость по некоторым предметам, в том числе и по математике. Более того математика — самый проблематичный предмет для детей. Некоторые родители сразу бьют тревогу и ищут репетиторов, чтобы исправить эту ситуацию.

На самом деле, не стоит делать поспешных выводов. Для начала нужно определить причину падения успеваемости. Возможно, некоторые из новых учителей просто халатно относятся к преподнесению нового учебного материала. Другие преподаватели не могут найти особый подход к ребёнку в связи с ограничением по времени.

У многих детей в школе возникают сложности с изучением математики

Это не значит, что ваш ребёнок неспособный к определённым дисциплинам. Попробуйте объяснить ему материал самостоятельно, ведь именно вы знаете своё чадо лучше других. Если и это не помогло, то обращайтесь к помощи репетитора.

Главная задача специалиста — найти персональный подход к каждому ученику. Они смогут максимально эффективно и просто объяснить ребёнку тему в зависимости от особенностей его восприятия и склада ума.

Перед обращением убедитесь, что ухудшение оценок произошло только по нескольким взаимосвязанным предметам, а не в целом. Если успеваемость сильно упала в общем плане, то скорее всего ребёнок ленится. Связано это может быть со скукой на уроках и утратой интереса к учёбе. В таком случае, поговорите с ним, объясните, что это очень важно и пригодится в жизни, приводя аргументы и наглядные примеры.

Конечно, если это связано, например, с пропуском занятий по причине болезни, или в школе неправильно преподносится материал, то стоит задуматься о найме репетитора. Он поможет в кратчайшие сроки улучшить результаты ребёнка.

вернуться к меню ↑ вернуться к меню ↑

Как решить проблемы с математикой

Как только у ребёнка появляются проблемы с математикой родители почему-то начинают думать, что причина заключается в плохой предрасположенности к точным наукам. Потому что формулы вроде бы знает, простые примеры решить тоже может, но каждая контрольная и самостоятельная работа превращается в целое испытание для всей семьи. Все сидят в ожидании результатов. Никогда нельзя сказать точно какую оценку получит ребёнок — четвёрку или двойку.

Дети часто получают плохие отметки именно по математике

Также много жалоб по типу: занимаемся все выходные напролёт, учим эту математику, учим, а в итоге всё равно результат прежний. На самом деле, причина такого плохого восприятия — отсутствие адекватных причин заниматься всеми этими цифрами. Большинство родителей сходятся во мнении, что ребёнок просто гуманитарий, главное — литература, история, обществознание, а математика неважна.

вернуться к меню ↑

Гуманитариям математика не нужна?

Это огромная ошибка, ведь для лучшего восприятия точных наук этому самому «гуманитарию» нужно лишь вдохновение и цель. Отлично будет, если ребёнку объяснить, что математика — это такая же наука, как и любая другая, и она не ограничивается уравнениями и задачами. Это нечто большее. Математика позволяет изменить мышление, воспринимать старые вещи по-новому.

Главная проблема всех гуманитариев, которые имели проблемы с математикой — это логика. Для составления, например, грамотной и структурированной статьи нужно руководствоваться не только правилами русского языка, но и логикой изложения мысли. Все части должны быть связаны между собой, в то же время, должны легко читаться отдельные фрагменты.

Именно логическое мышление в первую очередь развивает математика и воспринимать это нужно, как возможность расширения кругозора и свежего взгляда на старое. Также точные науки помогают дисциплинировать свой ум и комплексно подходить к решению поставленных задач.

вернуться к меню ↑

Математика — сложный предмет

Самая популярная отговорка заключается в том, что математика — самый сложный предмет из всех. Нет, на самом деле это одна из самых простых и понятных дисциплин. Для сравнения, возьмите наш богатый русский язык.

Мало того, что в нём существует немало правил орфографии, пунктуации, стилистики, так ещё и исключения есть почти в каждом правиле. Вот уж где нужно запоминать «тонну» информации.

В то же время в математике существуют базовые правила, на которых строятся все остальные. То есть, более сложное всегда можно привести к простому. Всё построено на железной логике, и, следуя этим правилам, вы сможете решить задачи, которые казались на первый взгляд непосильными.

Вспомните, как учат всех детей. Для того, чтобы научить их писать, сначала нужно выводить палочки, точки, изгибы. Потом уже буквы, а из букв — простые слова, из слов — предложения.

Начните изучать математику с самых простых уравнений

В математике с самого начала всё объясняется на пальцах или предметах. При этом, за то же самое время, потраченное на русский язык и на математику, прогресс в изучении второй будет больше. Например, считать учатся дети на яблоках, конфетках.

Используйте это и для решения более сложных задач. В пятом классе аналогии привести не составит труда. Это поможет ребёнку ассоциировать вычисления не с сухими числами, а, например, с мандаринами.

вернуться к меню ↑ вернуться к меню ↑

Формула спокойствия

Часто плохие оценки становятся причиной ссор между родителями и детьми. Это категорически неправильно. Вместо того, чтобы высказывать ребёнку, что он «ленится», «не думает о будущем» да и в общем «туго соображает», следует отвести от неудачи или помочь исправиться с ней.

Но под помощью подразумевается не «вдалбливание» и «зубрёжка» неинтересных формул и правил. Следует возбудить интерес к теме, которая была плохо воспринята. Да и к тому же поставить правильную цель ребёнку. Не нужно говорить, что от оценок зависит его будущее. Вообще не зацикливайте внимание на оценках.

По исследованиям российских психологов дети, которые хотели стать врачами, инженерами и просто хорошими людьми, быстро повышали свою успеваемость. А те ученики, которым с первого класса «вдалбливают» в голову знания, думали только о том, как не стать худшим в классе, и уделяли своим отметкам слишком большое внимание.

Лучшим вариантом по-прежнему остаются занятия с репетитором. Он сохранит нервы, и вам, и ребёнку. Обеспечивая нужное количество времени на обучение и выбрав правильный подход, ученик станет показывать результаты лучше прежнего. Но, моментально отличником вашего ребёнка это не сделает.

Надеемся, что вы смогли найти решение задач, которое искали. Также для понимания темы рекомендуем посмотреть видео по этой теме от организаторов специальной математической школы федерального уровня «Аристотель».

8.5 Общий Балл

Некоторые ученики, как пятых, так и других классов, часто сталкиваются с проблемами в изучении математики. В этом случае родителям не стоит впадать в панику. Следует уделить больше внимания детальному разбору примеров и задач. Если это не улучшит успеваемость, есть смысл обратиться за помощью к репетитору.

Плюсы

  • Подробные инструкции помогут разобраться в решении задач и примеров
  • Для изучения математики можно пользоваться решебниками

Минусы

  • Полученных знаний в школе не всегда достаточно для понимания предмета

Добавить свой отзыв

Бесплатные задания по математике для 5-х классов

Вы здесь: Главная → Задания → 5 класс

Это исчерпывающий набор бесплатных распечатываемых рабочих листов по математике для 5 класса, организованных по таким темам, как сложение, вычитание, алгебраическое мышление, разряд, умножение, деление, разложение на простые множители, десятичные дроби, дроби, измерения, координатная сетка и геометрия. Они генерируются случайным образом, их можно распечатать в вашем браузере и включать в себя ключ ответа.Рабочие листы подходят для любой математической программы для пятого класса, но особенно хорошо подходят для программы IXL по математике для 5-го класса и их новых уроков в нижней части страницы.

Рабочие листы генерируются случайным образом каждый раз, когда вы нажимаете на ссылки ниже. Вы также можете получить новый, другой, просто обновив страницу в своем браузере (нажмите F5).

Вы можете распечатать их прямо из окна браузера, но сначала проверьте, как это выглядит в «Предварительном просмотре».Если рабочий лист не умещается на странице, отрегулируйте поля, верхний и нижний колонтитулы в настройках страницы вашего браузера. Другой вариант — настроить «масштаб» на 95% или 90% в предварительном просмотре печати. В некоторых браузерах и принтерах есть опция «Печатать по размеру», которая автоматически масштабирует рабочий лист по размеру области печати.

Все рабочие листы содержат ключ ответа, расположенный на 2-й странице файла.

Алгебра

Математика для начальных классов Эдвард Заккаро

Хорошая книга по решению проблем с очень разнообразными текстовыми задачами и стратегиями решения проблем.Включает главы по следующим темам: последовательности, решение проблем, деньги, проценты, алгебраическое мышление, отрицательные числа, логика, отношения, вероятность, измерения, дроби, деление. Вопросы в каждой главе разбиты на четыре уровня: легкий, несколько сложный, сложный и очень сложный.

Сложение и вычитание по столбцам (числа друг под другом)

Место и округление

Пропуск счета

  • Пропуск на 20 000, начиная с 550 000
  • Пропуск на 50 000, начиная с 120 000
  • Пропуск на 100 000, начиная с 1 350 000
  • Пропуск на 100 000, начиная с 628 000
  • Пропуск на 300 000, начиная с 4 250 000
  • Пропуск на 500 000, начиная с 750 000

Округление

  • Округлить до десяти, в пределах от 0 до 10 000
  • Округлить до ближайшей сотни, в пределах от 0 до 1 000 000
  • Округлить до ближайшей тысячи, в пределах от 0 до 1 000 000
  • Смешанные задачи округления 1 — округление до ближайших десяти, сотен или тысяч
  • Смешанные задачи округления 2 — округление до ближайших десяти, сотен, тысяч или десяти тысяч
  • Смешанные задачи округления 3 — как указано выше, но округление до подчеркнутой цифры
  • Смешанные задачи округления 4 — округление до подчеркнутой цифры с округлением до ближайшего миллиона

Умножение

Умножение в уме

Длинное умножение (в столбцах)

Подразделение

Психологическое отделение

Длинное деление

  • 1-значный делитель, 4-значное делимое, без остатка
  • 1-значный делитель, 4-значное делимое, остаток
  • 2-значный делитель, 4-значное делимое, делитель между 11 и 35
  • 2-значный делитель, 4-значное делимое, без остатка — (делителем является любое двузначное число)
  • 2-значный делитель, 4-значное делимое, с остатком — (делителем является любое двузначное число)
  • Умножение
    уравнения (пропущенный множитель; решить в столбик)
  • Уравнения деления (отсутствует делимое или делитель; решается путем умножения или деления в столбик)

Следующие четыре типа рабочих листов выходят за рамки
Стандарт Common Core для пятого класса.

Факторинг

Сложение и вычитание дробей

Как дроби / дробные части

В отличие от дробей / дробных частей

  • Сложите или вычтите разные дроби — знаменатели 2, 3, 4, 5, 6, 8 и 10
  • Сложить или вычесть разные дроби — знаменатели 2-12
  • Задача: сложить или вычесть непохожие дроби — знаменатели 2-25
  • Задача: сложить или вычесть 3 в отличие от дробей — знаменатели 2, 3, 4, 5, 6, 8 и 10
  • Сложить или вычесть смешанные числа — знаменатели 2-12
  • Сложить или вычесть смешанные числа — знаменатели 2-25
  • Сложить или вычесть смешанное число и дробь или целое число — знаменатели 2-12
  • Сложить или вычесть смешанное число и дробь или целое число — знаменатели 2-25

Умножение на дробь

Фракционное деление

Следующие типы рабочих листов выходят за рамки стандартов Common Core.

Преобразование дробей в смешанные числа и наоборот

Эквивалентные дроби и упрощенные дроби

Записывать дроби как десятичные и наоборот

В приведенных ниже таблицах ключ ответа не дает дроби в упрощенной форме.
Например, 0,24 задается как 24/100, а не как 6/25. Если хотите, вы можете спросить
студент упростить.

Сложение десятичных чисел

Ментальная математика

От 0 до 1 десятичных цифр

От 0 до 2 десятичных цифр

Дополнительная колонка

Десятичное вычитание

Ментальная математика

От 0 до 1 десятичных цифр

От 0 до 2 десятичных цифр

Вызовы: ментальная математика

Вычитание по столбцу

Вызовы: алгебраическое мышление

Десятичное умножение

Ментальная математика

  • Умножение целого числа на десятичное — просто (одна десятичная цифра)
  • Умножить целое число на десятичное — сложнее (одна десятичная цифра)
  • Умножение целого числа на десятичное — пропущенный множитель (одна десятичная цифра)
  • Умножить
    целое число и десятичная дробь (1-2 десятичные цифры)
  • Умножить
    целое и десятичное число — пропущенный множитель (1-2 десятичных знака)
  • Умножение целого числа на десятичное (1-3 десятичных знака)
  • Умножение целого числа на десятичное — пропущенный множитель (1-3 десятичных знака)
  • Умножить десятичные дроби на десятичные
  • Умножение десятичных знаков на десятичные — пропущенный множитель
  • Умножение десятичных дробей на десятичные или целые числа (смешанная практика)
  • Умножение десятичных дробей на десятичные или целые числа — пропущенный коэффициент (смешанная практика)
  • Умножить
    на 10 или 100 (1-2 десятичные цифры)
  • Умножить
    на 10, 100 или 1000 (1-2 десятичных знака)
  • Умножить на 10, 100 или 1000 — пропущенный коэффициент (1-2 десятичные цифры)
  • Умножить
    на 10 или 100 (1-3 десятичных знака)
  • Умножить
    на 10, 100 или 1000 (1-3 десятичных знака)
  • Умножить
    на 10, 100, 1000, 10000 или 100000 (1-3 десятичных знака)
  • Умножение десятичных знаков на 10, 100 или 1000 — пропущенный множитель (1-3 десятичных знака)

Умножить по столбцам

Десятичное деление

Ментальная математика

Длинное деление

Единицы измерения

Обычная система

  • Конвертировать между
    дюймы и футы — проще
  • Преобразование между дюймами и футами — сложнее
  • Конвертировать между
    дюймы, футы и ярды — проще
  • Преобразование между дюймами, футами и ярдами — сложнее
  • Преобразование дюймов, футов и ярдов с десятичными знаками — используйте калькулятор
  • Преобразование миль, ярдов и футов 1 — с помощью калькулятора
  • Преобразование миль, ярдов и футов 2 — с помощью калькулятора
  • Преобразование между унциями и фунтами — проще
  • Преобразование между унциями и фунтами — сложнее
  • Преобразование между тоннами и фунтами — проще
  • Преобразование между тоннами и фунтами — сложнее
  • Преобразование между тоннами, фунтами и унциями с десятичными знаками — используйте калькулятор
  • Преобразование между чашками, пинтами и квартами
  • Преобразование между чашками, пинтами, квартами и галлонами
  • Преобразование между унциями, чашками и квартами
  • Все обычные единицы, кроме миль — смешанная практика
  • Все обычные единицы, кроме миль — смешанная практика — задача
  • Преобразование между различными обычными единицами с десятичными знаками — используйте калькулятор

Метрическая система

  • Преобразование между мм, см и м — с использованием десятичных знаков
  • Преобразование между мм, см, м и км — с использованием десятичных знаков
  • Преобразование между мл и л и г и кг — с использованием десятичных знаков
  • Все метрические единицы, упомянутые выше — смешанная практика — с использованием десятичных знаков
  • Метрическая система: перевод единиц длины (мм, см, дм, м, плотина, гм, км)
  • Метрическая система: перевод единиц веса (мг, cg, dg, g, dag, hg, kg)
  • Метрическая система: преобразование единиц объема (мл, кл, дл, л, дал, гл, кл)
  • Метрическая система: преобразование единиц длины, веса и объема

Сетка координат

Геометрия


Если вы хотите иметь больший контроль над такими параметрами, как количество проблем, размер шрифта, интервал между проблемами или диапазон чисел, просто
щелкните по этим ссылкам, чтобы самостоятельно использовать генераторы рабочих листов:

15 самых сложных вопросов по SAT математике

Хотите проверить себя, отвечая на самые сложные вопросы по математике SAT? Хотите знать, что делает эти вопросы такими сложными и как их лучше всего решать? Если вы готовы по-настоящему погрузиться в математический раздел SAT и нацелиться на этот высший балл, то это руководство для вас.

Мы собрали то, что мы считаем , из 15 самых сложных вопросов для текущего SAT , со стратегиями и ответами на каждый из них. Все это сложные вопросы SAT Math из практических тестов SAT College Board, а это значит, что их понимание — один из лучших способов учиться для тех из вас, кто стремится к совершенству.

Изображение: Соня Севилья / Викимедиа

Краткий обзор SAT Math

Третий и четвертый разделы SAT всегда будут математическими разделами .Первый математический подраздел (с меткой «3») позволяет использовать калькулятор , не , а второй математический подраздел (с меткой «4») разрешает использование калькулятора. Однако не беспокойтесь о разделе без калькулятора: если вам не разрешено использовать калькулятор для ответа на вопрос, это означает, что вам не нужен калькулятор, чтобы ответить на него.

Каждый математический подраздел расположен в порядке возрастания сложности (где чем больше времени требуется на решение задачи и чем меньше людей ответят на нее правильно, тем сложнее).В каждом подразделе вопрос 1 будет «легким», а вопрос 15 — «сложным». Однако возрастающая сложность сбрасывается с простого на сложный на сетке.

Таким образом, вопросы с несколькими вариантами ответов упорядочены по возрастающей сложности (вопросы 1 и 2 будут самыми легкими, вопросы 14 и 15 будут самыми сложными), но уровень сложности будет сброшен для секции сетки (то есть вопросы 16 и 17 снова будут будьте «легкими», и вопросы 19 и 20 будут очень сложными).

Таким образом, за очень немногими исключениями, наиболее сложные математические задачи SAT будут сгруппированы в конце сегментов с несколькими вариантами ответов или во второй половине вопросов сетки. Однако, помимо места в тесте, у этих вопросов есть еще несколько общих черт. Через минуту мы рассмотрим примеры вопросов и способы их решения, а затем проанализируем их, чтобы выяснить, что общего у этих типов вопросов.

Но сначала: следует ли вам прямо сейчас сосредоточиться на самых сложных математических вопросах?

Если вы только начинаете свою подготовку к учебе (или если вы просто пропустили этот первый, важный шаг), обязательно остановитесь и пройдите полный практический тест, чтобы определить свой текущий уровень оценок. Ознакомьтесь с нашим руководством по всем бесплатным практическим тестам SAT, доступным в Интернете, а затем сядьте и сдавайте все сразу.

Абсолютно лучший способ оценить свой текущий уровень — просто пройти практический тест SAT, как если бы он был настоящим, соблюдая строгий график и работая без перерывов только с разрешенными перерывами (мы знаем — вероятно, это не ваш любимый способ провести субботу) . Как только вы получите хорошее представление о своем текущем уровне и процентильном рейтинге, вы можете установить контрольные точки и цели для получения окончательного результата по SAT Math.

Если вы в настоящее время набираете баллы в диапазоне 200–400 или 400–600 по SAT Math, лучше всего сначала ознакомиться с нашим руководством по повышению своего балла по математике , чтобы он постоянно был на уровне 600 или выше, прежде чем начать. в попытке решить самые сложные математические задачи на тесте.

Если, однако, вы уже набрали больше 600 баллов по математике и хотите проверить свои способности на реальном SAT, то обязательно переходите к остальной части этого руководства. Если вы стремитесь к идеалу (или близкому к нему), вам необходимо знать, как выглядят самые сложные вопросы по математике SAT и как их решать.И, к счастью, именно этим мы и займемся.

ПРЕДУПРЕЖДЕНИЕ: Поскольку количество официальных практических тестов SAT ограничено, вы можете подождать, чтобы прочитать эту статью, пока не попробуете все или большую часть первых четырех официальных практических тестов (так как большинство вопросов, приведенных ниже, были приняты. из этих тестов). Если вы беспокоитесь о том, чтобы испортить эти тесты, прекратите читать это руководство сейчас; вернитесь и прочтите, когда вы их закончите.

Теперь перейдем к нашему списку вопросов (ууу)!

Изображение: Niytx / DeviantArt

15 сложнейших вопросов по SAT математике

Теперь, когда вы уверены, что должны попытаться ответить на эти вопросы, давайте приступим прямо к делу! Мы собрали 15 самых сложных вопросов по SAT Math, которые вы можете попробовать ниже, а также пошаговые инструкции, как получить ответ (если вы в тупике).

Нет калькулятора Вопросы по SAT по математике

Вопрос 1

$$ C = 5/9 (F-32) $$

Приведенное выше уравнение показывает, как температура $ F $, измеренная в градусах Фаренгейта, соотносится с температурой $ C $, измеренной в градусах Цельсия. Основываясь на уравнении, какое из следующих утверждений должно быть верным?

  1. Повышение температуры на 1 градус по Фаренгейту эквивалентно повышению температуры на 5/9 градусов Цельсия.
  2. Повышение температуры на 1 градус Цельсия эквивалентно повышению температуры на 1.8 градусов по Фаренгейту.
  3. Повышение температуры на 5 долларов / 9 градусов по Фаренгейту эквивалентно повышению температуры на 1 градус Цельсия.

A) только I
B) только II
C) только III
D) только I и II

ОБЪЯСНЕНИЕ ОТВЕТА: Думайте об уравнении как об уравнении для линии

$$ y = mx + b $$

, где в данном случае

$$ C = {5} / {9} (F − 32) $$

или

$$ C = {5} / {9} F — {5} / {9} (32) $$

Вы можете видеть, что наклон графика составляет $ {5} / {9} $, что означает, что при увеличении на 1 градус по Фаренгейту увеличение составляет $ {5} / {9} $ на 1 градус Цельсия.

$$ C = {5} / {9} (F) $$

$$ C = {5} / {9} (1) = {5} / {9} $$

Следовательно, утверждение I верно. Это эквивалентно тому, что увеличение на 1 градус Цельсия равно увеличению на $ {9} / {5} $ градусов по Фаренгейту.

$$ C = {5} / {9} (F) $$

$$ 1 = {5} / {9} (F) $$

$$ (F) = {9} / {5} $$

Поскольку $ {9} / {5} $ = 1.8, утверждение II верно.

Единственный ответ, в котором и утверждение I, и утверждение II являются истинными, — это D , но если у вас есть время и вы хотите быть абсолютно внимательными, вы также можете проверить, соответствует ли утверждение III (увеличение на $ {5} / { 9} $ градус Фаренгейта равен повышению температуры на 1 градус Цельсия) верно:

$$ C = {5} / {9} (F) $$

$$ C = {5} / {9} ({5} / {9}) $$

$$ C = {25} / {81} (\ which \ is ≠ 1) $$

Увеличение на 5 долларов / 9 градусов по Фаренгейту приводит к увеличению на {25} / {81} долларов, а не на 1 градус Цельсия, и поэтому утверждение III неверно. 2 $
D) Значение не может быть определено на основании предоставленной информации.12 $$

Окончательный ответ — A.

Вопрос 4

Точки A и B лежат на окружности радиуса 1, а дуга $ {AB} ↖⌢ $ имеет длину $ π / 3 $. Какая часть окружности окружности равна длине дуги $ {AB} ↖⌢ $?

ОБЪЯСНЕНИЕ ОТВЕТА: Чтобы выяснить ответ на этот вопрос, вам сначала нужно знать формулу для определения длины окружности.

Длина окружности $ C $ равна $ C = 2πr $, где $ r $ — радиус окружности.Для данной окружности радиусом 1 длина окружности равна $ C = 2 (π) (1) $ или $ C = 2π $.

Чтобы узнать, какая часть окружности составляет длину $ {AB} ↖⌢ $, разделите длину дуги на длину окружности, что даст $ π / 3 ÷ 2π $. Это деление можно представить как $ π / 3 * {1/2} π = 1/6 $.

Дробь $ 1/6 $ также может быть переписана как $ 0,166 $ или 0,167 $.

Окончательный ответ: 1/6 доллара, 0,166 доллара или 0,167 доллара.

Вопрос 5

$$ {8-i} / {3-2i} $$

Если приведенное выше выражение переписать в форме $ a + bi $, где $ a $ и $ b $ — действительные числа, каково значение $ a $? (Примечание: $ i = √ {-1} $)

ОБЪЯСНЕНИЕ ОТВЕТА: Чтобы переписать $ {8-i} / {3-2i} $ в стандартной форме $ a + bi $, вам нужно умножить числитель и знаменатель $ {8-i} / {3- 2i} $ сопряженным, $ 3 + 2i $.2 = -1 $, последняя дробь может быть уменьшена упрощенно до

$$ {24 + 16i-3i + 2} / {9 — (- 4)} = {26 + 13i} / {13} $$

, что упрощается до 2 + i $. Следовательно, когда $ {8-i} / {3-2i} $ переписывается в стандартную форму a + bi, значение a равно 2.

Окончательный ответ — A.

Вопрос 6

В треугольнике $ ABC $ мера $ ∠B $ равна 90 °, $ BC = 16 $ и $ AC $ = 20. Треугольник $ DEF $ похож на треугольник $ ABC $, где вершины $ D $, $ E $ и $ F $ соответствуют вершинам $ A $, $ B $ и $ C $ соответственно, а также каждой стороне треугольника $. DEF $ составляет $ 1/3 $ длины соответствующей стороны треугольника $ ABC $.2} = √ {400-256} = √ {144} = 12 $$

Поскольку треугольник DEF подобен треугольнику ABC, с вершиной F, соответствующей вершине C, мера $ \ angle ∠ {F} $ равна мере $ \ angle ∠ {C} $. Следовательно, $ sin F = sin C $. Со сторон треугольника ABC,

$$ sinF = {\ Against \ side} / {\ hypotenuse} = {AB} / {AC} = {12} / {20} = {3} / {5} $$

Следовательно, $ sinF = {3} / {5} $.

Окончательный ответ: {3} / {5} $ или 0,6.

Вопросы SAT по математике, разрешенные калькулятором

Вопрос 7

Неполная таблица выше суммирует количество учащихся-левшей и учащихся-правшей с разбивкой по полу для учащихся восьмых классов средней школы Кейзеля.Учениц-правшей в 5 раз больше, чем учениц-левшей, и учеников-правшей в 9 раз больше, чем учениц-левшей. Если в школе 18 учеников-левшей и 122 учащихся-правшей, что из следующего наиболее близко к вероятности того, что случайно выбранный ученик-правша будет женщиной? (Примечание: предположим, что ни один из восьмиклассников не является одновременно правшой и левшой.)

А) 0.410
B) 0,357
C) 0,333
D) 0,250

ОБЪЯСНЕНИЕ ОТВЕТА: Чтобы решить эту проблему, вы должны создать два уравнения, используя две переменные ($ x $ и $ y $) и предоставленную вам информацию. Пусть $ x $ будет количеством учениц-левшей и пусть $ y $ будет количеством учениц-левшей. Используя информацию, приведенную в задаче, количество учащихся-правшей будет составлять 5 долларов США, а количество учащихся-правшей будет составлять 9 лет.Поскольку общее количество студентов-левшей составляет 18, а общее количество студентов-правшей — 122, система уравнений ниже должна быть верной:

$$ x + y = 18 $$

$$ 5x + 9y = 122 $$

Когда вы решаете эту систему уравнений, вы получаете $ x = 10 $ и $ y = 8 $. Таким образом, из 122 учащихся-правшей 5 * 10, или 50, — девушки. Следовательно, вероятность того, что случайным образом выбранный студент-правша будет женщиной, составляет {50} / {122} $, что с точностью до тысячных составляет 0,410.

Окончательный ответ — А.

Вопросы 8 и 9

Используйте следующую информацию как для вопроса 7, так и для вопроса 8.

Если покупатели входят в магазин со средней скоростью $ r $ покупателей в минуту и ​​каждый остается в магазине в течение среднего времени T $ минут, среднее количество покупателей в магазине, N $, в любой момент времени составляет задается формулой $ N = rT $. Эта связь известна как закон Литтла.

Владелец магазина Good Deals Store оценивает, что в рабочее время в магазин входит в среднем 3 покупателя в минуту, и каждый из них остается в среднем на 15 минут.Владелец магазина использует закон Литтла, чтобы оценить, что в магазине одновременно находится 45 покупателей.

Вопрос 8

Закон Литтла может применяться к любой части магазина, например к определенному отделу или кассовым линиям. Владелец магазина определяет, что в рабочее время примерно 84 покупателя в час совершают покупку, и каждый из этих покупателей проводит в очереди в кассе в среднем 5 минут. Сколько в среднем покупателей в любое время в рабочее время ожидают в очереди у кассы, чтобы совершить покупку в магазине Good Deals Store?

ОБЪЯСНЕНИЕ ОТВЕТА: Поскольку в вопросе говорится, что закон Литтла может применяться к любой отдельной части магазина (например, только к кассе), тогда среднее количество покупателей, $ N $, в очереди к кассе в любой time равно $ N = rT $, где $ r $ — это количество покупателей, заходящих в кассу в минуту, а $ T $ — это среднее количество минут, которое каждый покупатель проводит в очереди.

Поскольку 84 покупателя в час совершают покупку, 84 покупателя в час входят в кассу. Однако это необходимо преобразовать в количество покупателей в минуту (для использования с $ T = 5 $). Поскольку в часе 60 минут, тариф составляет $ {84 \ shoppers \ per \ hour} / {60 \ minutes} = 1,4 $ покупателя в минуту. Используя данную формулу с $ r = 1,4 $ и $ T = 5 $, получаем

$$ N = rt = (1.4) (5) = 7 $$

Таким образом, среднее количество покупателей, $ N $, в очереди на кассу в любое время в рабочее время равно 7.

Окончательный ответ 7.

Вопрос 9

Владелец магазина Good Deals Store открывает новый магазин в другом конце города. По оценкам владельца нового магазина, в рабочее время в него заходят в среднем 90 покупателей в час, и каждый из них остается в среднем на 12 минут. Среднее количество покупателей в новом магазине в любой момент времени на какой процент меньше среднего количества покупателей в исходном магазине в любое время? (Примечание: игнорируйте символ процента при вводе ответа.Например, если ответ 42,1%, введите 42,1)

ОБЪЯСНЕНИЕ ОТВЕТА: Согласно исходной информации, оценочное среднее количество покупателей в исходном магазине в любой момент (N) составляет 45. В вопросе говорится, что в новом магазине менеджер оценивает, что в среднем 90 покупателей в час (60 минут) заходят в магазин, что эквивалентно 1,5 покупателям в минуту (r). Менеджер также подсчитал, что каждый покупатель остается в магазине в среднем 12 минут (T).Таким образом, по закону Литтла в каждый момент времени в новом магазине в среднем находится $ N = rT = (1.5) (12) = 18 $ покупателей. Это

$$ {45-18} / {45} * 100 = 60 $$

На

процентов меньше, чем среднее количество покупателей в исходном магазине в любое время.

Окончательный ответ — 60.

Вопрос 10

На плоскости $ xy $ точка $ (p, r) $ лежит на прямой с уравнением $ y = x + b $, где $ b $ — константа. Точка с координатами $ (2p, 5r) $ лежит на прямой с уравнением $ y = 2x + b $.Если $ p ≠ 0 $, каково значение $ r / p $?

A) 2/5 долларов США

B) 3/4 $

C) 4/3 долл. США

D) $ 5/2 $

ОБЪЯСНЕНИЕ ОТВЕТА: Поскольку точка $ (p, r) $ лежит на прямой с уравнением $ y = x + b $, точка должна удовлетворять уравнению. Подстановка $ p $ вместо $ x $ и $ r $ вместо $ y $ в уравнение $ y = x + b $ дает $ r = p + b $, или $ \ bi b $ = $ \ bi r- \ bi p $.

Аналогично, поскольку точка $ (2p, 5r) $ лежит на прямой с уравнением $ y = 2x + b $, точка должна удовлетворять уравнению.Замена $ 2p $ на $ x $ и $ 5r $ на $ y $ в уравнении $ y = 2x + b $ дает:

$ 5r = 2 (2p) + b $

$ 5r = 4p + b $

$ \ bi b $ = $ \ bo 5 \ bi r- \ bo 4 \ bi p $.

Затем мы можем установить два уравнения, равные $ b $, равным друг другу и упростить:

$ б = р-п = 5р-4п $

$ 3p = 4r $

Наконец, чтобы найти $ r / p $, нам нужно разделить обе части уравнения на $ p $ и на $ 4 $:

$ 3p = 4r $

$ 3 = {4r} /

долларов США на человека

$ 3/4 = р / п $

Правильный ответ: B , 3/4 доллара.

Если вы выбрали варианты A и D, возможно, вы неправильно сформировали свой ответ из коэффициентов в пункте $ (2p, 5r) $. Если вы выбрали вариант C, возможно, вы перепутали $ r $ и $ p $.

Обратите внимание, что пока он находится в разделе калькулятора теста SAT, вам совершенно не нужен калькулятор для его решения!

Вопрос 11

Зерновой бункер состоит из двух правых круглых конусов и правого круглого цилиндра с внутренними размерами, представленными на рисунке выше. 2h $$

можно использовать для определения общего объема силоса.2) (5) = ({4} / {3}) (250) π $$

, что примерно равно 1047,2 кубических футов.

Окончательный ответ — D.

Вопрос 12

Если $ x $ — среднее (среднее арифметическое) $ m $ и $ 9 $, $ y $ — среднее значение $ 2m $ и $ 15 $, а $ z $ — среднее значение $ 3m $ и $ 18 $, то что есть среднее значение $ x $, $ y $ и $ z $ в пересчете на $ m $?

A) $ m + 6
B) $ m + 7 900 $ 14 C) 2 млн. $ + 14
D) 3 млн. $ + 21 $

ОБЪЯСНЕНИЕ ОТВЕТА: Поскольку среднее (среднее арифметическое) двух чисел равно сумме двух чисел, деленных на 2, уравнения $ x = {m + 9} / {2} $, $ y = {2m +15} / {2} $, $ z = {3m + 18} / {2} $ верны.2-x- {11} / {4} $$

и

$$ y = k $$

Реальное решение системы двух уравнений соответствует точке пересечения графиков этих двух уравнений на плоскости $ xy $.

График $ y = k $ — это горизонтальная линия, которая содержит точку $ (0, k) $ и трижды пересекает график кубического уравнения (поскольку оно имеет три действительных решения). Учитывая график, единственная горизонтальная линия, которая трижды пересекала бы кубическое уравнение, — это линия с уравнением $ y = −3 $ или $ f (x) = −3 $.2 $$

Динамическое давление $ q $, создаваемое жидкостью, движущейся со скоростью $ v $, можно найти с помощью приведенной выше формулы, где $ n $ — постоянная плотность жидкости. Инженер-авиастроитель использует формулу для определения динамического давления жидкости, движущейся со скоростью $ v $, и той же жидкости, движущейся со скоростью 1,5 $ v $. Каково отношение динамического давления более быстрой жидкости к динамическому давлению более медленной жидкости?

ОБЪЯСНЕНИЕ ОТВЕТА: Чтобы решить эту проблему, вам необходимо задать уравнения с переменными.2 = (2.25) q_1 $$

Следовательно, коэффициент динамического давления более быстрой жидкости равен

$$ {q2} / {q1} = {2.25 q_1} / {q_1} = 2.25 $$

Окончательный ответ — 2,25 или 9/4.

Вопрос 15

Для полинома $ p (x) $ значение $ p (3) $ равно $ -2 $. Что из следующего должно быть истинным относительно $ p (x) $?

A) $ x-5 $ — множитель $ p (x) $.
B) $ x-2 $ — множитель $ p (x) $.
C) $ x + 2 $ является множителем $ p (x) $.
D) Остаток от деления $ p (x) $ на $ x-3 $ равен -2 $.1 $ и не выше), остаток — действительное число.

Следовательно, $ p (x) $ можно переписать как $ p (x) = (x + k) q (x) + r $, где $ r $ — действительное число.

В вопросе указано, что $ p (3) = -2 $, поэтому должно быть верно, что

$$ — 2 = p (3) = (3 + k) q (3) + r $$

Теперь мы можем включить все возможные ответы. Если ответ A, B или C, $ r $ будет $ 0 $, а если ответ D, $ r $ будет $ -2 $.

A. $ -2 = p (3) = (3 + (-5)) q (3) + 0 $ 900 14 $ -2 = (3-5) q (3) 900 $ 14 $ -2 = (- 2 ) q (3) $

Это могло быть правдой, но только если $ q (3) = 1 $

Б.$ -2 = p (3) = (3 + (-2)) q (3) + 0 $
$ -2 = (3-2) q (3) $
$ -2 = (-1) q ( 3) $

Это могло быть правдой, но только если $ q (3) = 2 $

C. $ -2 = p (3) = (3 + 2) q (3) + 0 $
$ -2 = (5) q (3) $

Это могло быть правдой, но только если $ q (3) = {- 2} / {5} $

D. $ -2 = p (3) = (3 + (-3)) q (3) + (-2) $ 900 14 $ -2 = (3 — 3) q (3) + (-2) $
-2 = (0) q (3) + (-2)

долларов

Это всегда будет истинным независимо от того, что такое $ q (3) $.

Из вариантов ответа единственное, что должно быть верным относительно $ p (x) $, — это D, а остаток от деления $ p (x) $ на $ x-3 $ равен -2.

Окончательный ответ — D.

Хотите улучшить свой SAT на 160 баллов? Мы написали руководство о 5 лучших стратегиях, которые вы должны использовать, чтобы улучшить свой результат. Скачать бесплатно сейчас:

Вы заслуживаете того, чтобы вздремнуть, задав эти вопросы.

Что общего у самых сложных вопросов по SAT Math?

Важно понимать, что делает эти сложные вопросы «сложными». Поступая таким образом, вы сможете понять и решить похожие вопросы, когда вы увидите их в день теста, а также получите лучшую стратегию для выявления и исправления ваших предыдущих математических ошибок SAT.

В этом разделе мы рассмотрим, что общего у этих вопросов, и приведем примеры каждого типа.Некоторые из причин, по которым самые сложные вопросы по математике являются самыми сложными вопросами по математике, заключаются в том, что они:

# 1: Проверить несколько математических понятий одновременно

Здесь мы должны иметь дело с мнимыми числами и дробями одновременно.

Секрет успеха: Подумайте, какую применимую математику вы могли бы использовать для решения задачи, выполняйте по одному шагу за раз и пробуйте каждый метод, пока не найдете тот, который работает!

# 2: задействовать множество шагов

Помните: чем больше шагов вам нужно предпринять, тем легче где-то напортачить!

Мы должны решить эту проблему поэтапно (используя несколько средних значений), чтобы разблокировать остальные ответы в эффекте домино.Это может сбивать с толку, особенно если вы в стрессе или у вас не хватает времени.

Секрет успеха: Не торопитесь, делайте шаг за шагом и перепроверяйте свою работу, чтобы не ошибиться!

# 3: Тестируйте концепции, с которыми вы мало знакомы

Например, многие учащиеся менее знакомы с функциями, чем с дробями и процентами, поэтому большинство функциональных вопросов считаются задачами «высокой сложности».

Если вы не разбираетесь в функциях, это может быть сложной проблемой.

Секрет успеха: Просмотрите математические концепции, с которыми вы не так хорошо знакомы, например, функции. Мы предлагаем использовать наши отличные бесплатные руководства по тестированию SAT Math.

# 4: написаны необычно или запутанно

Может быть сложно точно определить, какие вопросы задает , не говоря уже о том, как их решить. Это особенно актуально, когда вопрос находится в конце раздела, а у вас не хватает времени.

Поскольку в этом вопросе содержится так много информации без диаграммы, может быть сложно разобраться в ограниченном отведенном времени.

Секрет успеха: Не торопитесь, проанализируйте, что от вас просят, и нарисуйте диаграмму, если это вам поможет.

# 5: Используйте много разных переменных

При таком большом количестве различных переменных очень легко запутаться.

Секрет успеха: Не торопитесь, проанализируйте, что от вас просят, и подумайте, является ли включение цифр хорошей стратегией для решения проблемы (это не относится к вопросу выше, но может быть ко многим другим. SAT переменные вопросы).

Итоги

SAT — это марафон, и чем лучше вы к нему подготовитесь, тем лучше вы будете себя чувствовать в день теста. Знание того, как отвечать на самые сложные вопросы, которые может бросить вам тест, сделает сдачу настоящего SAT намного менее сложной задачей.

Если вам казалось, что эти вопросы были легкими, не стоит недооценивать влияние адреналина и усталости на вашу способность решать проблемы. Продолжая учиться, всегда придерживайтесь надлежащих рекомендаций по времени и старайтесь проходить полные тесты, когда это возможно. Это лучший способ воссоздать реальную среду тестирования, чтобы вы могли подготовиться к реальной сделке.

Если вы считаете, что эти вопросы были сложными, обязательно укрепите свои математические знания, ознакомившись с нашими индивидуальными руководствами по математическим темам для SAT. Здесь вы увидите более подробные объяснения рассматриваемых тем, а также более подробную разбивку ответов.

Что дальше?

Чувствовали, что эти вопросы оказались сложнее, чем вы ожидали? Взгляните на все темы, затронутые в разделе SAT по математике, а затем отметьте, какие разделы были для вас особенно трудными.Затем взгляните на наши индивидуальные руководства по математике, которые помогут вам укрепить любую из этих слабых сторон.

Не хватает времени на сдачу экзамена по математике? Наш гид поможет вам выиграть время и увеличить свой счет.

Хотите набрать наивысший балл? Ознакомьтесь с нашим руководством о том, как получить идеальные 800 баллов по математике в разделе SAT, написанном отличником.

Хотите улучшить свой SAT на 160 баллов?

Посетите наши лучшие в своем классе онлайн-классы подготовки к SAT.Мы гарантируем возврат ваших денег , если вы не улучшите свой SAT на 160 или более баллов.

Наши классы полностью онлайн, и их ведут эксперты SAT. Если вам понравилась эта статья, вам понравятся наши классы. Наряду с занятиями под руководством экспертов вы получите индивидуальное домашнее задание с тысячами практических задач, организованных по индивидуальным навыкам, чтобы вы учились наиболее эффективно. Мы также дадим вам пошаговую индивидуальную программу, которой вы будете следовать, чтобы вы никогда не запутались, что изучать дальше.

Попробуйте без риска сегодня:

5280 Math

Math Pickle

На сайте mathpickle.com есть коллекция глубоких, открытых и сложных (некоторые нерешенные!) Математических задач для учащихся всех возрастов, доступных для поиска по классам, в том числе для очень маленьких. Каждая задача была найдена или создана профессиональным математиком и легко умещается в 45-60-минутный временной интервал.

nrich maths

nrichmaths.org имеет обширную коллекцию интересных математических задач, доступных для поиска по возрасту и концепции. Учителя пользуются большой поддержкой, и студенты могут предлагать решения для возможной публикации в Интернете.

Головоломки Кен-Кен

Головоломки Кен-Кен похожи на судоку, но со сложной математической особенностью. Головоломки развивают не только вычислительные возможности, но и навыки решения задач, чувство числа и более глубокое понимание свойств чисел. Этот веб-сайт будет генерировать для вас головоломки ken-ken на основе вашего выбора уровня обучения, математических операций, размера сетки и уровня сложности.

Zukei Puzzles

Zukei Puzzles — это поиск геометрических фигур, скрытых в сетках или точках. Основное внимание уделяется рассуждениям о свойствах двумерных фигур. Головоломки бывают всех уровней сложности. Вы и студенты также можете легко создать свои собственные.

Exploding Dots

Модель Exploding Dots Джеймса Тантона покорила математический мир за последние пару лет. Используя простую визуальную модель, учащиеся исследуют числовое значение, сложение, вычитание, умножение, деление и другие аспекты в различных базовых системах.

Beast Academy

Beast Academy — это полный учебный план по математике для одаренных и продвинутых учеников 2-5 классов (я бы не рекомендовал его другим ученикам). Он разработан людьми, известными Art of Problem Solving. за материалы для одаренных школьников. Основное внимание уделяется решению проблем и глубокому концептуальному пониманию. Сообщается, что скоро появится онлайн-версия программы.

Проект M2

От тех же людей, которые разработали проект M3 для учащихся старших классов начальной школы, Project M2 «содержит восемь учебных модулей, разработанных для классов K-2, чтобы стимулировать исследование и вовлечь учащихся в критическое мышление, решение проблем и коммуникативную деятельность… [с] акцентом на «углубленную» математику с использованием основанных на исследованиях практик и стандартов в математическом образовании и дошкольном образовании.

Project M3

Эта серия от Кендалла Ханта хорошо известна во всем США за предоставление основанных на исследованиях, углубленных и сложных учебных программ по математике для продвинутых учеников. Каждый модуль сопровождается обширной поддержкой учителей, и вы можете использовать проекты как единицы учебной программы или как дополнение. Единственные минусы: материалы довольно дорогие и требуют от учителей изрядного времени на подготовку.

Математика / решение задач в общем ядре

Обзор

Использование моделей — важный шаг, помогающий учащимся перейти от конкретной манипулятивной работы с текстовыми задачами к абстрактному этапу создания уравнения для решения контекстных задач. Научившись использовать простые модели для представления ключевых математических отношений в словесной задаче, учащиеся могут легче разбираться в словесных задачах, распознавать как числовые отношения в данной задаче, так и связи между типами задач, и успешно решать задачи с уверенностью в том, что их решения разумны.

Важность

Почему важно моделирование текстовых задач?

У студентов часто возникают проблемы со словами. Многие студенты просто ищут какие-то числа и что-то с ними делают, надеясь, что они решат проблему.

Учащиеся должны выработать привычку сначала разбираться в проблеме. Диаграмма или модель часто фокусируются на понимании проблемы, а не просто на получении ответа. Затем модель можно использовать для создания продуманного уравнения.Модель и уравнение можно использовать в качестве проверки рассуждений после того, как учащийся получит решение.

Решение проблем не заканчивается ответом. Процесс должен продолжаться после «получения ответа» на рассуждение о том, имеет ли ответ смысл.

Что такое моделирование текстовых задач?

Модели на любом уровне могут варьироваться от простых до сложных, от реалистичных до представительных. Молодые студенты часто решают начальные словесные задачи, разыгрывая их и моделируя их с реальными объектами проблемной ситуации, например.грамм. плюшевых мишек или игрушечных машинок. Со временем они расширяются до использования репрезентативных рисунков, сначала рисуя рисунки, которые реалистично изображают элементы проблемы, и переходят к многоцелевым представлениям, таким как круги или метки. После множества конкретных опытов с реальными задачами со словами, включающими соединение и разделение или умножение и разделение объектов, учителя могут переводить учащихся на рисунки с перевернутой буквой V и штриховые модели, которые являются многоцелевыми графическими организаторами, привязанными к определенным типам задач со словами.

Моделирование базовых числовых отношений

Простые диаграммы, иногда известные как числовые связи, треугольники фактов, ситуационные диаграммы или графические изображения, все чаще появляются в учебных материалах. Но способности учащихся решать проблемы и относительное мышление выиграют, если они будут чаще использовать эти диаграммы и модели.

Маленькие дети могут начать видеть числовые отношения, существующие в семье фактов, благодаря использованию модели, из которой они выводят уравнения.Связь чисел и перевернутая буква V — это одна простая модель, которая помогает учащимся увидеть отношения сложения / вычитания в семействе фактов и может использоваться с задачами со словами, требующими простого соединения и разделения. Связь чисел, а затем модель перевернутой буквы V могут быть адаптированы для семейств фактов умножения и деления. Кроме того, учащиеся могут подумать о соотношениях между числами в перевернутой букве V в формальных терминах, слагаемое и в сумме , или проще говоря, часть и итого , как показано на схемах ниже.

Конкретный пример для данной суммы 10 будет следующим, в зависимости от того, какой элемент проблемы неизвестен.

6 + 4 =? 6+? = 10? + 4 = 1

4 + 6 =? 10-6 =? 10 — 4 =?

Несмотря на то, что они часто используются с семействами фактов и изучением основных фактов, диаграммы с числовыми связями и перевернутые буквы V также могут хорошо работать при решении текстовых задач.Студентам необходимо подумать о том, что они знают и чего не знают в словесной задаче — известны ли обе части или только одна из них? Правильно разместив известные величины на перевернутой V-диаграмме, учащиеся с большей вероятностью определят полезное уравнение для решения проблемы и увидят результат как разумный для ситуации. Например, рассмотрим следующую задачу:

У Захария было 10 вагонов. Захари подарил своему брату 3 вагона. Сколько вагонов сейчас у Закари?

Студенты должны определить, со сколькими суммами Захари начал (всего или целиком ), и сколько он отдал ( часть от общего числа ).Итак, им нужно узнать, сколько осталось ( другая часть от общего количества ). Следующая перевернутая V-диаграмма представляет отношения между номерами этой проблемы:

3 +? = 10 или 10 — 3 =?, Значит, у Закари осталось 7 вагонов.

По мере того, как учащиеся переходят к умножению и делению, модель перевернутой буквы V все еще может использоваться либо в режиме повторного сложения, либо в режиме умножения. Ситуации разделения не требуют новой модели; деление рассматривается как обратное умножению или ситуация, когда один из факторов неизвестен.

Опять же, перевернутая V-диаграмма может быть полезна при решении задач умножения и деления слов. Например, рассмотрим следующую задачу:

Фонг посадил 18 растений томатов в 3 ряда. Если в каждом ряду было одинаковое количество растений, сколько растений было в каждом ряду?

Студенты могут видеть, что они знают продукт и количество строк. Число В строке неизвестно. Любая из приведенных ниже диаграмм может помочь решить эту проблему, убедив учащихся, что шесть раз подряд — разумный ответ.

Хотя перевернутая V-диаграмма может быть расширена до многозначных чисел, она обычно используется с проблемами, связанными с базовыми семействами фактов. Расширение использования модельной диаграммы с перевернутой буквой V должно усилить взаимосвязь между числами в семействе фактов, что сделает его полезным и быстрым визуальным средством для решения простых задач со словами с дополнительным преимуществом использования и увеличения удержания основных фактов.

Модели и типы задач для вычислений

По мере того, как дети переходят к работе с многозначными числами, учителя могут переводить учащихся на чертежи ленточных диаграмм / гистограмм, быстрые наброски, которые помогают учащимся увидеть взаимосвязь между важными числами в словесной задаче и определить, что известно и неизвестно в ситуации.

Знакомя учащихся с грифельными моделями, учитель получает важные наглядные пособия, помогающие учащимся думать о математических отношениях между числами в данной задаче со словом.

С ленточной диаграммой / гистограммой отношения между числами во всех этих типах задач становятся более прозрачными и помогают студенту перебросить мышление от работы с манипуляторами и рисования картинок к символической стадии написания уравнения для ситуации. При рутинном использовании диаграмм и хорошо организованных обсуждениях учителями ученик начнет понимать части словесной задачи и то, как эти части соотносятся друг с другом.

Проблемы частично-частично-целиком. Задачи от части-части-целого полезны с задачами со словами, которые относятся к совокупности вещей, например коллекции. Обычно это более статичные ситуации, включающие два или более подмножества целого набора. Рассмотрим проблему,

Коул имеет 11 красных блоков и 16 синих блоков. Сколько всего блоков у Коула?

Учащиеся могут построить простой прямоугольник из двух частей, чтобы обозначить два известных набора блоков (части / дополнения).Неважно, чтобы части прямоугольника были точно пропорциональны числам в задаче, но некоторое внимание к их относительному размеру может помочь в решении проблемы. Неизвестным в этой задаче является то, сколько их всего (всего / всего / суммы), что обозначено скобкой (или перевернутой буквой V) над полосой, обозначающей общее количество двух наборов блоков. Первая барная модель ниже отражает информацию в задаче о блоках Коула.

11 + 16 =? Итак, у Коула всего 27 блоков.

Аналогичная модель будет работать для задачи, когда известна вся сумма, но одна из частей (недостающее слагаемое) неизвестна. Например:

У Коула было 238 блоков. 100 из них были желтыми. Если все блоки Коула синие или желтые, сколько их было синими?

Следующая модель стержня может быть полезна в решении этой проблемы.

100 +? = 238 или 238 — 100 =? Итак, у Коула 138 синих блоков.

Ответ должен быть немного больше 100, потому что 100 + 100 равно 200, но здесь всего 238, поэтому синих блоков должно быть немного больше 100.

Столбиковую модель «часть-часть-вся» можно легко расширить до больших чисел и других числовых типов, таких как дроби и десятичные дроби. Рассмотрим задачу:

Летисия прочитала 7 ½ книг для читателей. Всего она хочет прочитать 12 книг. Сколько еще книг ей нужно прочитать?

Первая диаграмма ниже отражает эту проблему. Любая проблема со словом, которую можно рассматривать как части и целое, реагирует на диаграммы моделирования стержней. Если у задачи есть несколько слагаемых, учащиеся просто рисуют на полосе достаточно частей, чтобы отразить количество слагаемых или частей, и указывают, является ли одна из частей или целое / сумма неизвестными, как показано на втором рисунке ниже.

12 — 7 ½ =? или 7 ½ +? = 12, поэтому Летиции нужно прочитать еще 4 ½ книги.

Задачи соединения (сложения) и разделения (вычитания).

Студенты, которые не могут решить, нужно ли им прибавлять или вычитать, а затем умножать или делить, находят организационный потенциал гистограммы невероятно полезным.

У Марии было 20 долларов. Она получила еще 11 долларов за присмотр за детьми. Сколько у нее сейчас денег? Рассмотрим эту задачу объединения:

Учащиеся могут определить, что начальная сумма в 20 долларов является одной из частей, 11 долларов — другая часть (дополнительная сумма), а неизвестным является сумма / вся сумма или сколько денег она есть сейчас.Первая диаграмма ниже помогает представить эту проблему.

Рассмотрим соответствующую ситуацию с вычитанием:

У Марии был 31 доллар. Часть денег она потратила на новый компакт-диск. У Марии осталось 16 долларов.

Вторая диаграмма выше представляет эту ситуацию. Студенты могут использовать модель, чтобы помочь им определить, что общая сумма сейчас составляет 31 доллар, одна из частей (вычитающее изменение) неизвестна, поэтому другая часть — это те 16 долларов, которые у нее остались.

Проблемы сравнения. Проблемы со сравнением обычно считались трудными для детей. Частично это может быть связано с акцентом на вычитание, который используется в задачах со словами, которые включают ситуации «убрать», а не нахождение «разницы» между двумя числами. Интересно, что исследования, проведенные в странах, которые часто используют гистограммы, показали, что учащиеся не находят задачи сравнения намного более сложными, чем задачи «часть-часть-целое» (Yeap, 2010, стр. 88-89).

Модель с двойным стержнем может помочь сделать задачи сравнения менее загадочными.В основном, задачи сравнения включают две величины (либо одна величина больше другой, либо они равны), а также разницу между величинами. Можно нарисовать две полосы, по одной для каждой величины, причем разница будет представлена ​​пунктирной областью, добавленной к меньшему количеству. Например, с учетом задачи:

Тамека участвовал в 26 окружных ярмарочных аттракционах. Ее друг, Джексон, проехал 19 поездок. На сколько аттракционов ездил Тамека больше, чем Джексон?

Учащиеся могут создать диаграмму столбцов сравнения, показанную ниже, где большее количество, 26, является более длинным столбцом.Пунктирная часть показывает разницу между количеством поездок Джексона и Тамеки, или насколько больше у Тамека, чем у Джексона, или на сколько дополнительных поездок Джексон должен был бы проехать, чтобы иметь такое же количество поездок, как и Тамека.

26-19 =? или 19+? = 26; разница в 7, так что Тамека проехал еще 7 аттракционов.

Задачи сравнения выражают несколько различных формулировок отношений. Если Тамека проехал на 7 аттракционов больше, чем Джексон, то Джексон проехал на 7 аттракционов меньше, чем Тамека.Варианты схемы модели с двойной полосой могут сделать для учащихся более наглядными отношения, сформулированные по-разному. Студентам часто бывает полезно осознать, что в какой-то момент обе величины имеют одинаковое количество, как показано на модели ниже пунктирной линией, проведенной от конца прямоугольника, представляющего меньшее количество. Но у одной из величин больше, чем указано в области справа от пунктирной линии на более длинной полоске. Разницу между количествами можно определить путем вычитания 19 из 26 или сложения от 19 до 26 и получения 7, что означает, что 26 на 7 больше, чем 19, или 19 означает, что на 7 меньше 26.

Проблемы со сравнительными словами особенно проблематичны для изучающих английский язык, поскольку вопрос можно задать несколькими способами. Изменение полос сравнения может сделать вопросы более прозрачными. Вот несколько вариантов вопросов о двух количествах поездок, на которых проехали Тамека и Джексон:

  • На сколько аттракционов проехал Тамека больше, чем Джексон?
  • На сколько поездок Джексон совершил меньше поездок, чем Тамека?
  • Сколько еще поездок пришлось бы проехать Джексону, чтобы проехать столько же поездок, что и Тамека?
  • На сколько меньше поездок пришлось бы проехать Тамеке, чтобы проехать столько же поездок, что и Джексон?

Сравнения также могут быть мультипликативными.Рассмотрим проблему:

В коллекции Хуана 36 компакт-дисков. Это в 3 раза больше дисков, чем у его брата Маркоса. Сколько компакт-дисков у Маркоса?

В этой ситуации ученики построят гистограмму, показанную ниже слева, из 3 частей. Студенты могут разделить 36 на 3 равные группы, чтобы показать количество, которое нужно взять 3 раза, чтобы создать в 3 раза больше компакт-дисков для Хуана.

36 ¸ 3 =? или 3 раза? = 36 12 + 12 + 12 =? (или 3 x 12 =?)

, значит, у Маркоса 12 компакт-дисков.Итак, у Хуана 36 компакт-дисков.

Аналогичную модель можно использовать, если большее количество неизвестно, но меньшее количество и мультипликативное отношение известны. Если проблема была:

У Хуана есть компакт-диски. У него в 3 раза больше компакт-дисков, чем у Маркоса, у которого 12 компакт-дисков. Сколько компакт-дисков у Хуана?

Как видно на диаграмме вверху справа, студенты могут положить 12 в коробку, чтобы показать количество компакт-дисков, которые есть у Маркоса; затем продублируйте это 3 раза, чтобы увидеть, что у Хуана в 3 раза больше компакт-дисков.Тогда общее количество Хуана будет суммой этих трех частей.

Задачи умножения и деления. Та же модель, что и для мультипликативных сравнений, также будет работать для базовых задач умножения слов, начиная с однозначных множителей. Рассмотрим проблему:

У Аланы было 6 пакетов жевательной резинки. В каждой упаковке 12 штук жевательной резинки. Сколько всего жевательных резинок у Аланы?

В следующей линейчатой ​​модели для визуализации проблемы используется повторное сложение умножения.

12 + 12 + 12 + 12 + 12 + 12 = 72 (или 6 x 12 = 72)

, так что у Аланы 72 кусочка жевательной резинки.

По мере того, как учащиеся переходят к многозначным множителям, они могут использовать модель с многоточием, чтобы упростить гистограмму. Например:

Сэм пробегает 32 км в день в течение апреля, чтобы подготовиться к гонке. Если Сэм бегает каждый день месяца, сколько всего километров он пробежал в апреле?

30 x 32 км = 30 x 30 км + 30 x 2 км = 960 км

Сэм пробежал 960 км за 30 дней апреля.

Поскольку деление — это обратное умножение, в задачах деления слов будет использоваться модель мультипликативного столбца, в которой произведение (делимое) известно, но один из факторов (делитель или частное) неизвестен.

Задачи, связанные со ставками, дробями, процентами и несколькими шагами. По мере того, как учащиеся переходят в старшие классы, они могут применять новые концепции и многоступенчатые задачи со словами к чертежам моделей грифов. Скемп (1993) определил, что реляционное мышление имеет решающее значение для развития математики.Учащийся должен уметь расширять свое мышление на основе моделей, которые они использовали ранее, связывая и адаптируя свои знания к новым ситуациям.

Рассмотрим задачу о скорости и расстоянии:

Фонг проехала 261 милю, чтобы увидеться с бабушкой. В среднем она разгонялась до 58 миль в час. Сколько времени ей понадобилось, чтобы добраться до дома бабушки?

Следующая модель основана на модели «часть-часть-целое» с использованием формата повторяющегося сложения для умножения и деления. Предполагается, что учащиеся имеют опыт использования модели для задач деления, частные которых являются не просто целыми числами.По мере того, как они наращивают (или делят) 261 милю, они вычисляют, что пять 58-х будут соответствовать 5 часам путешествия, а оставшиеся 29 миль будут представлены половинным квадратом, поэтому решение состоит в том, что Фонг займет 5½ часов времени в пути, чтобы добраться до дома бабушки.

Даже более сложную проблему скорости можно решить с помощью комбинации подобных моделей. Рассмотрим эту задачу:

Сью и ее подруга Энн вместе отправились в путешествие. Сью проехала первые 2/5 поездки, а Энн проехала 210 миль за последние 3/5 поездки.Средняя скорость Сью составляла 60 миль в час, а Энн — 70 миль в час. Как долго у них была поездка?

Есть несколько способов, которыми учащиеся могут комбинировать или изменять базовую модель столбцов. Одно из решений может заключаться в следующем, где первое неизвестное — сколько миль проехала Сью. Полоса, разделенная на пятые части, показывает, как рассчитать километры, которые проехала Сью. Поскольку мы знаем, что 210 миль, которые проехала Энн, составляют 3/5 всего пути, каждая из ящиков Анны, каждая из которых представляет 1/5 пути, составляет 70 миль. Таким образом, Сью проехала две части по 70 миль, или 140 миль, что составляет 2/5 всего пути.

Теперь диаграмму необходимо расширить, чтобы показать, как рассчитать количество часов. Участок 210 миль Анны, разделенный на ее скорость 70 миль в час, займет 3 часа, как указано в следующем расширении диаграммы. Расстояние Сью в 140 миль теперь необходимо разделить на сегменты со скоростью 60 миль в час, чтобы определить время ее вождения, равное 2 1/3 часа. Таким образом, общая поездка в 350 миль займет 5 1/3 часа времени вождения, учитывая две нормы вождения.

Рассмотрим более простую многоступенчатую задачу:

Роберто купил 5 спортивных напитков по 1 доллару.25 каждый. Роберто дал кассиру 20 долларов. Сколько сдачи он получил обратно?

Опять же, у учащихся могут быть вариации, когда они начнут расширять использование диаграмм в многоэтапных или более сложных задачах. Некоторые ученики могут использовать сразу две диаграммы, как показано ниже слева. Другие могут указывать вычисления на одной диаграмме, как показано на диаграмме справа.

Имея рутинный опыт моделирования стержней, студенты могут расширить использование моделей для решения задач, связанных с отношениями, которые могут быть выражены с помощью переменных.Рассмотрим эту простую задачу, которую можно представить алгебраически:

Каллан и Авриель собрали в общей сложности 190 ошибок для научного проекта. Каллан собрал на 10 ошибок больше, чем Авриель. Сколько жуков собрал Каллан?

Пусть n равно количеству ошибок, собранных Авриель, а n + 10 равно количеству ошибок, собранных Калланом. Студенты могут создать следующую модель:

Поскольку n + n = 180 (или 2 n = 180), n = 90.Таким образом, Каллан собрал 90 + 10 или 100 ошибок, а Авриэль собрала 90 ошибок, всего 190 ошибок, собранных вместе.

При использовании модельного метода учащиеся должны переводить словесную информацию и отношения в визуальные представления, которые и являются моделями. Они также должны манипулировать и преобразовывать визуальные представления, чтобы генерировать информацию, полезную при решении заданных проблем.

Понимание структуры словесной задачи включает в себя знание того, как связана математическая информация в данной текстовой задаче и как выделить компоненты, необходимые для решения проблемы.Чертежи ленточной диаграммы / гистограммы могут помочь учащимся лучше определять переменные, участвующие в проблеме, а также отношения между ними. Эта способность сосредотачиваться на отношениях между числами в данной задаче и распознавать математическую структуру как особый тип проблемы является частью реляционного мышления — критически важным навыком для успеха в алгебре. Использование перевернутой буквы V и гистограммы в предалгебраическую работу в классах K-7 может сделать учащихся более подготовленными к формальному изучению алгебры.

Это отличный сайт для практики решения проблем — моделирования задач с помощью ленточной диаграммы / гистограммы

4 СТЕНДЫ МАТЕМАТИЧЕСКИХ ЗНАНИЙ | Подводя итог: помощь детям в изучении математики

Fuson, K.C., & Burghardt, B.H. (1993). Групповые тематические исследования второклассников, изобретающих многозначные процедуры сложения десятичных блоков и письменных оценок. В J.R.Becker & B.J.Pence (Eds.), Proceedings of the пятнадцатого ежегодного собрания Североамериканского отделения Международной группы психологии математического образования (стр.240– 246). Сан-Хосе, Калифорния: Государственный университет Сан-Хосе. (Услуга размножения документов ERIC № ED 372 917).

Fuson, K.C., Carroll, W.M., & Landis, J. (1996). Уровни осмысления и решения сложения и вычитания сравнивают задачи слов. Познание и обучение , 14 , 345–371.

Гири, округ Колумбия (1995). Отражения эволюции и культуры в детском познании. Американский психолог , 50 (1), 24–37.

Грино Дж. Г., Пирсон П. Д. и Шонфельд А. Х. (1997). Последствия для NAEP исследований в области обучения и познания. В: Р. Линн, Р. Глейзер и Г. Борнштедт (редакторы), Оценка в переходный период: мониторинг прогресса в области образования в стране, (Справочные исследования, стр. 151–215). Стэнфорд, Калифорния: Национальная академия образования.

Hagarty, M., Mayer, R.E., & Monk, C.A. (1995). Понимание арифметических словесных задач: сравнение успешных и неудачных решателей задач. Журнал педагогической психологии , 87 , 18–32.

Хатано, Г. (1988, осень). Социальные и мотивационные основы математического понимания. Новые направления развития ребенка , 41 , 55–70.

Хиберт, Дж. (Ред.). (1986). Концептуальные и процедурные знания: пример математики . Хиллсдейл, Нью-Джерси: Эрлбаум.

Хиберт, Дж., И Карпентер, Т.П. (1992). Учиться и преподавать с пониманием. В D. A.Grouws (Ed.), Справочник по исследованиям в области преподавания и обучения математике (стр. 65–97). Нью-Йорк: Макмиллан.

Хиберт, Дж., Карпентер, Т.П., Феннема, Э., Фусон, К.С., Вирн, Д., Мюррей, Х., Оливье, А., и Хумэн, П. (1997). Осмысление: преподавание и изучение математики с пониманием . Портсмут, Нью-Хэмпшир: Heinemann.

Хиберт Дж. И Уирн Д. (1986). Процедуры над понятиями: приобретение знаний о десятичных числах.В J.Hiebert (Ed.), Концептуальные и процедурные знания: случай математики (стр. 199–223). Хиллсдейл, Нью-Джерси: Эрлбаум.

Хиберт Дж. И Уирн Д. (1996). Обучение, понимание и навыки сложения и вычитания многозначных чисел. Познание и обучение , 14 , 251–283.

Хилгард, Э. Р. (1957). Введение в психологию (2-е изд.). Нью-Йорк: Харкорт Брейс.

Инелдер, Б., И Пиаже Дж. (1958). Развитие логического мышления с детства до подросткового возраста . Нью-Йорк: Основные книги.

Катона, Г. (1940). Организация и запоминание . Нью-Йорк: издательство Колумбийского университета.

Килпатрик Дж. (1985). Заниматься математикой, не понимая ее: комментарий к Хигби и Кунихире. Психолог-педагог , 20 (2), 65–68.

Кнапп, М.С., Шилдс П.М. и Тернбулл Б.Дж. (1995). Академическая задача в классах с высоким уровнем бедности. Дельта Фи Каппан , 76 , 770–776.

Куба В.Л., Карпентер Т.П. и Сваффорд Дж. (1989). Количество и операции. В M. M. Lindquist (Ed.), , Результаты четвертой математической оценки Национальной оценки успеваемости (стр. 64–93). Рестон, Вирджиния: Национальный совет учителей математики.

Что заставляет учащихся испытывать трудности с математикой?

Многие дети плохо разбираются в математике, но некоторым ученикам это труднее, чем другим.Это могут быть в остальном умные дети, у которых есть острое чувство логики и рассуждений, но которые все равно плохо справляются с домашними заданиями, тестами и викторинами.

Со временем повторяющаяся неуспеваемость по математике может привести к тому, что ученик потеряет мотивацию и поверит, что он или она «глуп» или плохо разбирается в предмете.

Более того, поскольку математика является кумулятивной, отставание может означать, что учащийся пропускает большую часть того, чему его учат, до конца учебного семестра. Базовые математические навыки важны независимо от того, какую карьеру выбирает человек.

Вот почему так важно выявлять проблемы на ранней стадии. При правильном сочетании условий в классе и стратегий обучения каждый ученик может полностью раскрыть свой потенциал в математике.

Существует ряд причин, по которым у ребенка могут быть проблемы с математикой в ​​школе, от низкой мотивации, вызванной математическим беспокойством, до плохого понимания того, как применять и выполнять математические операции. Но иногда первопричина недостаточной успеваемости кроется в чем-то другом, например, в различиях в обучении или проблемах с моторикой.

Наиболее часто ассоциированным заболеванием является дискалькулия , при котором люди испытывают трудности с выполнением основных вычислений и имеют проблемы с манипулированием числами так же, как и их сверстники.

Тем не менее, ученики с дислексией также могут испытывать трудности с математикой в ​​школе из-за трудностей с чтением чисел и проблем с пониманием слов. Они могут менять порядок цифр при выполнении работы на бумаге или правильно решать задачи, но записывать свои ответы неправильно.

Дети с ADD / ADHD могут броситься вперед и пропустить шаг или изо всех сил пытаться сосредоточиться и быть не в состоянии проверить свою работу, когда они решат проблему.

Учащиеся с дисграфией и диспраксией , которым трудно писать от руки, могут настолько отвлечься на формирование чисел, что они сделают неосторожные ошибки или выполнят шаги в уравнении в неправильном порядке.

Наконец, дети с расстройством зрительной обработки могут не обладать навыками визуально-пространственной обработки, которые им необходимы для выравнивания чисел, чтения графиков и выполнения основных геометрических операций.

Как мы относимся к математике

Математика — один из тех предметов, которые плохо понимают как дети, так и взрослые. Это связано с тем, что в то время как дошкольная математика заключается в решении практических задач, обнаружении закономерностей, распознавании форм в вашей среде и обучении счету, обучение математике в средней и старшей школе становится более абстрактным. Он часто фокусируется на заучивании наизусть и решении уравнений из книг — подумайте об арифметике и таблицах умножения — что может оттолкнуть учащихся и заставить их поверить, что математические навыки не имеют отношения к их повседневной жизни.

На самом деле, многие студенты жалуются, что математика скучна. Они могут не видеть смысла в изучении алгебры, геометрии или математического анализа в школе. Или они могут спросить, зачем им нужно уметь выполнять основные арифметические операции, такие как сложение, вычитание, умножение и деление, вручную, когда ответы можно легко найти с помощью калькулятора или компьютера.

Ответ на этот последний вопрос тройной. Во-первых, у вас не всегда может быть калькулятор; во-вторых, даже если вы это сделаете, понимание того, как и зачем делать это для себя, дает более прочную основу для будущего обучения, и в-третьих, выполнение арифметических операций — это умственная тренировка, которая укрепляет вашу рабочую память.

Числа окружают нас повсюду, и возможность работать с ними быстро и эффективно — это важный жизненный навык. Учтите, что быстрота в арифметике также весьма практична во многих профессиях, от плотника до розничной торговли, ракетостроения и обеспечения своевременного движения поездов!

Однако математика — это гораздо больше, чем арифметика. Многое из того, что входит в решение многоступенчатых задач со словами, — это определение проблемы, выбор подходящего подхода к ее решению (их может быть несколько) и соблюдение правильного порядка действий.

Уяснить фактическую арифметику — то, что может сделать калькулятор — гораздо проще. Это одна из причин, по которой детей просят показывать свою работу, когда они делают домашнее задание или дают ответы на тесте по математике.

В некоторых случаях учителя могут поставить за хорошую работу больше, чем за правильный ответ. Это потому, что именно в развернутой рукописной работе педагоги могут увидеть, как происходит «математическое мышление».

Однако такой подход может оскорбить очень способного ребенка, который интуитивно подскакивает к правильному решению, но не анализирует, как он к нему пришел, или ребенка, которому трудно писать от руки.Признание индивидуальных потребностей и сильных сторон учащихся лежит в основе передового опыта в обучении.

Кто борется с математикой?

  1. Учащиеся с математической тревогой

    Исследования показали, что математика — это предмет, в котором на успех сильно влияют психологические факторы, включая тревогу. Тревога — это больше, чем просто чувство беспокойства — это химическая реакция в мозгу, которая может подавлять когнитивные процессы и вызывать физические симптомы, включая учащенное дыхание, учащенное сердцебиение и потоотделение.

    Беспокойство по математике может привести к тому, что сильные ученики заедут на школьной викторине или экзамене.

    У них могут быть трудности с поиском решения проблемы, неправильное понимание вопросов или выполнение гораздо меньшего количества задач, чем они способны. Многие учащиеся с тревогой совершают небрежные ошибки из-за стресса, который они испытывают в данный момент, и, как правило, их оценочная работа по расписанию хуже по качеству, чем классные занятия или домашние задания.

    Тревога по поводу математики не обязательно связана с плохим знанием математики и может повлиять на учащихся с любым уровнем способностей — даже на одаренных детей.Тем не менее, это обычно приводит к снижению оценок, что подрывает уверенность учащегося.

    Это несоответствие между оценками и знаниями / навыками может как обескураживать, так и демотивировать учащихся. В худшем случае ребенок может начать проявлять признаки избегания математики и отрицательного отношения к школе и обучению в результате беспокойства.

    Стоит отметить, что некоторые учащиеся унаследовали от родителей тревогу и / или избегание математики. В западных обществах нередко можно услышать, как люди выражают неприязнь к математике.Фактически, это стало общепринятым способом обсуждения предмета в США и Великобритании. Это может повлиять на учащихся, которые начинают обесценивать его как предмет или считают приемлемым заниженные ожидания от себя, когда дело касается математики в школе.

    Также имейте в виду, что для некоторых учащихся беспокойство по поводу математики является результатом плохой успеваемости из-за неучтенных проблем с обучением или моторикой либо пробелов в их истории обучения.

  2. Дети с дискалькулией

    Учащиеся с дискалькулией плохо справляются с основами арифметики и могут с трудом усваивать математические факты.Как и в возрасте до 5 лет, им, возможно, потребовалось больше времени, чем их сверстникам, чтобы овладеть счетом.

    Дискалькулия также может влиять на оценочные способности и пространственное мышление; эти ученики могут быть не в состоянии определять время на часах, делать сравнительные суждения о размерах или определять математические символы. Дискалькулия часто сочетается с другими специфическими различиями в обучении, такими как дислексия, а также с проблемами внимания.

    ГЛАВНЫЙ СОВЕТ: Калькуляторы — разумная настройка. Поскольку учащиеся с дискалькулией могут быть не в состоянии надежно выполнять вычисления сложения, вычитания, умножения и деления, им может потребоваться использовать калькулятор для решения сложных математических задач.

  3. Студенты с дислексией

    Дислексия — это другой способ обработки в мозгу, который может повысить вероятность того, что ученики переворачивают числа и буквы, меняют числа или меняют их порядок. Например, копирование многозначного числа из одной строки в другую может привести к тому, что учащийся уронит цифру или добавит цифру, которой там не было.

    Также могут возникать проблемы, связанные с обработкой письменной речи, поскольку дислексия влияет на способность ребенка слышать звуки, из которых состоят слова.Это затрудняет чтение и может повлиять на понимание словесных задач.

    Учащимся с дислексией, возможно, придется перечитать абзац несколько раз, чтобы понять его, они могут легко потерять свое место, выполняя упражнения вручную, и им может потребоваться гораздо больше времени, чем их сверстникам, чтобы пройти начальные этапы понимания подсказки. Следовательно, у них останется меньше времени для выполнения фактических вычислений, необходимых для поиска решения.

  4. Лица с диспраксией

    Диспраксия может повлиять на мелкую моторику, необходимую для того, чтобы держать ручку или карандаш.Поскольку большая часть длинных форм математики выполняется вручную, учащиеся с диспраксией могут с трудом показать шаги, которые они использовали, чтобы прийти к ответу.

    Боль от почерка может легко отвлечь или расстроить, и, скорее всего, он откажется или откажется от вопроса, прежде чем решить его. Диспраксия также может влиять на планирование и организационные навыки. Поскольку решение более сложных проблем требует определенного планирования того, как вы придете к ответу, учащимся с диспраксией может быть трудно начать.

    Они также могут бороться с последовательностью шагов и правильным порядком операций в математике.

  5. Дети с СДВ / СДВГ

    Проблемы с вниманием могут повлиять на математические навыки по-разному. Во-первых, им труднее уделять внимание в классе. Решение математической задачи требует от вас выполнения нескольких шагов; ответ на одну строку сообщает следующую.

    Если ученик отвлекается и ускользает от внимания, ему может быть очень сложно проследить за демонстрацией учителя и понять, как было получено определенное число.Сохранение концентрации также является проблемой при выполнении работы вручную и проверке работы после того, как проблема решена .

    ПОЛЕЗНЫЙ СОВЕТ: Учащиеся с проблемами внимания могут быть более восприимчивыми к эффектам привязки. Когда вы впервые сталкиваетесь с математической задачей, вам нужно сначала сосредоточиться на понимании того, что от вас просят. Частью сбора важных битов является блокирование любых эффектов привязки от чисел, которые появляются постоянно и пытаются привлечь ваше внимание. Эти числа обычно указываются намеренно, чтобы отвлечь внимание, но они могут быть проблематичными для некоторых учащихся.Вы можете научить детей следить за этими числами, чтобы они могли активно подавлять свои инстинкты и использовать их в качестве ответа.

    Дети с СДВГ и гиперактивностью могут спешить с математическими задачами и в результате пропускать шаги или ошибаться с арифметикой. Они могут импульсивно записывать ответы, или их рукописные работы могут быть запутанными и трудными для чтения.

    Сложные для расшифровки числа могут сбить с толку как учащегося, так и учителя — узнайте больше о том, как трудности с письмом влияют на учащихся с СДВ / СДВГ.

  6. Учащиеся с дисграфией

    Одна из самых важных частей решения математической задачи — это возможность изложить свои мысли на бумаге. Это сделано для того, чтобы вы могли работать поэтапно, потому что одновременное удержание в голове нескольких вычислений создает нагрузку на когнитивные ресурсы и увеличивает вероятность ошибки.

    Однако для учащихся с дисграфией записать «математическое мышление» может быть непросто. Студенты-дисографы могут столкнуться с трудностями при формировании чисел и символов, организации чисел в пространстве и копировании текста с доски при ведении заметок.

    У них может быть беспорядочная и неорганизованная письменная работа, которую им может быть трудно читать и из-за которой они получат неправильный ответ, даже если подход, который они выбрали, был правильным. Узнайте больше о дисграфии.

  7. Лица с нарушениями обработки зрения

    Учащиеся с нарушениями визуальной обработки могут иметь трудности с математическими задачами, которые включают пространственное мышление, включая геометрию, чтение таблиц, чтение карт, а также различение и идентификацию различных чисел.Узнайте больше о нарушениях обработки зрения.

Как учителя могут сделать занятия по математике более инклюзивными

Сделайте математику актуальной.

Мотивируйте учащихся, показывая им реальные ситуации, связанные с использованием математики вне школьных классов. Объясните, как работает математика, убедите учащихся, что дело не только в арифметике, и вдохновите их попробовать и почувствовать себя комфортно, пробуя различные подходы к решению проблем, даже если это означает, что они не всегда получают правильный ответ.

Обучайте мультисенсорным способом.

Учитель дает устные объяснения, показывает работу на доске и, если возможно, использует тактильные приспособления, которые ученики могут коснуться и передвигать. Мультисенсорный ввод может помочь в обучении, облегчая учащимся участие в уроке, а также может закрепить материал в памяти. Это особенно важно для облегчения понимания предмета, который может быть довольно абстрактным.

Упражняйте словарный запас заранее.

Для некоторых учащихся, особенно тех, кто борется с грамотностью, возможность попрактиковаться в чтении, правописании и наборе математических слов и определений может упростить и ускорить выполнение урока, чтение учебника или понимание проблемы в домашнем задании. или в викторинах.

ПОЛЕЗНЫЙ СОВЕТ. Вы когда-нибудь задумывались о том, как слепой набор может помочь учащимся с математикой? Попробуйте читать и писать по буквам с помощью сенсорного ввода.

Узнать больше

Назначьте друзей для ведения заметок.

Иногда записывать информацию и одновременно обрабатывать ее может утомительно. Также может случиться так, что копирование с доски может привести к тому, что числа будут перенесены или записаны таким образом, что работа больше не имеет смысла. Может быть полезно разрешить ребенку делать заметки с помощью компьютера или объединить их с другом, который ведет заметки.

Разрешить доступ к жилым помещениям.

Если у учащегося диагностировали трудности с обучением, такие как дискалькулия, дислексия или дисграфия, вы можете разрешить им использовать калькулятор для выполнения основных арифметических операций или компьютер, чтобы печатать и отправлять работы.Слепой набор на компьютере часто бывает проще для детей, которым сложно научиться писать от руки.

Дайте студентам больше времени.

Потребность в времени на обработку в математике может варьироваться между учениками, но детям с трудностями в обучении часто полезно иметь больше времени, чтобы понять концепцию и посмотреть, как она работает. Это также помогает разбить работу на небольшие этапы и дать каждому учащемуся время, необходимое для осмысления линии, на которой он находится, прежде чем перейти к следующей.Увеличение ограничения по времени также может помочь уменьшить беспокойство по поводу математики.

Быстрая замена крышки:

Учащиеся с дискалькулией, дислексией, диспраксией, проблемами с вниманием, дисграфией, проблемами обработки изображений и тревогой могут бороться с математикой.

  • Дети с дискалькулией могут затруднить основы арифметики и счета
  • Учащиеся с трудностями обработки данных и ADD / ADHD могут иметь проблемы после объяснений учителя в классе
  • Учащимся с диспраксией может быть сложно выбрать лучший подход к решению проблемы диспраксия
  • Запись, интерпретация и преобразование решения могут быть сложными для учащихся с дислексией и дисграфией
  • Учащиеся с математикой тревожно могут испытывать трудности с выполнением заданий по оценке по времени или испытывать недостаток мотивации из-за низкой самооценки или неуверенности в себе

Сенсорное чтение и написание

Touch-type Read and Spell — это программа для мультисенсорного набора текста, которая учит печатать с использованием всего слова и подхода, основанного на звуке.Учащиеся могут использовать модули набора текста по математике, созданные учителями для соответствия учебной программе на разных уровнях обучения. Математические модули TTRS обучают основным определениям и помогают укрепить навыки чтения с листа для ключевых слов. Подход работает как для детей, так и для взрослых, которые испытывают трудности с математикой.

Используйте наши предметы по математике, чтобы подготовиться к предстоящему году, поддержать обучение в классе или просмотреть ранее изученный материал. Набор текста может дать учащимся с трудностями в обучении уверенность и навыки, необходимые для достижения успеха!

Важные математические навыки для пятиклассников

Хотите помочь своему пятикласснику освоить математику? Вот некоторые из навыков, которые ваш пятиклассник будет изучать в классе.

Сложение, вычитание, умножение и деление

Многозначные целые числа

Быстро и точно умножайте многозначные целые числа. Разделите целые числа (до четырех цифр) на двузначные числа.

Пример:

Решить 4,824 ÷ 12 =?

Объясните или проиллюстрируйте, как вы решили эту проблему.

Совет: выделите практическое применение математики.

По мере того, как математика, которую они изучают, становится более сложной и менее очевидно связанной с их повседневным опытом, у некоторых детей начинает развиваться математическая тревога.Важно, чтобы ваш ребенок занимался математикой и помогал ему понять, как в реальной жизни применяются концепции, которые ребенок изучает в школе. Составление бюджета на школьные принадлежности или на их ежемесячное пособие — один из способов практиковать сложение и вычитание. Если вы попросите их помочь вам с приготовлением или выпечкой, это покажет им, как работают дроби. Помогать рассчитывать цены при покупке продуктов — тоже хорошая практика.

Связанные

Понимание разряда

Расширьте понимание разряда: в многозначном числе цифра в одном месте представляет 1⁄10 того, что она представляет в месте слева от него, и в 10 раз больше как он изображен справа от него.

Сравнение десятичных знаков

Чтение, запись и сравнение десятичных знаков с разрядами тысячных, используя символы> (больше чем) и <(меньше чем). Например:

  • Прочтите это десятичное число: 23,002.
  • Запишите две и шестьдесят две тысячные в виде десятичного числа.
  • Какой знак подтверждает это утверждение: 5,389 _? _ 5,420
  • Исследователь измеряет количество бактерий, выросших на образцах неохлажденных продуктов. Ваш ребенок насчитывает 73.343 миллиона бактерий в образце A, 73,431 миллиона бактерий в образце B и 74,399 миллиона бактерий в образце C. Расположите образцы в порядке от наибольшего количества бактерий до наименьшего. Объясните или проиллюстрируйте, как вы приводите эти образцы в порядок.

Связанные

Десятичные дроби с точностью до сотых

Сложение, вычитание, умножение и деление десятичных долей с точностью до сотых.

Совет: потренируйтесь в вычислениях с использованием десятичных знаков.

Свяжите работу с десятичными знаками, которую ваш ребенок делает в классе, с реальным миром, поощряя их делать покупки по выгодным ценам.Попросите их разделить стоимость товаров, упакованных оптом, на количество отдельных товаров, чтобы определить стоимость каждого товара. Итак, сколько вы платите за рулон бумажного полотенца или за банку газировки при покупке оптом? Или попросите ребенка подсчитать, сколько вы сэкономите на каждом товаре, если цены со скидкой предполагают оптовые скидки.

Что такое показатель степени

Понять, что такое показатель степени. Например, «2» в 10² указывает, сколько раз нужно умножить число само на себя. 10² можно читать как «10 в степени 2», «10 в степени 2» или «10 в квадрате» и означает 10 x 10 или 100.10³ (или «10 в третьей степени» или «10 в кубе») означает 10 x 10 x 10 или 1000.

Дроби

Решение задач со словами

Решение задач со словами, включающих сложение и вычитание дробей.

Пример:

Пятый класс собирает пазл из 600 деталей. Они начали вчера и собрали 100 частей — всего одну шестую (1⁄6) головоломки. Сегодня их собрано 400 штук. Какая часть головоломки завершена? Нарисуйте картинку И запишите математику, чтобы показать, как вы решили задачу.

Совет: выделите практическое применение математики.

По мере того, как математика, которую они изучают, становится более сложной и менее очевидно связанной с их повседневным опытом, у некоторых детей начинает развиваться математическая тревога. Важно, чтобы ваш ребенок занимался математикой и помогал ему понять практическое применение концепций, которые он изучает в школе. Составление бюджета на школьные принадлежности или ежемесячное пособие — один из способов для нее попрактиковаться в сложении и вычитании.Если вы попросите ее помочь вам с приготовлением или выпечкой, это покажет ей, как работают дроби. Помогать рассчитывать цены при покупке продуктов — тоже хорошая практика.

Нахождение общего знаменателя

Решите задачи со словами, включающие сложение и вычитание дробей с разными знаменателями (нижние числа), преобразовывая их в дроби с одинаковым знаменателем, называемые общим знаменателем.

Пример:

Самая высокая девочка в пятом классе имеет рост 51 7⁄8 дюйма.Самый высокий мальчик в пятом классе имеет рост 49 сантиметров. Какая разница в их росте?

После вечеринки остались две чашки лимонада. В одной миске 1⁄3 галлона. В другом — 1⁄2 галлона лимонада. Друг говорит, что не стоит пытаться объединить их в 1-галлонный контейнер, потому что лимонад вытечет наверх. Вы согласны? Почему или почему нет?

Умножение дробей

Решайте задачи со словами, включающие умножение дробей на другие дроби и умножение дробей на смешанные числа (целое число и дробь, например 11⁄4 или 21⁄2).

Пример:

  • В оркестре средней школы 1⁄3 учащихся-музыкантов играют на струнных инструментах. Из учеников, играющих на струнных инструментах, 3⁄4 играют на скрипке. Какая часть оркестра играет на скрипке?
  • Утром во время экскурсии в яблоневый сад пятиклассники собрали 4⁄5 бушеля яблок. После обеда в полдень они собрали в 2,5 раза больше яблок. Уместятся ли все яблоки, собранные ими днем, в ящик на 2 бушеля? Откуда вы знаете?

Совет: потренируйтесь использовать дроби.

Помогите своему ребенку познакомиться с дробями, попросив его масштабировать рецепты для вашей семьи. Пусть они начнут с того, что уменьшат рецепт вдвое или вдвое. Когда они почувствуют себя комфортно, попросите их преобразовать его на 1 1/2, что позволит рецепту, который, как предполагается, прокормить семью из четырех человек, работать на семью из шести человек.

Дроби единицы деления

Разделите дроби единицы (дроби с 1 в числителе или верхним числом) на целые числа. Разделите целые числа на единичные дроби.

Пример:

Если три человека разделят ½ фунта шоколада поровну, сколько шоколада получит каждый? Объясните или проиллюстрируйте, как вы решили эту проблему.

Умножение на дроби

Помните, что умножение числа на дробь меньше 1 приведет к ответу меньше числа — например: 12 x ¾ = 9. Умножение числа на дробь больше 1 даст результат в ответе больше числа — например: 12 x 2 ½ = 30.

Измерения и данные

Преобразование единиц и дробей

Преобразование единиц и долей единиц в одной системе измерения.

Пример:

Сколько минут составляет 1⁄5 часа? Объясните или проиллюстрируйте, как вы решили эту проблему.

Проблемы многоступенчатого преобразования единиц измерения

Решайте многоступенчатые задачи преобразования слов, используя преобразование стандартных единиц измерения разного размера.

Пример:

У меня 75 см ленты.Для выполнения проекта мне нужно в семь раз больше ленты. Сколько еще метров ленты мне нужно?

Объясните или проиллюстрируйте, как вы решили эту проблему.

Использование линейного графика

Решайте проблемы, используя информацию (в единицах дроби), представленную на линейном графике.

Геометрия

Объем

Под объемом понимается измерение пространства внутри трехмерной или твердой фигуры.

Добавить комментарий

Ваш адрес email не будет опубликован.